Analysis and Design of Beams Problems [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

ANALYSIS AND DESIGN OF BEAMS PROBLEMS PROBLEM 2.1 A reinforced concrete rectangular beam 300 mm wide has an effective depth of 460 mm and is reinforced for tension only. Assuming 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 345π‘€π‘ƒπ‘Ž, determine the balance steel area in sq.mm. SOLUTION πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+𝑓𝑦 )



𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 < 30π‘€π‘ƒπ‘Ž πœŒπ‘ =



0.85(21)(0.85)(600) 345(600 + 345) πœŒπ‘ = 0.02792



𝐴𝑠𝑏 = πœŒπ‘ 𝑏𝑑



PROBLEM 2.2 A rectangular beam has b = 300 mm and d =490 mm. Concrete compressive strength 𝑓′𝑐 = 27.6π‘€π‘ƒπ‘Ž and steel yield strength 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž. Calculate the required tension steel area if the factored moment 𝑀𝑒 is (a) 20 kN-m, (b) 140 kN-m, (c) 485 kN-m, and (d)620 kN-m. SOLUTION Solve for πœŒπ‘šπ‘Žπ‘₯ π‘Žπ‘›π‘‘ 𝑀𝑒 π‘šπ‘Žπ‘₯ : πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+𝑓𝑦 )



πœŒπ‘šπ‘Žπ‘₯ = 0.75 πœŒπ‘ πœ”π‘šπ‘Žπ‘₯ =



πœŒπ‘šπ‘Žπ‘₯ 𝑓𝑦 𝑓′ 𝑐



πœŒπ‘ =



0.85(27.6)0.85(600) 276(600+276)



πœŒπ‘ = 0.0495 πœŒπ‘šπ‘Žπ‘₯ = 0.75(0.0495) πœŒπ‘šπ‘Žπ‘₯ = 0.0371 0.03711(276) πœ”π‘šπ‘Žπ‘₯ = 27.6 πœ”π‘šπ‘Žπ‘₯ = 0.371



𝑅𝑛 π‘šπ‘Žπ‘₯ = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59πœ”) 𝑅𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝑅𝑛 π‘šπ‘Žπ‘₯ 𝑏𝑑2



𝑅𝑛 π‘šπ‘Žπ‘₯ = 27.6(0.371)[1 βˆ’ 0.59(0.37)] = 8.001π‘€π‘ƒπ‘Ž



𝑀𝑛 π‘šπ‘Žπ‘₯ = 8.001(300)(490)2 𝑀𝑛 π‘šπ‘Žπ‘₯ = 576.279π‘₯106 𝑁 βˆ’ π‘šπ‘š 𝑀𝑛 π‘šπ‘Žπ‘₯ = 576.279π‘˜π‘ βˆ’ π‘šπ‘š 𝑀𝑒 π‘šπ‘Žπ‘₯ = 0.90 π‘₯ 576.279 𝑀𝑒 π‘šπ‘Žπ‘₯ = 518.65 π‘˜π‘ βˆ’ π‘š



𝑀𝑒 π‘šπ‘Žπ‘₯ = πœ‘π‘€π‘› π‘šπ‘Žπ‘₯



a) 𝑀𝑒 = 20π‘˜π‘ βˆ’ π‘š < 𝑀𝑒 π‘šπ‘Žπ‘₯ = (𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘) 𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑 2 20 x 106 = 0.90𝑅𝑛 (300)(490)2 𝑅𝑛 = 0.309 π‘€π‘ƒπ‘Ž



𝜌=



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.085𝑓′𝑐



0.85(27.6) 2(0.309 [1 βˆ’ √1 βˆ’ ] 276 0.85(27.6) 𝜌 = 0.00113 < πœŒπ‘šπ‘–π‘›



πœŒπ‘šπ‘–π‘› =



𝐴𝑠 = πœŒπ‘π‘‘



βˆšπ‘“β€²π‘ 1.4 𝑖𝑓 𝑓′𝑐 > 31.36π‘€π‘ƒπ‘Ž, π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ πœŒπ‘šπ‘–π‘› = 4𝑓𝑦 𝑓𝑦 1.4 πœŒπ‘šπ‘–π‘› = = 0.005072 𝑓𝑦 𝐴𝑠 = 0.00572(300)(490) 𝑨𝒔 = πŸ•πŸ’πŸ”π’Žπ’ŽπŸ



b) 𝑀𝑒 = 140π‘˜π‘ βˆ’ π‘š < 𝑀𝑒 π‘šπ‘Žπ‘₯ (singly reinforced) 𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2 140 x 106 = 0.90 𝑅𝑛 (300)(490)2 𝑅𝑛 = 2.16 π‘€π‘ƒπ‘Ž



𝜌=



𝜌=



𝐴𝑠 = πœŒπ‘π‘‘



0.85𝑓′𝑐 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.85𝑓′𝑐



0.85(27.6) 2(2.16) [1 βˆ’ √1 βˆ’ ] 276 0.85(27.6)



𝜌 = 0.00822 > πœŒπ‘šπ‘–π‘› 𝐴𝑠 = 0.00822(300)(490) 𝐴𝑠 = 𝟏, πŸπŸŽπŸ—π’Žπ’ŽπŸ



c) 𝑀𝑒 = 485 π‘˜π‘ βˆ’ π‘š < π‘€π‘’π‘šπ‘Žπ‘₯ (singly reinforced) 𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2 485 x 102 = 0.90𝑅𝑛 (300)(490)2 𝑅𝑛 = 7.48 π‘€π‘ƒπ‘Ž



𝜌=



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.85𝑓′𝑐



0.85(27.6) 2(7.48) [1 βˆ’ √1 βˆ’ ] 276 0.85(27.6) 𝜌 = 0.03384 > πœŒπ‘šπ‘–π‘›



𝐴𝑠 = 𝜌 𝑏 𝑑



𝐴𝑠 = 0.03384(300)(490) 𝐴𝑠 = πŸ’, πŸ—πŸ•πŸ“π’Žπ’ŽπŸ



d) 𝑀𝑒 = 600 π‘˜π‘ βˆ’ π‘š > π‘€π‘’π‘šπ‘Žπ‘₯ The beam will be doubly reinforced. See Chapter 3.



PROBLEM 2.3 (CE MAY 2012) A reinforced concrete beam has a width of 300 mm and an overall depth of 480 mm. The beam is simply supported over span of 5 m. Steel strength 𝑓𝑦 = 415 MPa and concrete𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž. Concrete cover is 70 mm from the centroid of the steel area. Unit weight concrete is 23.5kN/π‘š3 .Other than the weight of the beam, the beam carries a superimposed dead of 18 kN/m and a live load of 14 kN/m. Use the strength design method. a) Determine the maximum factored moment on the beam. b) If the design ultimate moment capacity of the beam is 280 kN-m, determine the required number of 20 mm tension bars. c) If the beam will carry a factored load of 240 kN at midsPan, determine the required number of 20 mm tension bars.



SOLUTION Given:



b=300m 𝑓′𝑐 = 300 π‘€π‘ƒπ‘Ž d=480-70=410 mm 𝛽1 = 0.85 1.4 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž πœŒπ‘šπ‘–π‘› = 𝑓 = 0.00337 𝑦



Bar diameter , 𝑑𝑏 = 20 π‘š π‘˜π‘ Weight of beam, 𝑀𝑏 = 𝛾𝑐 𝐴𝑏 = 23.5(0.3 π‘₯ 0.48 ) = 3.384 π‘š a) Maximum factored moment on the beam. Factored load, π‘Šπ‘’ = 1.4(3.384 + 18) + .7 (14) Factored load, π‘Šπ‘’ = 53.738 π‘˜π‘/π‘š Maximum factored moment: π‘Š 𝐿2



53.738(5)2



𝑀𝑒 = 𝑒8 𝑀𝑒 = 8 𝑀𝑒 = πŸπŸ”πŸ•. πŸ—πŸ‘ π’Œπ‘΅ βˆ’ π’Ž b) 𝑀𝑒 = 280 π‘˜π‘ βˆ’ π‘š



Solve for π‘€π‘’π‘šπ‘Žπ‘₯ to determine whether compression steel is needed πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+ 𝑓𝑦 )



πœŒπ‘šπ‘Žπ‘₯ = 0.75 πœŒπ‘ πœ”π‘šπ‘Žπ‘₯ =



πœŒπ‘šπ‘Žπ‘₯ 𝑓𝑦 𝑓′𝑐



πœŒπ‘ =



0.85(28)(0.85)(600) 415(600+415)



πœŒπ‘ = 0.02881 πœŒπ‘šπ‘Žπ‘₯ = 0.021261 πœ”π‘šπ‘Žπ‘₯ = 0.03203



𝑅𝑛 π‘šπ‘Žπ‘₯ = 𝑓 β€² 𝑐 πœ”π‘šπ‘Žπ‘₯ (1 βˆ’ 0.59 πœ”π‘šπ‘Žπ‘₯ ) = 7.274 𝑀𝑒 π‘šπ‘Žπ‘₯ = πœ‘ π‘…π‘›π‘šπ‘Žπ‘₯ 𝑏𝑑2 = 330.14 π‘˜π‘ βˆ’ π‘š Required 𝑀𝑒 = 280 π‘˜π‘ βˆ’ π‘š πœŒπ‘šπ‘–π‘› 415 0.85(28)



𝐴𝑠 = 𝜌 𝑏 𝑑 𝐴𝑠 = 0.01755(300)(410) 𝐴𝑠 = 2159π‘šπ‘š2 πœ‹ πœ‹ 𝐴𝑠 = 𝑑𝑏2 2159 = (20)2 𝑁 4 4 N=6.9 say 7 bars



1. 𝑃𝑒 = 240π‘˜π‘ π‘Žπ‘‘ π‘šπ‘–π‘‘π‘ π‘π‘Žπ‘› π‘Š_𝑑 = 3.384 π‘˜π‘/π‘š (weight of beam) 𝑀𝑒 =



𝑃𝑒 𝐿 (1.4π‘Šπ‘‘ )𝐿2 + = 314.805 π‘˜π‘ βˆ’ π‘š < 𝑀𝑒 π‘šπ‘Žπ‘₯ 4 8



(𝑠𝑖𝑛𝑔𝑙𝑦)



314.805 π‘₯ 106



𝑀



𝑅𝑛 = πœ‘π‘π‘‘π‘’ 2



𝑅𝑛 = 0.90(300)(410)2 𝑅𝑛 = 6.936π‘€π‘ƒπ‘Ž



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.85𝑓′𝑐



𝜌=



0.85(28) 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] = 002031 > πœŒπ‘šπ‘–π‘› 415 0.85𝑓′𝑐



𝐴𝑠 = 𝜌 𝑏 𝑑



𝐴𝑠 = 0.02031(300)(410) 𝐴𝑠 = 2498π‘šπ‘š2 πœ‹ πœ‹ 𝐴𝑠 = 4 𝑑𝑏2 𝑁 2498 = 4 (20)2 N 𝑁 = 7.95 π‘ π‘Žπ‘¦ πŸ– 𝒃𝒂𝒓𝒔



PROBLEM 2.4 (CE MAY 1993) A reinforced concrete beam has a width of 300 mm and an effective depth to tension bars of 600 mm. compression reinforcement if needed will be placed at a depth of 60 mm below the top. If 𝑓′𝑐 = 30 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž, determine the tension steel area if the beam is to resist an ultimate moment of 650 kN-m. SOLUTION Solve for πœŒπ‘šπ‘Žπ‘₯ and π‘€π‘’π‘šπ‘Žπ‘₯ : πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



0.85(30)(0.85)(600) 414(600 + 414) πœŒπ‘ = 0.031 πœŒπ‘šπ‘Žπ‘₯ = 0.75(0.031) πœŒπ‘šπ‘Žπ‘₯ = 0.0232 πœŒπ‘ =



πœŒπ‘šπ‘Žπ‘₯ = 0.15πœŒπ‘



𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 < 10 π‘€π‘ƒπ‘Ž



πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



0.02323(414) 30 πœ” = 0.3209



𝑀𝑒 π‘šπ‘Žπ‘₯ = πœ‘π‘“β€²π‘ πœ” 𝑏 𝑑2 (1 βˆ’ 0.59πœ”) 𝑀𝑒 π‘šπ‘Žπ‘₯ = 0.90(30)(0.3209)(300)(600)2 [1-0.59(0.309) 𝑀𝑒 π‘šπ‘Žπ‘₯ = 758.1 π‘˜π‘ βˆ’ π‘š > 𝑀𝑒 Since𝑀𝑒 < 𝑀𝑒 π‘šπ‘Žπ‘₯ , the beam may be designed as singly reinforced. 𝑅𝑛 = 6.687 π‘€π‘ƒπ‘Ž



650 x 106 = 0.90𝑅𝑛 (300)(600)2 𝑅𝑛 = 6.687π‘€π‘ƒπ‘Ž



Solve for 𝜌:



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 (1 βˆ’ √1 βˆ’ ) 𝑓𝑦 0.85𝑓′𝑐



𝜌=



0.85(30) 2(6.687) [1 βˆ’ √1 βˆ’ ] = 0.0191 > πœŒπ‘šπ‘–π‘› 414 0.85(30)



πœŒπ‘šπ‘–π‘› =



1.4 = 0.00338 𝑓𝑦



𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.0191(300)(600) 𝐴𝑠 = 3442 π‘šπ‘š2



PROBLEM 2.5 (CE November 2000) A rectangular concrete beam has a width of 300 mm and an effective depth of 550 mm. The beam is simply supported over a span 6 m and is used to carry a uniform dead load of 25 kN/m and a uniform live load of 40 kN/m. Assume 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 312 π‘€π‘ƒπ‘Ž. Compression



reinforcement if necessary shall be placed at a depth 80 mm from the outermost compression concrete. a) Determine 80 mm from the outermost compression concrete. b) Determine the required tension steel area. c) Determine the required number of 25-mm tension bars.



SOLUTION a) Maximum steel area: πœŒπ‘ =



0.85 𝑓 β€² 𝑐 𝛽1 600



𝑓𝑦 (600 + 𝑓𝑦 ) 𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓𝑐 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 30 π‘€π‘ƒπ‘Ž πœŒπ‘ =



0.85(21)(0.85)(600) 312(312 + 600)



πœŒπ‘ = 0.03199 𝜌 π‘šπ‘Žπ‘₯ = 0.75πœŒπ‘



πœŒπ‘šπ‘Žπ‘₯ = 0.75(0.03199) πœŒπ‘šπ‘Žπ‘₯ = 0.02399



𝐴𝑠 π‘šπ‘Žπ‘₯ = 𝜌 π‘šπ‘Žπ‘₯ 𝑏𝑑



𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.02399(300)(550) 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ‘, πŸ—πŸ“πŸ— π’Žπ’ŽπŸ



b) Required tension steel area: Factored load: π‘Šπ‘’ = 1.4 𝐷 + 1.7 𝐿



π‘Šπ‘’ = 1.4(25) + 1.7(40) π‘Šπ‘’ = 103 π‘˜π‘/π‘š



Required strength: 𝑀𝑒 =



π‘Šπ‘’ 𝐿2 8



Solve for 𝑀𝑒 π‘šπ‘Žπ‘₯



103(6)2 8 𝑀𝑒 =463.5kN-m



𝑀𝑒 =



πœ”=



𝜌 π‘šπ‘Žπ‘₯ 𝑓𝑦 𝑓′𝑐



0.0299(312) 21 πœ” = 0.356



πœ”=



𝑀𝑒 π‘šπ‘Žπ‘₯ = πœ‘π‘“ β€² 𝑐 πœ”π‘π‘‘2 (1 βˆ’ 0.59πœ”) 𝑀𝑒 π‘šπ‘Žπ‘₯ = 0.90(30)(0.356)(300)(550)2 [1 βˆ’ 0.59(0.356)] 𝑀𝑒 π‘šπ‘Žπ‘₯ = 536.5 π‘˜π‘ βˆ’ π‘š > 𝑀𝑒 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ 𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏𝑑2



𝑀𝑒 = 0.39 𝑅𝑛 (300)(550)2 463.5 π‘₯ 106 = 0.9 𝑅𝑛 (300)(550)2 𝑅𝑛 = 5.67 π‘€π‘ƒπ‘Ž



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 (1 βˆ’ √1 βˆ’ ) 𝑓𝑦 0.85 𝑓,𝑐



𝜌=



0.85(21) 2(5.67) [1 βˆ’ √1 βˆ’ ] 312 0.85(21)



𝜌 = 0.02269 𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.002269(300)(550) 𝐴𝑠 = 3743 π‘šπ‘š2



c) Number of 25 mm bars: Number of 25-mm bars=



𝐴𝑠 𝐴𝑠 25 3.743



Number of 25-mm bars=πœ‹ 4



(25)2



= 7.63 π‘ π‘Žπ‘¦ 8



PROBLEM 2.6 (CE MAY 2009) A reinforced concrete beam has a width of 300 mm and total depth of 600 mm. The beam will be design to carry a factored moment of 540kN-m.



Concrete strength 𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž and steel yield strength 𝑓𝑦 = 248 π‘€π‘ƒπ‘Ž. Solve using the strength design method. a) Determine the balanced steel ratio in percent. b) Determine the minimum effective depth of the beam using a steel ratio 𝜌 equal to 0.5 of balanced steel ratio. c) Determine the minimum effective depth of the beam using the maximum allowable steel ratio. SOLUTION Given: 𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 248 π‘€π‘ƒπ‘Ž



b=300 mm h=600 mm 𝑀𝑒 = 540 π‘˜π‘ βˆ’ π‘š 𝛽1 = 0.85 a) Balanced steel ratio: πœŒπ‘ =



0.85𝑓 β€² 𝑐 𝛽1 600



πœŒπ‘ =



𝑓𝑦 (600 + 𝑓𝑦 )



0.85(28)(0.85)600 248(600 + 248)



πœŒπ‘ = 0.0577 = πŸ“. πŸ•πŸ•% b) Effective depth using 𝜌 = 0.5πœŒπ‘ 𝜌 = 0.5(0.0577) = 0.0289 πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



0.0289(248) = 0.2556 28



𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59πœ”) 𝑅𝑛 = 28(0.2556)[1 βˆ’ 0.59(0.2556)] 𝑅𝑛 = 6.0776 π‘€π‘ƒπ‘Ž 𝑀𝑒 = πœ‘π‘€π‘› = πœ‘π‘…π‘› 𝑏𝑑2



540 x 106 = 0.90(8.307)(300)𝑑 2



𝑑 = πŸ’πŸ—πŸ π’Žπ’Ž



PROBLEM 2.7 A concrete one-way slab has a total thickness of 120 mm. The slab will be reinforced with 12-mm-diameter bars with 𝑓𝑦 = 275 π‘€π‘ƒπ‘Ž.Concrete strength𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž. Determine the required spacing 12 mm main bar if the total factored moment acting on 1-m width of slab is 23 kN-m width of slab is 23 kN-m. Clear concrete cover is 20 mm. SOLUTION Note: Slabs are practically singly reinforced because of its small depths.



Effective depth, d= 120 -20-1/2(12) = 94 mm Width, b = 1000 mm 𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑 2 23 x 106 = 0.90 𝑅𝑛 (1000)(94)2 𝑅𝑛 = 2.892



𝜌=



𝜌=



0.85𝑓 β€² 𝑐 𝑓𝑦



(1 βˆ’ √1 βˆ’



2𝑅𝑛 ) 0.85𝑓 β€² 𝑐



0.85(21) 2(2.982) (1 βˆ’ √1 βˆ’ ) 275 0.85(21)



πœŒπ‘šπ‘Žπ‘₯ =



πœŒπ‘šπ‘–π‘› =



0.75 π‘₯ 0.85𝑓′𝑐 𝛽1 600 = 0.0284 𝑓𝑦 (600 + 𝑓𝑦 )



1.4 = 0.00509 𝑓𝑦



𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.1154(1000)(94) 𝐴𝑠 = 1085 π’Žπ’ŽπŸ



Spacing of bars (for walls and slabs using unit width): 𝑏



𝑠=𝑁



𝑠=



𝑠=



1000 𝐴𝑠 𝐴𝑏



1000𝐴𝑏 𝐴𝑠



Eq. 2-17 1000𝐴𝑏 𝑠= 𝐴𝑠



πœ‹ 1000 π‘₯ 4 (12)2 𝑠= 1085 𝑠 = 𝟏𝟎𝟎 π’Žπ’Ž



PROBLEM 2.8 A 2.8 m square column fooring has a total thickness of 47 mm. The factored moment at critical section for moment is 640 kN-m. Assume 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 275 π‘€π‘ƒπ‘Ž. Clear concrete cover is 75 mm. Determine the required number of 20 mm tension bars. SOLUTION Effective depth, d=470-75-1/2(20) = 385 mm Width, b =2800 mm Design strength, 𝑀𝑒 = 640 π‘˜π‘ βˆ’ π‘š



Maximum and minimum requirements: πœŒπ‘šπ‘Žπ‘₯ = 0.75 π‘₯



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+𝑓𝑦 )



= 0.0284



𝑀𝑒 π‘šπ‘Žπ‘₯ = 2528π‘˜π‘ βˆ’ π‘š (Procedure is not shown anymore see Problem 2.2) 𝐴𝑠 π‘šπ‘–π‘› =



1.4 𝑏𝑀 𝑑 𝑓𝑦



= 5488 π‘šπ‘š2



Singly reinforced: 𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2



𝜌=



0.85𝑓 β€² 𝑐 2𝑅𝑛 (1 βˆ’ √1 βˆ’ ) 𝑓𝑦 0.85𝑓 β€² 𝑐



𝜌=



0.85(21) 2(1.713 (1 βˆ’ √1 βˆ’ ) 275 0.85(21)



640 π‘₯ 106 = 0.90𝑅𝑛 (2800)(385)2 𝑅𝑛 = 1.713 π‘€π‘ƒπ‘Ž



𝜌 = 0.00656 𝐴𝑠 = 𝜌 𝑏 𝑑



𝐴𝑠 = 0.00656(2800)(385) 𝐴𝑠 = 7074 π‘šπ‘š2 > 𝐴𝑠 π‘šπ‘–π‘›



Number of 20 mm bars: 𝑁=



𝐴𝑠 𝐴𝑏



7074 𝑁=πœ‹ 2 4 (20) 𝑁 = 22.5 π‘ π‘Žπ‘¦ πŸπŸ‘ 𝒃𝒂𝒓𝒔



PROBLEM 2.9 Design a rectangular beam reinforced for tension only to carry a dead load moment of 60 kN-m (including its own weight) and a live load moment of 48 kN- m. Use 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž. SOLUTION Required strength: 𝑀𝑒 = 1.4 𝑀𝑏 + 1.7 𝑀𝐿



𝑀𝑒 = 1.4(60) + 1.7(48) 𝑀𝑒 = 165.6 π‘˜π‘ βˆ’ π‘š



(Note: this already includes the weight of beam)



πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



πœŒπ‘ =



0.85(20.7)(0.85)(600) 276(600 + 276)



πœŒπ‘ = 0.0371 πœŒπ‘šπ‘–π‘› =



1.4 = 0.00507 𝑓𝑦 Note: this is the author’s suggestion



Try 𝜌 = 60% πœŒπ‘ 𝜌 = 0.6(0.0371) = 0.02226



πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



0.02226(276) 20.7



πœ” = 0.2968 𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59πœ”)



𝑅𝑛 = 20.7(0.2968)[1 βˆ’ 0.59(0.2968)] 𝑅𝑛 = 5.068



𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏𝑑2



165.6 x 106 = 0.90(5.068)𝑏𝑑2 𝑏𝑑 2 = 36.296 π‘₯ 106 π‘šπ‘š3



Try d = 1.75 b



b=228 mm say 230 mm d=399 say 30 mm



𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.02226(230)2(400) 𝐴𝑠 = 2.049 π‘šπ‘š2



Summary: b = 230 mm d = 400 mm 𝑨𝒔 = 𝟐, πŸŽπŸ’πŸ— π’Žπ’ŽπŸ PROBLEM 2.10 Design a singly reinforced rectangular beam for a 6-m simple span to support a superimposed dead load of 29 kN/m and a live load of 44 kN/m. 24π‘˜π‘ Assume normal weight concrete with = π‘š3 . Use πœŒπ‘šπ‘Žπ‘₯, 𝑓′𝑐 = 34 π‘€π‘ƒπ‘Ž, π‘Žπ‘›π‘‘ 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž.



SOLUTION Weight of beam: (this is the author’s assumption) Assuming a 300 mm x 600 mm, π‘Š_𝑏 = 24 π‘₯ (0.3 0.6) = 4.32π‘˜π‘/π‘š π‘Šπ‘’ = 1.4 (29 + 4.32) + 1.7(44) π‘Šπ‘’ = 121.448 π‘˜π‘/π‘š



π‘Šπ‘ = 1.4 π‘ŠπΏ + 1.7 π‘ŠπΏ . 𝑀𝑒 =



π‘Šπ‘’ 𝐿2



𝑀𝑒 =



8



121.448(6)2 8



𝑀𝑒 = 546.516 π‘˜π‘ βˆ’ π‘š 𝛽1 = 0.85 βˆ’ πœŒπ‘ =



0.05 = 0.821 7(34 βˆ’ 30)



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+ 𝑓𝑦 )



πœŒπ‘ =



0.85(34)(0.821)(600) 345(600+345)



πœŒπ‘ = 0.04369



𝜌 = πœŒπ‘šπ‘Žπ‘₯ = 0.75 (0.04369) πœŒπ‘šπ‘–π‘› = πœ”=



𝜌 = 0.03277 > πœŒπ‘šπ‘–π‘›



βˆšπ‘“β€²π‘ = 0.00423 4𝑓𝑦



πœŒπ‘“π‘¦



πœ”=



𝑓′𝑐



𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 > 31.36 π‘€π‘ƒπ‘Ž



0.03277(345) 34



πœ” = 0.332



𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.56 πœ”)



Assume d = 1.75 b



𝑅𝑛 = 34(0.332)[1 βˆ’ 0.59(0.332)] 𝑅𝑛 = 9.087 π‘€π‘ƒπ‘Ž



(this is the author’s assumption)



𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏 𝑑 2



546.516 x 106 = 0.90(9.087)(𝑏)(1. 75𝑏)2 𝑏 = 279.4 π‘šπ‘š & 𝑑 = 489 π‘šπ‘š



Use b = 280 mm, d = 490 mm Minimum beam the thickness (Section 409.6.2.1) β„Žπ‘šπ‘–π‘› =



𝑓𝑦 𝐿 (0.4 + ) 16 700



β„Žπ‘šπ‘–π‘› =



6000 345 (0.4 + ) 16 700



β„Žπ‘šπ‘–π‘› = 335 π‘šπ‘š 𝑂𝐾 𝐴𝑠 = 𝜌 𝑏 𝑑



𝐴𝑠 = 0.03277(280)(490) 𝐴𝑠 = 4496 π‘šπ‘š2



Using 32 mm bars (#100): 𝑁=



𝐴𝑠 𝐴𝑏



4496 𝑁=πœ‹ 2 4 (32) 𝑁 = 5.6 π‘ π‘Žπ‘¦ 6 π‘π‘Žπ‘Ÿπ‘ 



β„Ž = 490 + (25) + 32 + 20 β„Ž = 554.5 π‘šπ‘š > β„Žπ‘šπ‘–π‘› Beam weight = 24 (0.28)(0.5545) Beam weight = 3.73 kN/m < 4.32(OK)



PROBLEM 2.11 A propped cantilever beam shown in Figure 2.6 is made of reinforced concrete having a width of 290 mm overall depth of 490 mm. The beam is loaded with uniform dead load of 35 kN/m (including its own weight), and a uniform live load of 55 kN/m. Given 𝑓′𝑐 = 24 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž.Concrete cover is 60 mm from the centroid of the bars. Determine the required tension steel area for maximum positive moment. Assume EI=constant.



Figure 2.6 SOLUTION Given: 𝑓′𝑐 = 24 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž π‘“π‘¦β„Ž = 275 π‘€π‘ƒπ‘Ž 𝑏 = 290 π‘šπ‘š 𝐻 = 490 π‘šπ‘š 𝑑′ = 60 π‘šπ‘š



π‘Šπ· = 35 π‘˜π‘/π‘š π‘ŠπΏ = 55 π‘˜π‘/π‘š 𝑑 = 490 βˆ’ 60 = 430 π‘šπ‘š π‘Šπ‘’ = 1.4π‘Šπ· + 1.7 π‘ŠπΏ



π‘Šπ‘’ = 1.4 (35) + 1.7 (55) π‘Šπ‘’ = 142.5 π‘˜π‘/π‘š



Solve for moment reactions using the three-moment equation: 𝑀𝐡 = βˆ’142.5 (2)(1) = βˆ’285 π‘˜π‘ βˆ’ π‘š Mo Lo + 2𝑀𝐴 (πΏπ‘œ + 𝐿1 ) + 𝑀𝐡 𝐿1 +



6𝐴0 Μ…Μ…Μ…Μ… π‘Ž0 𝐿0



0 + 2𝑀𝐴 (0 + 6 ) + (βˆ’285 )(6) + 0 +



+



6𝐴1 Μ…Μ…Μ… 𝑏0 𝐿1



142.5(6)3 4



=0



=0



𝑀𝐴 = βˆ’498.75π‘˜π‘ βˆ’ π‘š 𝑀𝐴 = 𝑀𝐴 π‘Ÿπ‘–π‘”β„Žπ‘‘



-489.75 = R(6)- 142.5(8)(4) R=676.875 kN



𝑅𝐴 = π‘Šπ‘’ 𝐿 βˆ’ 𝑅



𝑅𝐴 = 142.5(8) βˆ’ 676.875 𝑅𝐴 = 463.125 π‘˜π‘



Maximum positive moment: 𝑉𝐷 = 0



𝑀𝐷 = 𝑅𝑋 βˆ’ π‘Šπ‘’



(π‘₯+2)2 2



π‘Šπ‘’ (2 + π‘₯) βˆ’ 𝑅 = 0 142.5(2 + x) - 676.875 = 0 x = 2.75 m



𝑀𝐷 = 676.875(2.75) βˆ’ 142.5



(2.75+2)2



𝑀𝐷 = 253.828 π‘˜π‘ βˆ’ π‘š Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



πœŒπ‘ =



0.85(24)(0.85)600 415(600 + 415)



πœŒπ‘ = 0.0247 πœŒπ‘šπ‘Žπ‘₯ = 0.75 πœŒπ‘



πœ”π‘šπ‘Žπ‘₯ =



πœŒπ‘šπ‘Žπ‘₯ 𝑓𝑦 𝑓′𝑐



πœŒπ‘šπ‘Žπ‘₯ = 0.75 (0.0247) πœŒπ‘šπ‘Žπ‘₯ = 0.01852 πœ”π‘šπ‘Žπ‘₯ =



0.01852(415) 24



πœ”π‘šπ‘Žπ‘₯ = 0.3203



2



𝑅𝑛 π‘šπ‘Žπ‘₯ = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59 πœ”) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝑅𝑛 𝑏 𝑑 2



𝑅𝑛 π‘šπ‘Žπ‘₯ = 415(0.3203)[1 βˆ’ 0.59(0.3203)] 𝑀 𝑛 π‘šπ‘Žπ‘₯ = 6.235(290)(430)2 𝑀𝑛 π‘šπ‘Žπ‘₯ = 334.316 π‘˜π‘ βˆ’ π‘š



πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90(334.316) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 300.884 π‘˜π‘ βˆ’ π‘š At a point of maximum positive moment: 𝑀𝑒 = 253.828 π‘˜π‘ βˆ’ π‘š < πœ‘ 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2



𝜌=



0.85𝑓′𝑐 𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.85𝑓′𝑐



𝜌=



0.85(24) 2(5.26) [1 βˆ’ √1 βˆ’ ] 415 0.85(24)



(Singly reinforced) 253.828 x 106 = .90 𝑅𝑛 (290)(430)2 𝑅𝑛 = 5.26 π‘€π‘ƒπ‘Ž



𝜌 = 0.01495 𝐴𝑠 = 𝜌 𝑏 𝑑



𝐴𝑠 = 0.01495(290)(430) 𝐴𝑠 = 1,864 π‘šπ‘š2



ANALYSIS OF RECTANGULAR BEAMS WHERE STEEL YIELDS (𝒇𝑺 = 𝒇𝒀 ) PROBLEM 2.12(CE MAY 1999) A reinforced concrete rectangular beam with b = 400 mm and d= 720 mm is reinforced for tension only with 6-25 mm diameter bars. If 𝑓 β€² 𝑐 = 21 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 400 π‘€π‘ƒπ‘Ž, π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’ π‘‘β„Žπ‘’ π‘“π‘œπ‘™π‘™π‘œπ‘€π‘–π‘›π‘”: a) The coefficient of resistance 𝑅𝑛 of the beam. b) The ultimate moment capacity of the beam. SOLUTION πœŒπ‘ =



0.85𝑓 β€² 𝑐 𝛽1



𝑓𝑦 (600 + 𝑓𝑦 ) 0.85(21)(0.85)(600) = πœŒπ‘ 400(600 + 400) πœŒπ‘ = 0.02276 𝐴𝑠 = 6 π‘₯ 𝜌=



𝐴𝑠 𝑏𝑑



πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ‹ (25)2 = 2945 π‘šπ‘š2 4 𝜌=



πœ”=



2945 = 0.01023 < πœŒπ‘ (𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠) 400(720)



0.01023(400) = 0.195 21



𝑅𝑛 = 𝑓′𝑐 πœ” (1 βˆ’ 0.56πœ”)



𝑅𝑛 = 21(0.195)[1 βˆ’ 0.59(0.195)] 𝑅𝑛 = πŸ‘. πŸ”πŸ 𝑴𝑷𝒂



𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2 𝑀𝑒 = 0.90(3.62)(400)(720)2 𝑀𝑒 = πŸ”πŸ•πŸ“. πŸ”πŸ• π’Œπ‘΅ βˆ’ π’Ž Answer



Answer



PROBLEM 2.13 A rectangular beam reinforced for tension only has b= 300 m, d = 490 mm. The tension steel area provided is 4,500 sq. mm. Determine the ultimate moment capcity of the beam in kN-m. Assume 𝑓′𝑐 = 27 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 275 π‘€π‘ƒπ‘Ž. SOLUTION πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600+ 𝑓𝑦 )



πœŒπ‘ =



0.85(27)(0.85)(600) 275(600+275)



πœŒπ‘ = 0.02276 𝐴



4,500



𝜌 = 𝑏𝑑𝑠 πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



𝜌 = 300(490) πœ”=



0.0361(275) 27



πœ” = 0.3118 𝑅𝑛 = 𝑓′𝑐 πœ” (1 βˆ’ 0.59 πœ”)



𝑅𝑛 = 27(0.3118)[1 βˆ’ 0.59(0.3118)] 𝑅𝑛 = 6.87 π‘€π‘ƒπ‘Ž



𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏𝑑2



𝑀𝑒 = 0.90(6.87)(300)(490)2 𝑀𝑒 = πŸ’πŸ’πŸ“. πŸ‘ π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 2.14 A rectangular beam has b = 300 mm, d = 500 mm, 𝐴𝑠 = 3 βˆ’ 25 π‘šπ‘š, 𝑓′𝑐 = 34.2 π‘€π‘ƒπ‘Ž, grade 60 reinforcement (𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž). Calculate the design moment 𝑀𝑒 .



SOLUTION 𝛽1 = 0.85 βˆ’



0.85𝑓′𝑐 𝛽1 600



πœŒπ‘ =



πœŒπ‘ =



𝑓𝑦 (600+ 𝑓𝑦 )



𝐴𝑠 = 𝜌=



0.05 (34.2 βˆ’ 30) = 0.82 7 0.85(34.2)(0.82)(600) 414(600+414)



πœŒπ‘ = 0.03407



πœ‹ (25)2 π‘₯ 3 = 1473 π‘šπ‘š2 4



𝐴𝑠



𝜌=



𝑏𝑑



1473 300(500)



𝜌 = 0.00982 < πœŒπ‘ 𝑆𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠



Check if the beam satisfies the minimum requirement: βˆšπ‘“β€²π‘ πœŒπ‘šπ‘–π‘› = = 0.00353 𝑂𝐾 4𝑓𝑦 πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



0.00982(414) 34.2



𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59πœ”)



𝑅𝑛 = 34.2(0.1188)[1 βˆ’ 0.59(0.1188)] 𝑅𝑛 = 3.779 π‘€π‘ƒπ‘Ž



𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2



𝑀𝑒 = 0.90(3.779)(300)(500)2 𝑀𝑒 = πŸπŸ“πŸ“. 𝟏𝟏 π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 2.15 A 130-mm-thick-one-way slab is reinforced with 12-mm-diameter tension bars spaced at 110 on centers. Concrete cover is 20 mm, concrete strength 𝑓′𝑐 = 21 MPa and steel yield strength 𝑓𝑦 = 275 π‘€π‘ƒπ‘Ž. Unit weight of concrete is 23.5 kN/π‘š3 . a) What is the ultimate moment capacity of the slab? b) If the slab is simply supported over a span of 4 m, what safe uniform live load pressure can the slab carry?



SOLUTION a) Consider 1 m width of slab, b = 1000 mm Effective depth: d = h – cover- 1/2 𝑑𝑏 d = 130-20-1/2(12)=104 mm



πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝐴𝑠 = 𝐴𝑏 π‘₯ 𝑁 πœ‹



𝐴𝑠 = 4 (12)2



πœŒπ‘ =



0.85(21)(0.85)(600) 275(600 + 275) πœŒπ‘ = 0.0378



𝑏 𝑠 𝐴𝑠 = 1028 π‘šπ‘š2 𝐴𝑠 = 𝐴𝑏 π‘₯



1000 100



𝐴𝑠 1028 𝜌= 𝑏𝑑 1000(104) 𝜌 = 0.00989



𝜌=



Check if the beam satisfies the minimum steel requirement on flexures: 1.4 = 0.00509 𝑓𝑦



πœŒπ‘šπ‘–π‘› =



πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



𝑂𝐾



0.00989(275) 21 πœ” = 0.129



𝑅𝑛 = 𝑓′𝑐 πœ” (1 βˆ’ 0.59 πœ”)



𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2



b) 𝑀𝑒 =



𝑅𝑛 = 21(0.129)(1 βˆ’ 0.59(0.129)] 𝑅𝑛 = 2.511 π‘€π‘ƒπ‘Ž



𝑀𝑒 = 0.90(2.511)(1000)(104)2 𝑀𝑒 = πŸπŸ’. πŸ’πŸ’πŸ‘ π’Œπ‘΅ βˆ’ π’Ž π‘Šπ‘’ 𝐿2 8



24.443 =



π‘Šπ‘’ (4)2 8



π‘Šπ‘’ = 12.222 π‘˜π‘/π‘š



Dead load pressure, 𝜌𝐷 = 𝛾𝑐 x thickness of concrete. Dead load pressure, 𝜌𝐷 = 23.5 π‘₯ 0.13 = 3.055π‘˜π‘ƒπ‘Ž π‘Šπ‘’ = 1.4π‘ŠπΏ + 1.7 π‘ŠπΏ



π‘Šπ‘’ = 1.4(𝜌𝐷 𝑏) + 1.7 (𝜌𝐿 𝑏) 12.222 = 1.4(3.055 π‘₯ 1) + 1.7(𝜌𝐿 π‘₯ 1) 𝜌𝐿 = πŸ’. πŸ”πŸ•πŸ‘ π’Œπ‘·π’‚



PROBLEM 2.16 A rectangular beam with b = 250 mm and d = 460 m is reinforced for tension only with 3-25 mm bars. The beam is simply supported over a span of 6 m and carries a uniform dead load of 680 N/m including its own weight. Calculate the uniform live load that the beam can carry. Assume 𝑓𝑦 = 276.5 π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž. SOLUTION πœ‹ 𝐴𝑠 = 3 π‘₯ (25)2 = 1479 π‘šπ‘š2 4 πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



0.85(20.7)(0.85)(600) 276.5(600 + 276.5) πœŒπ‘ = 0.03703 πœŒπ‘ =



𝐴𝑠 1.473 𝜌= 𝑏𝑑 250(460) 𝜌 = 0.01281 < πœŒπ‘ (𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠) 𝜌=



Check if the beam satisfies the minimum steel requirement on flexure: πœŒπ‘šπ‘–π‘› =



πœ”=



1.4 = 0.00506 𝑓𝑦



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



𝑂𝐾



0.01281(276.5) 20.7 πœ” = 0.171



𝑅𝑛 = 𝑓′𝑐 πœ”(1 βˆ’ 0.59πœ”)



𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏𝑑2



π‘€π‘’π‘šπ‘Žπ‘₯



π‘Šπ‘’ 𝐿2 = 8



𝑅𝑛 = 27(0.171)[1 βˆ’ 0.59(0.171)] 𝑅𝑛 = 3.183 π‘€π‘ƒπ‘Ž



𝑀𝑒 = 0.90(3.183)(250)(460)2 𝑀𝑒 = 151.56 π‘˜π‘ βˆ’ π‘š π‘Šπ‘’ (6)2 151.56 = 8 π‘Šπ‘’ = 33.68 π‘˜π‘/π‘š 33.68 = 1.4 (0.68) + 1.7 π‘ŠπΏπΏ π‘ŠπΏπΏ = πŸπŸ—. πŸπŸ“ π’Œπ‘΅ βˆ’ π’Ž



π‘Šπ‘’ = 1.4 π‘Šπ·πΏ + 1.7 π‘ŠπΏπΏ



PROBLEM 2.17 (CE JANUARY 2008) A reinforced concrete rectangular beam has a width of 300 mm and an effective depth of 55 mm. The beam is reinforced with six 25-mmdiameter tension bars. Steel yield 𝑓𝑦 is 415 MPa and concrete strength 𝑓′𝑐 is 28 MPa. a) What is the balanced steel ratio? b) What is the maximum steel area for singly reinforced? c) What is the nominal moment capacity of the beam? SOLUTION a) Balanced steel ratio: πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝛽1 = 0.85



πœŒπ‘ =



0.85(28)(0.85)600 415(600 + 415) πœŒπ‘ = 0.028816 πœŒπ‘ = 𝟐. πŸ–πŸ–%



b) Maximum steel area 𝐴𝑠 π‘šπ‘Žπ‘₯ = πœŒπ‘šπ‘Žπ‘₯ 𝑏𝑑



𝐴𝑠 π‘šπ‘Žπ‘₯ = (0.75 πœŒπ‘ ) 𝑏𝑑 𝐴𝑠 π‘šπ‘Žπ‘₯ = (0.75 π‘₯ 0.028816)(300)(5) 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ‘, πŸπŸ’πŸ π’Žπ’ŽπŸ



c) Nominal moment capacity Using 6-25 mm bars: πœ‹ 𝐴𝑠 = (25)2 π‘₯ 6 = 2,945 π‘šπ‘š2 4 𝜌=



𝐴𝑠 𝑏𝑑



𝜌=



2,945 = 𝜌 = 0.01963 < πœŒπ‘ (π‘‘π‘’π‘›π‘ π‘–π‘œ 𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠) 300(500)



πœŒπ‘“π‘¦ 0.01963(415) πœ”= = 0.291 𝑓′𝑐 28 𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 + 0.59 πœ”) = 𝑅𝑛 = 28(0.291)(1 βˆ’ 0.59 π‘₯ 0.291) 𝑅𝑛 = 6.7494 π‘€π‘ƒπ‘Ž πœ”=



𝑀𝑛 = 𝑅𝑛 𝑏𝑑 2 = 𝑀𝑛 = 6.7494(300)(500)2 𝑀𝑛 = πŸ“πŸŽπŸ”. 𝟐 π’Œπ‘΅ βˆ’ π’Ž PROBLEM 2.18 A 350 mm x 500 mm rectangular is reinforced for tension only with 5-28 mm bars. The beam has an effective depth of 446 mm. The beam carries a uniform dead load of 4.5 kN/m (including its own weight), a uniform live load of 3 kN/m, and concentrated dead load of P and 2P as shown in Figure 2.7. Assume 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž, 𝑓′𝑐 = 34.5 π‘€π‘ƒπ‘Ž. Calculate the following: a) The ultimate moment capacity of the section in kN-m, and b) The maximum value of P in kN. 2P



2m



P



2m



2m



SOLUTION 𝛽1 = 0.85 βˆ’



0.05 (34.5 βˆ’ 30) = 0.818 7



πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝐴𝑠 =



πœ‹ (28)2 π‘₯ 5 = 3079 π‘šπ‘š2 4



𝐴



πœŒπ‘ =



0.85(34.5)(0.818)(600) = 0.03428 414(600 + 414)



3079



𝜌 = 𝑏𝑑𝑠



𝜌 = 300(446) = 𝜌 = 0.01972 < πœŒπ‘ 𝑆𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠



Check if the beam satisfies the minimum requirement: πœŒπ‘šπ‘–π‘› =



πœ”=



βˆšπ‘“β€²π‘ = 0.00355 4𝑓𝑦



πœŒπ‘“π‘¦ 𝑓′𝑐



πœ”=



0.01972(414) = 0.2367 34.5



𝑅𝑛 = 𝑓′𝑐 πœ”(1 βˆ’ 0.59πœ”) = 𝑅𝑛 = 34.5(0.2367)[1 βˆ’ 0.59(0.2367)]=7.025 MPa 𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2 = 𝑀𝑒 = 0.90(7.025)(300)(446)2 = 440.18 kN - m



1.4(2P)



1.4P



π‘Šπ‘’ = 1.4(4.5) + 1.7(3) = 11.4π‘˜π‘/π‘š



A



π‘…π‘Ž



B 2m



C 2m



D 2m



Figure 2.8 – Beam with factored loads For the given loads, the maximum moment can occur at B or C: 𝑀𝑐 = 1.4𝑃(2) + 11.4(2)(1) 440.18 = 1.4P(2) + 11.4(2)(1) 𝑃 = 149 π‘˜π‘



At point C: Set 𝑀𝑐 = 𝑀𝑒 At point B: (First solve for 𝑅𝐴 ) βˆ‘ 𝑀𝑐 = 0



4 𝑅𝐴 + 1.4𝑃(2) = 2.8𝑃(2) + 11.4(6)(1) 𝑅𝐴 = 17.1 + 0.7 𝑃



βˆ‘ 𝑀𝐡 𝑙𝑒𝑓𝑑 Set 𝑀𝐡 = 𝑀𝑒



𝑀𝐡 = (17.1 + 0.7𝑃) βˆ’ 11.4(2)(1) 440.18 = (17.1 + 0.7 𝑃)(2) βˆ’ 11.4(2)(1) 𝑃 = 306.27 π‘˜π‘



Thus the maximum value of P such that 𝑀𝑒 will not exceed 440.18 kN-m is 149 kN.



ANALYSIS OF RECTANGULAR BEAMS WHERE STEEL DOES NOT YIELDS (𝒇𝑺 β‰  𝒇𝒀 ) PROBLEM 2.19 A rectangular beam has b = 300 mm, d = 500 mm, 𝐴𝑠 = 6 βˆ’ 32 π‘šπ‘š, 𝑓′𝑐 = 27.6 π‘€π‘ƒπ‘Ž, grade 60 reinforcement (𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž). Calculate the ultimate moment capacity of the beam. SOLUTION πœŒπ‘ =



𝐴𝑠 = 𝜌=



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



πœŒπ‘ =



0.85(27.6)(0.85)(600) 414(600 + 414) πœŒπ‘ = 0.0285



πœ‹ (32)2 π‘₯ 6 = 4825 π‘šπ‘š2 4



𝐴𝑠



𝜌=



𝑏𝑑



4825 300(500)



= 𝜌 = 0.03217 > πœŒπ‘ 𝑆𝑑𝑒𝑒𝑙 π‘‘π‘œπ‘’π‘  π‘›π‘œπ‘‘ 𝑦𝑖𝑒𝑙𝑑



0.85



b=.300



c=0.85



ab



d=500



a



500-a/2 From Eq. 2-18



=4825 T=



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑓𝑠 = 600



500 βˆ’ 𝑐 𝑐



βˆ‘ 𝐹𝐻 = 0 𝑇=𝐢



𝐴𝑠 𝑓𝑠 = 0.85 𝑓′𝑐 π‘Ž 𝑏, (4825)600



500βˆ’π‘ 𝑐



π‘Ž = 𝛽1 𝑐 = 0.85 𝑐



= 0.85(27.6)(0.85𝑐)(300) 𝑐 2 = 484𝑐 βˆ’ 241,964 = 0 𝑐 = 306.2 π‘šπ‘š



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑓𝑠 = 600



500βˆ’306 306



= 𝑓𝑠 = 379.65 π‘€π‘ƒπ‘Ž



π‘Ž = 𝛽1 𝑐 = 0.85(306.2) π‘Ž = 260.3 π‘šπ‘š π‘Ž πœ‘π‘€π‘› = πœ‘π΄π‘  𝑓𝑠 (𝑑 βˆ’ ) 2 πœ‘π‘€π‘› = 0.90(4825)(379.65)(500 βˆ’



260.3 ) 2



πœ‘π‘€π‘› = πŸ”πŸŽπŸ—. πŸ– π’Œπ‘΅ βˆ’ π’Ž PROBLEM 2.20 A rectangular beam reinforced for tension only has b=300 mm, d = 490 mm. The tension steel area provided is 7-25 mm diameter bars with 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. 𝑓′𝑐 = 21π‘€π‘ƒπ‘Ž. Calculate the ultimate moment capacity of the beam.



SOLUTION πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝐴𝑠 =



πœ‹ (25)2 π‘₯ 7 = 3436 π‘šπ‘š2 4



𝐴



πœŒπ‘ =



0.85(21)(0.85)(600) 415(600 + 415) πœŒπ‘ = 0.02161



3436



𝜌 = 𝑏𝑑𝑠



𝜌 = 300(490)



𝜌 = 0.02337 > πœŒπ‘ 𝑆𝑑𝑒𝑒𝑙 π‘‘π‘œπ‘’π‘  π‘›π‘œπ‘‘ 𝑦𝑖𝑒𝑙𝑑



b=300



0.85 c=0.85



ab



d=490



a



490-a/2 =3436 From Eq.2-18: T=



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



= 𝑓𝑠 = 600



490 βˆ’ 𝑐 𝑐



βˆ‘ 𝐹𝐻 = 0 𝑇=𝐢 (3436)600



𝐴𝑠 𝑓𝑠 490βˆ’π‘ 𝑐



= 0.85 𝑓′𝑐 π‘Ž 𝑏, π‘Ž = 𝛽1 𝑐 = 0.85 𝑐 = 0.85(221)(0.85𝑐)(300) = 𝑐 = 296.24 π‘šπ‘š



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



490 βˆ’ 296.24 296.24 𝑓𝑠 = 392.43 π‘€π‘ƒπ‘Ž < 𝑓𝑦



𝑓𝑠 = 600



π‘Ž = 𝛽1 𝑐 = 0.85(392.43) π‘Ž = 251.81 π‘šπ‘š π‘Ž



πœ‘π‘€π‘› = πœ‘π‘‡ (𝑑 βˆ’ 2)



π‘Ž



πœ‘π‘€π‘› = πœ‘π΄π‘  𝑓𝑠 (𝑑 βˆ’ 2)



251.81



πœ‘π‘€π‘› = 0.90(3436)(392.43)(490 βˆ’ 2 ) πœ‘π‘€π‘› = πŸ’πŸ’πŸ. πŸ–πŸ” π’Œπ‘΅ βˆ’ π’Ž



ANALYSIS & DESIGN OF SINGLY REINFORCED NON-RECTANGULAR BEAMS PROBLEM 2.21 Compute the ultimate moment capacity of the beam shown in Figure 2.9. Assume 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž.



125 125



125



700mm



125



4-32mm 75 375mm Figure 2.9



SOLUTION Note: This is not a rectangular beam. Some formulas derived above (such as𝜌, πœŒπ‘ , 𝑅𝑛 ) may not be applicable. The moment can be computed using the assumptions in the Code and the conditions of equilibrium.



πœ‹ (32)2 π‘₯ 4 4 𝐴𝑠 = 3217 π‘šπ‘š2 𝐴𝑠 =



Solve for the balanced 𝐴𝑠 to determine whether the given steel yield or not.



600𝑑 600 + 𝑓𝑦



=



600(625) = 396.825π‘šπ‘š 600 + 345



a



625mm



𝑐𝑏 =



125 125 125



125



𝐢𝑏 =:



From Eq. 2-11



π‘Ž = 𝛽1 𝑐 π‘Ž = 0.85(396.825)= 337.3 π‘šπ‘š 𝐴𝑐 = 337.3(375) βˆ’ 125(125) = 110,863 π‘šπ‘š2 𝑇=𝐢 𝐴𝑠𝑏 𝑓𝑦 = 0.8𝑓′𝑐 𝐴𝑐 𝐴𝑠𝑏 (345) = 0.85(21)(110,863) 𝐴𝑠𝑏 = 5,736 π‘šπ‘š2



4-32mm 375mm



Since 𝐴𝑠 π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ < 𝐴𝑠𝑏 , tension steel yields. 𝐢=𝑇 0.85𝑓 β€² 𝑐 (π‘Žπ‘ βˆ’ 1252 ) = 𝐴𝑠 𝑓𝑦 0.85(21)(π‘Ž π‘₯ 375 βˆ’ 1252 ) = 3,217(345) π‘Ž = 207.5 π‘šπ‘š



𝑀𝑛 = 𝑀𝑛1 βˆ’ 𝑀𝑛2



π‘Ž 125 = 𝑀𝑛 = 𝐢1 (𝑑 βˆ’ ) βˆ’ 𝐢2 (𝑑 βˆ’ ) 2 2



𝑀𝑛 = 0.85(21)(207.5)(375)(625 βˆ’



207.5 ) 2



𝑀𝑛 = 567.03 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(567.03) πœ‘π‘€π‘› = πŸ“πŸπŸŽ. πŸ‘πŸ‘ π’Œπ‘΅ βˆ’ π’Ž PROBLEM 2.22 Compute the ultimate moment capacity of the beam shown in Figure 2.10. Assume 𝑓𝑦 = 345π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž.



𝐢𝑏 =



600 𝑑 600 + 𝑓𝑦



𝐢𝑏 =



600(375) 600 + 345



𝐢𝑏 = 238 π‘šπ‘š π‘Žπ‘ = 𝛽1 𝐢𝑏 π‘Žπ‘ = 0.85(238) π‘Žπ‘ = 202.4 π‘šπ‘š π‘₯ 375 5 = π‘₯= π‘Ž π‘Ž 450 6



375



Solve for 𝐴𝑠 :



3-22mm 75 375m m



450mm



SOLUTION πœ‹ 𝐴𝑠 = (22)2 π‘₯ 3 4 𝐴𝑠 = 1,140 π‘šπ‘š2



Figure 2.10



π‘₯ = 168.7π‘šπ‘š



x



𝐴𝑐 = 17,066 π‘šπ‘š2



𝑇 = 𝐢𝐢 𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓′𝑐 𝐴𝑐 𝐴𝑠𝑏 (345) = 0.85(21)(17,066) 𝐴𝑠𝑏 = 883 π‘šπ‘š2 < 𝐴𝑠



322mm 375m m



7 5



Since𝐴𝑠 π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ > 𝐴𝑠𝑏 , tension steel does not yield (𝑓𝑠 < 𝑓𝑦 ) solve for c: 𝐢𝐢 = 𝑇 𝑓𝑠 = 600 π‘Ž = 𝛽1 𝑐



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠 𝑓𝑠 π‘‘βˆ’π‘ 5 2 π‘‘βˆ’π‘ 0.85(21) π‘Ž = 1140 π‘₯ 600 𝑐 12 𝑐 7.437(0. 85𝑐)2 = 684,00



375βˆ’π‘ 𝑐



𝑐 = 250.92 π‘šπ‘š π‘Ž = 𝛽1 𝑐



π‘Ž = 0.85(250.92) = 213.3 π‘šπ‘š



2 2 𝑀𝑛 = 𝐢𝑐 π‘₯ (𝑑 βˆ’ π‘Ž) = 0.85𝑓 β€² 𝑐 𝐴𝑐 (𝑑 βˆ’ π‘Ž) 3 3 5 2 𝑀𝑛 = 0.85(21) (213. 29)2 π‘₯ [375 βˆ’ (213.3)] 12 3 𝑀𝑛 = 78.77 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90 π‘₯ 78.77 = πŸ•πŸŽ. πŸ–πŸ— π’Œπ‘΅ βˆ’ π’Ž



m



c



d375 450m m 450m



𝐴𝑐 = 1/2(π‘₯)(π‘Ž) 1 5 5 𝐴𝑐 = 2 π‘₯ 6 π‘Ž π‘₯ π‘Ž = π‘Ž π‘Ž2



a



d-(2/3)a



T



PROBLEM 2.23 A hallow beam is shown in Figure 2.11. Assume 𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. a) Calculate the required tension steel area when 𝑀𝑒 = 800π‘˜π‘ βˆ’ π‘š. b) What is the balanced moment capacity of the beam? c) What is the maximum steel area under singly reinforced condition? d) What is the maximum design moment strength under singly reinforced condition? e) Calculate the required tension steel area when 𝑀𝑒 = 1200π‘˜π‘ βˆ’ π‘š.



Figure 2.11Hallow beam



SOLUTION To guide us whether β€œa: will exceed 150 mm or not, let us solve the design moment when a=150 mm. d = 800 – 75 = 725 mm



π‘Ž



πœ‘π‘€π‘› = πœ‘πΆπΆ (𝑑 βˆ’ 2)



πœ‘π‘€π‘› = 0.90 π‘₯ 0.85(28)(150) (725 βˆ’



150 2



)



πœ‘π‘€π‘› = 1044.225 π‘˜π‘ βˆ’ π‘š a) 𝑀𝑒 = 800 π‘˜π‘ βˆ’ π‘š Since the required 𝑀𝑒 = 800 π‘˜π‘ βˆ’ π‘š < 1044.25 π‘˜π‘ βˆ’ π‘š, π‘Ž < 150 π‘šπ‘š. Assuming tension steel yields: π‘Ž 𝑀𝑒 = πœ‘πΆπ‘ (𝑑 βˆ’ ) 2 π‘Ž 𝑀𝑒 = πœ‘0.85𝑓′𝑐 π‘Ž 𝑏(𝑑 βˆ’ ) 2 800 π‘₯ 106 = 0.90 π‘₯ 0.85(28)π‘Ž(500)(725 βˆ’ 0.5π‘Ž) 𝑀𝑒 = πœ‘π‘€π‘›



π‘Ž = 111.6π‘šπ‘š < 150 π‘šπ‘š Check is steel yields: 𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑓𝑠 = 600



725 βˆ’ 131.2 = 2,712 π‘€π‘ƒπ‘Ž > 𝑓𝑦 131.3



π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐 =



𝑇=𝐢



π‘Ž = 131.3 π‘šπ‘š 𝛽1 𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 𝐴𝑠 (345) = 0.85(28)(111.6)(500) 𝐴𝑠 = πŸ‘, πŸ–πŸ“πŸŽ π’Žπ’ŽπŸ



b) Balanced condition (See Figure 2.12) 𝐢𝑏 = π‘Ž = 𝛽1 𝐢𝑏



600𝑑 600 + 𝑓𝑦



𝐢𝑏 =



600(725) = 460.32π‘šπ‘š 600 + 345



π‘Ž = 0.85(460.32) = 391.3 π‘šπ‘š



𝑧 = π‘Ž βˆ’ 150 = 241.27 π‘šπ‘š 𝐴1 = 500(150) = 75,000 π‘šπ‘š2 1 𝑦1 = 725 βˆ’ = 650π‘šπ‘š 2(150) 𝐴1 = 125(241.27) = 30,159 π‘šπ‘š2 1 𝑦2 = 725 βˆ’ 150 βˆ’ = 454.37 2(241.27) 𝑀𝑏𝑛 = 𝐢1 𝑦1 + 2𝐢2 𝑦2 𝑀𝑏𝑛 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) 𝑀𝑏𝑛 = 0.85(28)[75,000 π‘₯ 650 + 2 π‘₯ 30,159 π‘₯ 454.37] 𝑀𝑏𝑛 = 1812.52π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90 π‘₯ 1812.52 = πŸπŸ”πŸ‘πŸ. πŸ‘ π’Œπ‘΅ βˆ’ π’Ž 500m m



25 0



12 5 150



12 5



725



1 2



2



z



a



T



Figure 2.12



c) Maximum steel area, 𝐴𝑠 π‘šπ‘Žπ‘₯ 𝑇 = 𝐢1 + 𝐢2 𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 2𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(28)(75,00 + 2 π‘₯ 30,159) 𝐴𝑠𝑏 = 9,335 π‘šπ‘š2 𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.75 𝐴𝑠𝑏



𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.75(9,335) 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ•, 𝟎𝟎𝟏 π’Žπ’ŽπŸ



d) Maximum moment , 𝑀𝑒 π‘šπ‘Žπ‘₯ : Refer to Figure 2.12:



𝐢1 + 𝐢2 = 𝑇 0.85(28)[75,000 + 2𝐴2 ] = 7,001(245) 𝐴2 = 13,244 π‘šπ‘š2 𝐴2 = 125 𝑧



𝑦2 = 725 βˆ’



𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯



13,244 = 125 𝑧 𝑧 = 105.95 π‘šπ‘š 1501 = 522.03 π‘šπ‘š 2(105.95)



= 𝐢1 + 𝑦1 + 2𝐢2 𝑦2 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) = 0.85(28)[75,00 π‘₯ 650 + 2 π‘₯ 13,244 π‘₯ 522.03] = 1489.34 π‘˜π‘ βˆ’ π‘š



πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90 π‘₯ 1189.34 = πŸπŸ‘πŸ’πŸŽ. πŸ’ π’Œπ‘΅ βˆ’ π’Ž e) 𝑀𝑒 = 1200π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ Refer to Figure 2.12 𝐴1 = 75,000 π‘šπ‘š2



𝑦1 = 650 π‘šπ‘š



(𝑆𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘)



𝐴2 = 125𝑧



𝑦2 = 575 βˆ’ 0.5𝑧



𝑀𝑒 = πœ‘π‘€π‘› 1200 π‘₯ 106 = 0.90 π‘₯ 0.85 𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) 1200 π‘₯ 106 = 0.90 π‘₯ 0.85(28)[75,000(650) + 2(125𝑧)(575 βˆ’ 0.5𝑧)] 𝑧 = 53.04π‘šπ‘š 𝐴𝑐 = 𝐴1 + 𝐴2



𝐴𝑐 = 75,000 + 2 π‘₯ 125(53.04) 𝐴𝑐 = 88,259.2 π‘šπ‘š2



𝑇=𝐢 𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 𝐴𝑐 𝐴𝑠 (345) = 0.85(28)(88,259.2) 𝐴𝑠 = πŸ”, πŸŽπŸ–πŸ— π’Žπ’ŽπŸ



BEAM DEFLECTION PROBLEM PROBLEM 2.24 A reinforced concrete beam is 350 mm wide and 600 mm deep. The beam is simply supported over a span of 8 m and carries a uniform dead load of 11 kN/m including its own weight and a uniform live load of 15 kN/m. The beam is reinforced tension bars of 530 mm. 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 344.8 π‘€π‘ƒπ‘Ž, π‘“π‘Ÿ = 2.832 𝑀𝑃𝐴. Modulus of elasticity of concrete 𝐸𝑐 = 21,650 π‘€π‘ƒπ‘Ž and 𝐸𝑠 = 200 πΊπ‘ƒπ‘Ž. a) Calculate the maximum instantaneous deflection due to service loads. b) Calculate the deflection for the same loads after five years assuming that 40% of the live load is sustained. SOLUTION b = 350 mm



Figure 2.13



6 – 25 mm Ø



c h = 600 mm



d = 530 mm



b = 350 mm



N.A.



d-c



Effective moment of inertia, 𝐼𝑒 :



Eq. 2-19



π‘€π‘π‘Ÿ 3 π‘€π‘π‘Ÿ 3 𝐼𝑒 = ( ) 𝐼𝑔 + [1 βˆ’ ( ) ] πΌπ‘π‘Ÿ ≀ 𝐼𝑔 π‘€π‘Ž π‘€π‘Ž 𝐼𝑔 = π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘’π‘Ÿπ‘‘π‘–π‘Ž π‘œπ‘“ π‘”π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘› π‘β„Ž3 𝐼𝑔 = 12



350(600)3 = = 6300 π‘₯ 106 π‘šπ‘š4 12



π‘€π‘π‘Ÿ =



π‘“π‘Ÿ 𝐼𝑔 𝑦𝑑



π‘€π‘π‘Ÿ =



2.832(600 π‘₯ 10)6 = 59.472 π‘˜π‘ βˆ’ π‘š 600/2



π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑦𝑑 = 1/2(600) = 300 π‘šπ‘š



π‘€π‘Ž = π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑖𝑛 π‘π‘’π‘Žπ‘š 𝑀𝐿2 π‘€π‘Ž = 8 π‘€π‘Ž =



𝑀 = 𝑀𝐷 + 𝑀𝐿 = 11 + 15 = 26 π‘˜π‘/π‘š



26(8)2 = 208π‘˜π‘ βˆ’ π‘š 8



πΌπ‘π‘Ÿ = Moment of inertia of cracked section with steel transformed to concrete



From Figure 2.13: 𝐸



Modular ratio, 𝑛 = 𝐸𝑠 = 9.238 𝑐



𝑛 𝐴𝑠 = 9.328 π‘₯ 6 π‘₯



πœ‹ (25)2 = 27,208 π‘šπ‘š2 4



Solve for c: Moment of area above N.A. = Moment of area below N.A. 350 x c x c/2 = 27,208(350-c) c = 219.7 mm



πΌπ‘π‘Ÿ = 𝐼𝑁𝐴 πΌπ‘π‘Ÿ =



𝑏𝑐 3 = + 𝑛 𝐴𝑠 (𝑑 βˆ’ 𝑐)2 3



350(219.7)3 + 27,208(530 βˆ’ 219.7)2 3



πΌπ‘π‘Ÿ = 3,857 π‘₯ 106 π‘šπ‘š3 π‘€π‘π‘Ÿ 3 π‘€π‘π‘Ÿ 3 𝐼𝑒 = ( ) 𝐼𝑔 + [1 βˆ’ ( ) ] πΌπ‘π‘Ÿ π‘€π‘Ž π‘€π‘Ž 59.472 3 59.472 3 6 𝐼𝑒 = ( ) π‘₯ 600 π‘₯ 10 + [1 βˆ’ ( ) ] π‘₯ 3,857 π‘₯ 106 208 208 𝐼𝑒 = 3,914 π‘₯ 106 π‘šπ‘š4 < 𝐼𝑔



(𝑂𝐾)



a) Instantaneous Deflection: 𝛿=



5𝑀𝐿4 384 𝐸𝑐 𝐼𝑒



𝛿=



2(26)(8000)4 384(21,650)(3,914 π‘₯ 106 )



𝛿 = πŸπŸ”. πŸ‘πŸ” π’Žπ’Ž b) Long-term Deflection Since only 40% of the live load was sustained: w = 11 + 0.4(15) = 17 kN/m



5𝑀𝐿4



Instantaneous deflection 𝛿 = 384 𝐸



𝑐 𝐼𝑒



𝛿=



5(17)(8)4 (1000)4 384(21,650)(3,914 π‘₯ 106 ) 𝛿 = 10.7 π‘šπ‘š



Note: Since deflections are directly proportional to the load, the instantaneous deflection due to sustained load can be found by ratio and proportion using the result in Part”a”. 𝛿1 16.36 = 17 26 𝛿1 = 10.7 π‘š Long-term deflection = 𝛿 + 𝛿1 πœ†=



πœ‰ 1 + 50 πœŒβ€²



πœ‰=2 πœŒβ€² = 0 πœ†=



π‘“π‘œπ‘Ÿ 5 π‘¦π‘’π‘Žπ‘Ÿπ‘  π‘œπ‘Ÿ π‘šπ‘œπ‘Ÿπ‘’ 𝑠𝑖𝑛𝑐𝑒 π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘šπ‘’π‘›π‘‘



2 =2 1 + 50(0)



Long-term deflection = 16.36 + 2(10.7) Long-term deflection = 37.76 mm



PROBLEM 2.25 (CE NOVEMBER 2002) The continuous reinforced concrete beam shown in Figure 2.14 is subjected to a uniform service dead load of 16 k/m and a service live load of 32 kN/m,resulting in the bending moment diagram shown. Twenty percent of the live load will be sustained in nature, while 80% will be applied only intermittently. The concrete strength 𝑓𝑐 = 17.2π‘€π‘ƒπ‘Ž. The modulus of elasticity of concrete is given by the expression 𝐸𝑐 = 4700 π‘†π‘žπ‘Ÿπ‘‘(𝑓 β€² 𝑐 ) and the modulus of rapture is given by the expression π‘“π‘Ÿ = 0.7 π‘†π‘žπ‘Ÿπ‘‘(𝑓 β€² 𝑐 ). Determine the following: a) The effective moment of inertia at the supports (maximum negative moment). b) The effective moment of inertia for the continuous member. c) The additional deflection (in addition to the initial deflection) after 5 years, under the sustained loading if the instantaneous deflection due to the combined service dead and live load is 5 mm.



Figure 2.14



y 560 mm



Gross Section I=0.0715 y=310 mm



y



AT SUPPORTS



Cracked Section I=0.00573 y=159 mm



1900 mm y



620 mm



560 mm



y



n As



Gross Section I=0.0138 y=194 mm



AT MIDSPAN



Cracked Section I=0.00573 y=107 mm



7.6 m 5-32 mmΓΈ



3-32 mmΓΈ



5-32 mmΓΈ



145 kN-m



202 kN-m



202 kN-m



SOLUTION 𝐸𝑐 = 4700βˆšπ‘“β€²π‘ = 4700√17.2 = 19,492 𝑀𝑃𝐴 π‘“π‘Ÿ = 0.70βˆšπ‘“β€²π‘ = 0.7 √17.2 = 2.903 π‘€π‘ƒπ‘Ž a) Effective moment of inertia at the supports Maximum moment, 𝑀𝑒 = 202π‘˜π‘ βˆ’ π‘š Distance from NA of gross section to extreme tension fiber, π‘Œπ‘‘ = 310 π‘šπ‘š Moment of inertia of gross section, 𝐼𝑔 = 0.00715 π‘š4 Moment of inertia of cracked section, 𝐼𝑔 = 0.00573 π‘š4 π‘€π‘π‘Ÿ =



π‘“π‘Ÿ 𝐼𝑔 𝑦𝑑



π‘€π‘π‘Ÿ =



2.903(0.00715 π‘₯ 10004 ) 10



π‘€π‘π‘Ÿ = 66.959 π‘˜π‘ βˆ’ π‘š



π‘€π‘π‘Ÿ 3 π‘€π‘π‘Ÿ 3 𝐼𝑒 = ( ) 𝐼𝑔 + [1 βˆ’ ( ) ] πΌπ‘π‘Ÿ π‘€π‘Ž π‘€π‘Ž 66.9593 66.959 3 𝐼𝑒 = ( ) π‘₯ 0.00715 + [1 βˆ’ ( ) ] π‘₯0.00573 202 202 𝐼𝑒 = 𝟎. πŸŽπŸŽπŸ“πŸ•πŸ–πŸπŸ• π’ŽπŸ’ b) Effective moment of inertia for the continuous member 𝐼𝑒 =



(𝐼𝑒 )π‘šπ‘Žπ‘₯ π‘π‘œπ‘  π‘šπ‘’π‘›π‘‘ + (𝐼𝑒 )π‘šπ‘Žπ‘₯ 𝑛𝑒𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 3



(𝑆𝑒𝑐𝑑. 409.6.2.4)



At maximum negative moment (at support) 𝐼𝑒 = 0.0057817 π‘š4 Solving for 𝐼𝑒 at maximum positive moment (at midspan) 𝐼𝑔 = 0.0138 π‘š4 (π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘“π‘–π‘π‘’π‘Ÿπ‘  𝑖𝑛 π‘‘π‘’π‘›π‘ π‘–π‘œπ‘›) π‘Œπ‘‘ = 620 βˆ’ 194 = 246 π‘šπ‘š πΌπ‘π‘Ÿ = 0.00513 π‘š4 π‘€π‘π‘Ÿ =



π‘“π‘Ÿ 𝐼𝑔 π‘Œπ‘‘



π‘€π‘π‘Ÿ =



2.903(0.00715 π‘₯ 10004 ) 310



π‘€π‘π‘Ÿ = 66.959 π‘˜π‘ βˆ’ π‘š π‘€π‘π‘Ÿ 3 π‘€π‘π‘Ÿ 3 𝐼𝑒 = ( ) 𝐼𝑔 + [1 βˆ’ ( ) ] πΌπ‘π‘Ÿ π‘€π‘Ž π‘€π‘Ž (𝐼𝑒 )π‘šπ‘Žπ‘₯ π‘π‘œπ‘  π‘šπ‘’π‘›π‘‘ + (𝐼𝑒 )π‘šπ‘Žπ‘₯ 𝑛𝑒𝑔 π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 2 0.0057817 + 0.007932 𝐼𝑒 = = 𝟎. πŸŽπŸŽπŸ”πŸ–πŸ“πŸ• π’ŽπŸ’ 2 𝐼𝑒 =



c) Additional long term deflection= long term deflection x πœ† πœ†=



πœ‰ 1 + 50πœŒβ€²



πœŒβ€² = 0(𝑠𝑖𝑛𝑐𝑒 π‘‘β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘Žπ‘‘ π‘šπ‘–π‘‘π‘ π‘π‘Žπ‘›) πœ‰ = 2(π‘Žπ‘“π‘‘π‘’π‘Ÿ 5 π‘¦π‘’π‘Žπ‘Ÿπ‘ ) πœ†=



2 =2 1+0



Solving for the instantaneous deflection under sustained loading: Instantaneous deflection = 5mm (given) Instantaneous loading = 16 kN/m + 32 kN/m Instantaneous loading = 48 kN/m Sustained loading = 16 + 20%(32) Sustained loading = 22.4 kN/m Sine deflection is directly proportional to the load: 𝛿1 5 = 22.4 48 𝛿1 = 2.33 π‘š Additional long term deflection = 2.333 x πœ† =2.333 x 2 Additional long term deflection = 4.67 mm



ONE WAY SLAB PROBLEMS Problem 2.36 Design a one-way slab having a simple span 3 m. The slab is to carry a uniform live load of 7,500 Pa. Assume 𝑓′𝑐 = 27.6 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž for main and temperature bars. The slab is not exposed to earth or weather. Use unit weight of concrete 𝛾𝑐 = 23.5 π‘˜π‘€/π‘š3. SOLUTION Consider 1 m strip of slab, b= 1000 m Uniform live load, 𝑀𝐿 = 7.5 πΎπ‘ƒπ‘Ž π‘₯ 1π‘š = 7.5 π‘˜π‘/π‘š Minimum slab thickness from Table 2.1: 𝐿



𝑓𝑦



β„Žπ‘šπ‘–π‘› = 20 (0.4 + 700)



β„Žπ‘šπ‘–π‘› =



3000 20



276



(0.4 + 700)



β„Žπ‘šπ‘–π‘› = 119 π‘šπ‘š (𝑒𝑠𝑒 120 π‘šπ‘š)



10 mm temp. bars



B = 1000 mm d h = 120 mm



102mm main bars



Cover +



/2



Effective depth: d = 120-20 mm (covering)-1/2 bar diameter (12mm) d=94 mm Weight of slab: π‘Šπ‘  = π›Ύπ‘π‘œπ‘›π‘ π‘₯ 𝑏 π‘₯ β„Ž



π‘Šπ‘  = 23.5 (1)(0.12) π‘Šπ‘  = 2.82 π‘˜π‘/π‘š



Factored floor pressure load: π‘Šπ‘’ = 1.4𝑀𝑠 + 1.7 𝑀𝐿



𝑀𝑒 =



π‘Šπ‘’ = 1.4(2.82) + 1.7(7.5) π‘Šπ‘’ = 16.698 π‘˜π‘/π‘š



π‘Šπ‘’ 𝐿2



16.698(3)2



𝑀𝑒 = 2 𝑀𝑒 = 18.785 π‘˜π‘ βˆ’ π‘š



8



𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2



𝜌=



𝜌=



0.85𝑓 β€² 𝑐 𝑓𝑦



[1 βˆ’ √1 βˆ’



18.785 π‘₯ 106 = 0.90 𝑅𝑛 (1000)(94)2 𝑅𝑛 = 2.362 π‘€π‘ƒπ‘Ž



𝑅𝑒 ] 0.85𝑓 β€² 𝑐



0.85(27.6) 2(2.362) [1 βˆ’ √1 βˆ’ ] 276 0.85(27.6)



𝜌 = 0.009039 Check for πœŒπ‘šπ‘–π‘› and πœŒπ‘šπ‘Žπ‘₯ : πœŒπ‘šπ‘–π‘› =



1.4 = 0.00507 𝑓𝑦



πœŒπ‘šπ‘Žπ‘₯ =



0.75 0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝑂𝐾



πœŒπ‘šπ‘Žπ‘₯ =



0.75 0.85(27.6)(0.85)600 276(600 + 276)



πœŒπ‘šπ‘Žπ‘₯ = 0.037 > 0.009309 (𝑂𝐾)



𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.009039(1000)(94) 𝐴𝑠 = 850 π‘šπ‘š2 per meter width of slab



Using 12-mm main bars: Spacing s =



π΄π‘π‘Žπ‘Ÿ 𝐴𝑠



π‘₯ 1000



𝑠=



πœ‹ (12)2 4



850



π‘₯ 1000



𝑠 = 138 π‘šπ‘š π‘ π‘Žπ‘¦ 135 π‘šπ‘š Maximum spacing required by the Code: a) 3(β„Ž) = 3(120) = 360 π‘šπ‘š b) 450 π‘šπ‘š



𝑂𝐾



Thus, use 12 mm main bars at 135 mm o.c. Temperature bars: (Grade 275) 𝐴𝑑 = 0.002π‘β„Ž



Spacing =



π΄π‘π‘Žπ‘Ÿ 𝐴𝑠



𝐴𝑑 = 0.002(1000)(120) 𝐴𝑑 = 240 π‘šπ‘š2 π‘₯ 1000



𝑠=



πœ‹ (10)2 4



240



π‘₯ 1000



𝑠 = 327 π‘šπ‘š π‘ π‘Žπ‘¦ 325 π‘šπ‘š Maximum spacing required by the Code: a) 5β„Ž = 5(120) = 600π‘šπ‘š b) 450 mm OK Thus, use 10 mm temperature bars at 325 mm o.c.



PROBLEM 2.27 Design a one-way slab to carry a service live load of 4000 Pa. The slab has a length of 4m with both ends continuous. Assume 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž for main bars and 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž for temperature bars. Steel cover is 20 mm. Unit weight of concrete is 23.5 kN/π‘š3 .



SOLUTION Consider 1 m strip, b = 1000 mm Uniform live load, 𝑀𝐿 = 4 π‘˜π‘π‘Ž π‘₯ 1π‘š = 4 π‘˜π‘/π‘š Minimum slab thickness from Table 2.1: β„Žπ‘šπ‘–π‘› =



𝐿 28



β„Žπ‘šπ‘–π‘› =



4000 28



β„Žπ‘šπ‘–π‘› = 143 π‘šπ‘š (𝑒𝑠𝑒 150 π‘šπ‘š) Weight of beam (DL): 𝑀𝐷 = π›Ύπ‘π‘œπ‘›π‘ π‘₯ 𝑏 π‘₯ β„Ž



𝑀𝐷 = 23.5(1)(0.15) 𝑀𝐷 = 3.525 π‘˜π‘ƒπ‘Ž



𝑀𝑒 = 1.4 𝑀𝐷 + 1.4 𝑀𝐿



𝑀𝑒 = 1.4(3.525) + 1.7(4) 𝑀𝑒 = 11.735 π‘˜π‘/π‘š



Maximum factored moment, Section 408.4 (See Page 29) LL < 3 DL Column



Column



Column



Spandrel Beam



Shear



Moment



Effective depth, d = 1.50 – 20 – 1/2 (12) Effective depth, d = 124 mm At midspan: 𝑀𝑒 𝐿𝑛2 𝑀𝑒 = 16 𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2



11.735 (4)2 𝑀𝑒 = 16



𝑀𝑒 = 11.735 π‘˜π‘ βˆ’ π‘š



11.735 π‘₯ 106 = 0.90 𝑅𝑛 (1000)(124)2 𝑅𝑛 = 0.848 π‘€π‘ƒπ‘Ž



𝜌=



0.85𝑓′𝑐 2𝑅𝑛 [1 βˆ’ √1 βˆ’ ] 𝑓𝑦 0.85𝑓′𝑐



𝜌=



0.85(21) 2(0.848) [1 βˆ’ √1 βˆ’ ] 415 0.85(21)



𝜌 = 0.0021



πœŒπ‘šπ‘–π‘› =



1.4 = 0.00337 > 0.0021 𝑓𝑦



Use 𝜌 = πœŒπ‘šπ‘–π‘› = 0.00337 𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.00337(1000)(124) 𝐴𝑠 = 418 π‘šπ‘š2



Spacing, s =



𝐴𝑠𝑏 𝐴𝑠



π‘₯ 1000 =



𝑠 =



πœ‹ (12)2 4



418



π‘₯1000



𝑠 = 271 π‘ π‘Žπ‘¦ 270 π‘šπ‘š Maximum spacing required by the Code: a) 3 β„Ž = 3(150) = 450 π‘šπ‘š b) 450 mm Thus, use 12 mm bottom bars at 270 mm o.c. at midspan At support: 𝑀𝑒 =



𝑀𝑒 𝐿𝑛 2 10



𝑀𝑒 = πœ‘π‘…π‘› 𝑏𝑑2



𝑀𝑒 =



=



11.735(4)2 10 𝑀𝑒 = 18.776 π‘˜π‘ βˆ’ π‘š



18.776 π‘₯ 106 = 0.90𝑅𝑛 (1000)(124)2 𝑅𝑛 = 1.357 π‘€π‘ƒπ‘Ž



𝜌=



0.85𝑓′𝑐 1 βˆ’ 2𝑅𝑛 [1 βˆ’ √ ] 𝑓𝑦 0.85𝑓′𝑐



𝜌=



0.85(21) 2(1.357) [1 βˆ’ √1 βˆ’ ] 415 0.85(21)



πœŒπ‘šπ‘Žπ‘₯ = 0.0034 > πœŒπ‘šπ‘–π‘› πœŒπ‘šπ‘Žπ‘₯ = 0.75



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



πœŒπ‘šπ‘Žπ‘₯ = 0.75



0.85(21)(0.85)600 415(600 + 415)



πœŒπ‘šπ‘Žπ‘₯ = 0.0162 > 0.0034 Use 𝜌 = 0.034 𝐴𝑠 = πœŒπ‘π‘‘



Spacing, 𝑠 =



𝐴𝑠 = 0.0034(1000)(124) 𝐴𝑠 = 422 π‘šπ‘š2 𝐴𝑠𝑏 𝐴𝑠



π‘₯ 1000



𝑠=



πœ‹ (12)2 4



422



π‘₯ 1000



π‘†π‘π‘Žπ‘π‘–π‘›π‘” = 268 π‘ π‘Žπ‘¦ 265 π‘šπ‘š Thus, use 12 mm top bars @ 265 mm o.c. at support Temperature bars (10 mm): (πœŒπ‘‘ = 0.002) 𝐴𝑑 = 0.002π‘β„Ž = 𝐴𝑑 = 0.002(1000)(150)



Spacing, s =



𝐴𝑠𝑏 𝐴𝑠



π‘₯ 1000 = 𝑠 =



πœ‹ (10)2 4



300



𝐴𝑑 = 300 π‘šπ‘š2



π‘₯ 1000



𝑠 = 261 π‘ π‘Žπ‘¦ 260 π‘šπ‘š



Maximum spacing required by the Code: a) 5β„Ž = 5(150) = 750 π‘šπ‘š b) 450 mm



Thus, use 10 mm temperature bars @ 260 mm o.c.



150 mm



10 mm temperature bars @ 260 mm o.c.



12 mm main bars @ 265 mm o.c. L/4



L/2



L/4



PROBLEM 2.28



A one-way slab having a simple span of 3 m is 160 mm thick. The slab is reinforced with 12 mm tension bars (𝑓𝑦 = 275 π‘€π‘ƒπ‘Ž) spaced at 140 mm o.c. Steel covering is 20 mm. Calculate the uniform live load pressure that a slab can carry. Use 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž. Unit weight of concrete is 23.5 kN/π‘š3 . SOLUTION



Consider 1 m strip of slab, b = 1000 m



𝑀𝑑 = 𝛾𝑐 𝑏 β„Ž 𝑀𝑑 = 23.5(1)(0.16) 𝑀𝑑 = 3.76 π‘˜π‘ βˆ’ π‘š



Dead load:



d = 160 – 20 – 1/2(12) d = 134 mm



Effective depth:



Steel area, 𝐴𝑠 =



1000 𝑠



𝜌=



𝐴𝑠 = 𝑏𝑑



πœŒπ‘ =



0.85𝑓′𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



πœ”=



πœŒπ‘“π‘¦ 𝑓′𝑐



π‘₯ 𝐴𝑠



140



π‘₯



πœ‹ 24



(12)2



807.8 1000(134) 𝜌 = 0.006028



𝜌=



=



𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2



= πœŒπ‘ =



πœ”=



0.85(20.7)(0.85)(600) 275(600 + 275) πœŒπ‘ = 0.037 > 𝜌 (𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠)



0.006028(275) 20.7 𝑅𝑛 = 20.7(0.0801)[1 βˆ’ 0.59(0.0801)] 𝑅𝑛 = 1.58 π‘€π‘ƒπ‘Ž



𝑀𝑒 = 20.7(0.0801)[1 βˆ’ 0.59(0.0801)] 𝑀𝑒 = 25.5334 π‘˜π‘ βˆ’ π‘š



𝑀𝑒 𝐿2 𝑀𝑒 (3)2 = 25.5334 = 8 8



𝑀𝑒 = 1.4 𝑀𝐷𝐿 + 1.7 𝑀𝐿𝐿 𝑀𝐿𝐿



1000



𝐴𝑠 = 807.8 π‘šπ‘š2



𝑅𝑛 = 𝑓′𝑐 πœ”(1 βˆ’ 0.59πœ”) =



𝑀𝑒 =



= 𝐴𝑠 =



𝑀𝑒 = 22.696 kN/m



= 22.696 = 1.4(3.76) + 1.7 𝑀𝐿𝐿 𝑀𝐿𝐿 = 10.25 π‘˜π‘/π‘š = π‘ˆπ‘›π‘–π‘“π‘œπ‘Ÿπ‘š π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π‘₯ 𝑏 10.25 = Uniform pressure x 1 Uniform live load pressure = 10.25 kPa



Solved Problems Using 2010 NSCP PROBLEM 2.29 A reinforced concrete beam has width of 310 mm and an effective depth of 490 mm. 𝑓′𝑐 = 30 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. Determine the following: a) The balanced steel area b) The maximum steel area for singly reinforced condition c) The maximum design strength if the beam is singly reinforced d) The required steel area if the beam is subjected to dead load moment of 120 kN-m and live load moment of 170 kN-m.



SOLUTION Since 𝑓′𝑐 > 28 π‘€π‘ƒπ‘Ž; 𝛽1 = 0.85 βˆ’



0.05 β€² (𝑓 𝑐 βˆ’ 28) 7



𝛽1 = 0.85 βˆ’ 𝛽1 = 0.836



0.05 (30 βˆ’ 28) 7



a) Balanced steel area: πœŒπ‘ =



0.85𝑓 β€² 𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



𝐴𝑠𝑏 = πœŒπ‘ 𝑏 𝑑



0.85(30)(0.836)(600) 415(600 + 415) πœŒπ‘ = 0.03036 πœŒπ‘ =



𝐴𝑠𝑏 = 0.03036(310)(490) 𝐴𝑠𝑏 = πŸ’, πŸ”πŸπŸ π’Žπ’ŽπŸ



b) Maximum steel area when beam is singly reinforced: From Eq. 2-24:



3 0.85𝑓 β€² 𝑐 𝛽1 𝑓𝑦 3 0.85(30)(0.836)



πœŒπ‘šπ‘Žπ‘₯ = 7 πœŒπ‘šπ‘Žπ‘₯ = 7



415(600+415)



πœŒπ‘šπ‘Žπ‘₯ = 0.0221



𝐴𝑠 π‘šπ‘Žπ‘₯ = πœŒπ‘šπ‘Žπ‘₯ 𝑏 𝑑



𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.0221(310)(490) 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ‘, πŸ‘πŸ’πŸ‘ π’Žπ’ŽπŸ



c) Maximum design strength, πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : πœ€ = 0.004, 𝑓𝑠 = 800 π‘€π‘ƒπ‘Ž 51



𝑀𝑛 π‘šπ‘Žπ‘₯ =



3



𝑀𝑛 π‘šπ‘Žπ‘₯ = 140 𝛽1 𝑓′𝑐 𝑏𝑑 2 (1 βˆ’ 14 𝛽1 )



From Eq. 2-25 :



51 3 (0.836)(30)(310)(490)2 (1 βˆ’ π‘₯ 0.836) 140 14 𝑀𝑛 π‘šπ‘Žπ‘₯ = 558.05 π‘˜π‘ βˆ’ π‘š



From Eq. 2-26: πœ‘ = 0.65 + 0.25 πœ‘ = 0.65 + 0.25



800βˆ’π‘“π‘¦ 1000βˆ’π‘“π‘¦ 800βˆ’415 1000βˆ’415



πœ‘ = 0.8145 πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.8145(558.05) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = πŸ’πŸ“πŸ’. πŸ“πŸ“ π’Œπ‘΅ βˆ’ π’Ž d) 𝑀𝑒 = 1.2𝑀𝐷 + 1.6 𝑀𝐿



𝑀𝑒 = 1.2(120) + 1.6(170) 𝑀𝑒 = 451.45 π‘˜π‘ βˆ’ π‘š



Thus, the beam is singly reinforced. Determine if the beam is tension-controlled: 459



3



From Eq. 2-22: πœ‘π‘€π‘‘π‘› = 1600 𝛽1 𝑓′𝑐 𝑏𝑑 2 (1 βˆ’ 16 𝛽1 ) πœ‘π‘€π‘‘π‘› = 451.45 π‘˜π‘ βˆ’ π‘š Since the required 𝑀𝑒 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 𝑀𝑑𝑛 , the section is tension controlled. πœ‘ = 0.90



𝑀𝑒 = πœ‘π‘€π‘› π‘Ž 𝑀𝑛 = πœ‘ π‘₯ 0.85 𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ 2)



π‘Ž 416 π‘₯ 106 = 0.90 π‘₯ 0.85(30)(π‘Ž)(310)(490 βˆ’ ) 2 π‘Ž = 139.06 π‘šπ‘š Check if it is really tension-controlled: 𝑐=



π‘Ž 139.06 = = 166.4 π‘šπ‘š 𝛽1 0.836



𝑓𝑠 = 600



π‘‘βˆ’π‘ 490 βˆ’ 166.4 = 600 = 1,167 π‘€π‘ƒπ‘Ž 𝑐 166.4 > 1,000 π‘€π‘ƒπ‘Ž (𝑂𝐾)



PROBLEM 2.30 Given the following data for a rectangular beam: width 𝑏 = 320π‘šπ‘š, effective depth 𝑑 = 520 π‘šπ‘š, 𝑓′𝑐 = 27 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. Dead load moment 𝑀𝐷 = 180 π‘˜π‘ βˆ’ π‘š, Live load moment 𝑀𝐿 = 167 π‘˜π‘ βˆ’ π‘š. π·π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘’ π‘‘β„Žπ‘’ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑠𝑑𝑒𝑒𝑙 π‘Žπ‘Ÿπ‘’π‘Ž. SOLUTION 𝛽1 = 0.85 π‘€π‘ˆ = 1.2 𝑀𝐷 + 1.6 𝑀𝐿



𝑀𝑒 = 1.2(180) + 1.6(167) 𝑀𝑒 = 483.2 π‘˜π‘ βˆ’ π‘š



Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ to determine if compression steel area is required.



𝑀𝑛 π‘šπ‘Žπ‘₯ =



51 3 𝛽1 𝑓′𝑐 𝑏𝑑 2 (1 βˆ’ 𝛽) 140 14 1



𝑀𝑛 π‘šπ‘Žπ‘₯ =



51 3 (0.85)(27)(320)(520)2 (1 βˆ’ π‘₯ 0.85) 140 14



𝑀𝑛 π‘šπ‘Žπ‘₯ = 591.64 π‘˜π‘ βˆ’ π‘š πœ‘ = 0.65 + 0.25



800βˆ’π‘“π‘¦ 1000βˆ’π‘“π‘¦



=0.8237



πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 487.31 π‘˜π‘ βˆ’ π‘š > 𝑀𝑒



(𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘)



Solve for πœ‘π‘€π‘‘π‘› to determine if the section is tension-controlled. πœ‘π‘€π‘› =



459 3 𝛽1 𝑓′𝑐 𝑏𝑑2 (1 βˆ’ 𝛽1 ) = 478.9 π‘˜π‘ βˆ’ π‘š 1600 16



Since 𝑀𝑒 > πœ‘π‘€π‘‘π‘› , the section is within β€œtransition region’, i.e 0.65 < πœ‘ < 0.90 𝑀𝑒 = πœ‘π‘€π‘› = πœ‘ π‘₯ 0.85 𝑓′𝑐 π‘Žπ‘ (𝑑 βˆ’ π‘Ž/2) 520 βˆ’ 𝑐 600 βˆ’ 345 𝑓𝑠 βˆ’ 𝑓𝑦 𝑐 πœ‘ = 0.65 + 0.25 = 0.65 + 0.25 1000 βˆ’ 𝑓𝑦 1000 βˆ’ 345 πœ‘=



119.084 + 0.2893 𝑐



πœ‘ = 0.85𝑐 119.084 + 0.2893) π‘₯ 0.85(27)(0.85𝑐)(320)(520 𝑐 βˆ’ 1/2π‘₯ 0.85𝑐)



483.2 π‘₯ 106 = (



𝑐 = 208.8 π‘šπ‘š π‘Ž = 𝛽1 𝑐 = 177.45 π‘šπ‘š 𝑇=𝐢



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 𝐴𝑠 (34.5) = 0.850(27)(177.45)(320) 𝐴𝑠 = 3,777 π‘šπ‘š2



PROBLEM 2.31 Given the following properties of a rectangular concrete beam: b = 280 mm, d = 480 mm, 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. The beam is reinforced for tension only. Determine the design strength under the following conditions. a) When the beam is reinforced with three 25 mm diameter bars. b) When the beam is reinforced with four 25 mm diameter bars. c) When the beam is reinforced with seven 25 mm diameter bars.



SOLUTION 𝛽1 = 0.85 πœŒπ‘ = 𝐴𝑏 =



𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 28 π‘€π‘ƒπ‘Ž



0.85𝑓 β€² 𝑐 𝛽1 600 𝑓𝑦 (600 + 𝑓𝑦 )



= πœŒπ‘ =



0.85(21)(0.85)(600) = πœŒπ‘ = 0.0216 415(600 + 415)



πœ‹ (25)2 = 490.87 π‘šπ‘š2 4



a) 𝐴𝑠 = 3 π‘₯ 𝐴𝑏 = 1473 π‘šπ‘š2 𝜌=



𝐴𝑠 𝑏𝑑



=



1473 280(480) 𝜌 = 0.01096 < πœŒπ‘



𝜌=



(𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠)



𝐢=𝑇 0.85𝑓 β€² 𝑐 π‘Ž 𝑏 = 𝐴𝑠 𝑓𝑦 0.85(21)(π‘Ž)(280) = 1473(415) π‘Ž = 122.28 π‘šπ‘š π‘Ž 𝑐= = 143.86 π‘šπ‘š 𝛽1 𝑓𝑠 = 600



π‘‘βˆ’π‘ 480 βˆ’ 143.86 = 600 = 1,402 π‘€π‘ƒπ‘Ž > 1,000 π‘€π‘ƒπ‘Ž 𝑐 143.86



The section is tension-controlled, πœ‘ = 0.90 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Ž/2) = 𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ π‘Ž/2) 𝑀𝑛 = 0.85(21)(122.28)(280)(480 βˆ’ 122.28/2) 𝑀𝑛 = 255.87 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(255.87) πœ‘π‘€π‘› = πŸπŸ‘πŸŽ. πŸπŸ– π’Œπ‘΅ βˆ’ π’Ž b) 𝐴𝑠 = 4 π‘₯ 𝐴𝑏 = 1963 π‘šπ‘š2 𝐴𝑠 1963 = 𝑏𝑑 280(480) 𝜌 = 0.014961 < πœŒπ‘ 𝜌=



(𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠)



𝐢=𝑇 0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠 𝑓𝑦 0.85(21)(π‘Ž)(280) = 1963(415) π‘Ž = 163.04 π‘šπ‘š 𝑐=



π‘Ž = 191.81 π‘šπ‘š 𝛽1



𝑓𝑠 = 600



π‘‘βˆ’π‘ 480 βˆ’ 191.81 = 600 = 901.5 π‘€π‘ƒπ‘Ž < 1,000 π‘€π‘ƒπ‘Ž 𝑐 191.81



The section within” transition region”, i. e 0.65 < πœ‘ < 0.90 πœ‘ = 0.65 + 0.25



𝑓𝑠 βˆ’ 𝑓𝑦 1000 βˆ’ 𝑓𝑦



= πœ‘ = 0.65 + 0.25



901.5 βˆ’ 415 1000 βˆ’ 415



πœ‘ = 0.858 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Ž/2) = 𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ π‘Ž/2) 𝑀𝑛 = 0.85(21)(163.04)(280)(480 βˆ’ 163.04/2) 𝑀𝑛 = 324.504 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.858(324.504) πœ‘π‘€π‘› = πŸπŸ•πŸ–. πŸ‘πŸ—πŸ” π’Œπ‘΅ βˆ’ π’Ž c) 𝐴𝑠 = 7 π‘₯ 𝐴𝑏 = 3436 π‘šπ‘š2 𝜌=



𝐴𝑠 3436 = = 0.02557 > πœŒπ‘ 𝑏𝑑 280(480)



(𝑠𝑑𝑒𝑙 π‘‘π‘œπ‘’π‘  π‘›π‘œπ‘‘ 𝑦𝑖𝑒𝑙𝑑)



The section is compression-controlled, πœ‘ = 0.65 𝑇=𝐢 𝐴𝑠 𝑓𝑠 = 0.85𝑓′𝑐 π‘Ž 𝑏 480 βˆ’ 𝑐 3436 π‘₯ 600 = 0.85(21)(0.85𝑐)(280) 𝑐 𝑐 = 297.56 π‘šπ‘š π‘Ž = 𝛽1 𝑐 = 252.92 π‘šπ‘š 𝑀𝑛 = 𝐢𝑐 )𝑑 βˆ’ π‘Ž/2) = 𝑀𝑛 = 0.85𝑓 β€² 𝑐 π‘Ž 𝑏 (𝑑 βˆ’ π‘Ž/2) 𝑀𝑛 = 0.85(21)(252.92)(280)(480 βˆ’ 252.92/2) πœ‘π‘€π‘› = 0.65(446.91) πœ‘π‘€π‘› = πŸπŸ—πŸŽ. πŸ’πŸ— π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 2.32 A hallow beam is shown in Figure 2.16. Assume 𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. a) Calculate the required tension steel area when 𝑀𝑒 = 800 π‘˜π‘› βˆ’ π‘š b) What is the balanced moment capacity of the beam? c) What is the maximum steel area under singly reinforced condition? d) What is the maximum design moment strength under singly reinforced condition? e) Calculate the required tension steel area when 𝑀𝑒 = 1200 π‘˜π‘ βˆ’ π‘š.



500 mm 250



125



500 150



800 mm



150



125



75 mm



Figure 2.16 - Hallow beam SOLUTION This problem is the same as Problem 2.23. 𝑑 = 800 βˆ’ 75 = 725 π‘šπ‘š



To guide us whether β€œa” will exceed 150 mm or not, let us solve the design moment when a =150 mm. 𝑐=



π‘Ž = 176.47 π‘šπ‘š 𝛽1



𝑓𝑠 = 600



π‘‘βˆ’π‘ = 1,865 π‘€π‘ƒπ‘Ž > 1000 π‘€π‘ƒπ‘Ž 𝑐



π‘‡π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ , πœ‘ = 0.90



πœ‘π‘€π‘› = πœ‘πΆπ‘ (𝑑 βˆ’ π‘Ž/2) = 0.90 π‘₯ 0.85(28)(150)(500)(725 βˆ’ 150/2) πœ‘π‘€π‘› = 1044.225 π‘˜π‘ βˆ’ π‘š a) 𝑀𝑒 = 800 π‘˜π‘ βˆ’ π‘š Since the required 𝑀𝑒 = 800 π‘˜π‘ βˆ’ π‘š < 1044.225 π‘˜π‘ βˆ’ π‘š, π‘Ž < 150 π‘šπ‘š. 𝑀𝑒 = πœ‘π‘€π‘› = πœ‘πΆπ‘ (𝑑 βˆ’ π‘Ž/2) 𝑀𝑒 = πœ‘0.85𝑓′𝑐 π‘Ž 𝑏(𝑑 βˆ’ π‘Ž/2) 800 π‘₯ 106 = 0.90 π‘₯ 0.85(28)π‘Ž(500)(725 βˆ’ 0.5π‘Ž) π‘Ž = 111.6 π‘šπ‘š < 150 π‘šπ‘š Stress in steel π‘‘βˆ’π‘ π‘Ž π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑐 = = 131.3 π‘šπ‘š 𝑐 𝛽1 725 βˆ’ 131.2 𝑓𝑠 = 600 = 2,712 π‘€π‘ƒπ‘Ž > 𝑓𝑦 𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠 131.3 𝑓𝑠 = 600



𝑇 = 𝐢𝑐



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 𝐴𝑠 (345) = 0.85(28)(111.6)(500) 𝐴𝑠 = πŸ‘, πŸ–πŸ“πŸŽ π’Žπ’ŽπŸ



b) Balanced condition: πœ‘ = 0.65



𝐢𝑏 =



600𝑑 600 + 𝑓𝑦



= 𝐢𝑏 =



600(725) = 460.32 π‘šπ‘š 600 + 345



π‘Ž = 𝛽1 𝑐𝑏 = π‘Ž = 0.85(460.32) = 391.3 π‘šπ‘š 500 mm 125



250 125 150



N



a 725



T



𝑧 = π‘Ž βˆ’ 150 = 241.27π‘šπ‘š 𝐴1 = 500(150) = 75,000 π‘šπ‘š2 𝐴1 = 125(241.27) = 30,159 π‘šπ‘š2 𝑀𝑏𝑛 𝑀𝑏𝑛 𝑀𝑏𝑛 𝑀𝑏𝑛



Figure 2.17 𝑦1 = 725 βˆ’ 1/2(150) = 650 π‘šπ‘š 𝑦2 = 725 βˆ’ 150 βˆ’ 1/2(241.27) = 454.37



= 𝐢1 𝑦1 + 2𝐢2 𝑦2 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) = 0.85(28)[75,000 π‘₯ 650 + 2 π‘₯ 30,159 π‘₯ 454.37] = 1812.52 π‘˜π‘ βˆ’ π‘š



πœ‘π‘€π‘π‘› = 0.65 π‘₯ 1812.52 πœ‘π‘€π‘π‘› = πŸπŸπŸ•πŸ–. πŸπŸ’ π’Œπ‘΅ βˆ’ π’Ž



c) Maximum steel area, 𝐴𝑠 π‘šπ‘Žπ‘₯ πΆπ‘šπ‘Žπ‘₯ =



3 𝑑 = 310.71 π‘šπ‘š 7



π‘…π‘’π‘“π‘’π‘Ÿ π‘‘π‘œ πΉπ‘–π‘”π‘’π‘Ÿπ‘’ 2.17 π‘Ž = 𝛽1 π‘π‘šπ‘Žπ‘₯ = 264.11 π‘šπ‘š



𝑧 = π‘Ž βˆ’ 150 = 114.11 π‘šπ‘š 𝐴1 = 500(150) = 75,000 π‘šπ‘š2 𝑦1 = 725 βˆ’ 1/2(150) = 650 π‘šπ‘š 2 𝐴2 = 125(114.11) = 14,263 π‘šπ‘š 𝑦2 = 725 βˆ’ 150 βˆ’ 1/2(114.11)=517.95 𝑇 = 𝐢1 + 𝐢2 𝐴𝑠 π‘šπ‘Žπ‘₯ 𝑓𝑦 = 0.85 𝑓 β€² 𝑐 (𝐴1 + 2𝐴2 ) 𝐴𝑠 π‘šπ‘Žπ‘₯ (345) = 0.85(28)[75,000 π‘₯ 650 + 2 π‘₯ 14,263] 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ•, πŸπŸ’πŸ π’Žπ’ŽπŸ d) Maximum moment, 𝑀𝑛 π‘šπ‘Žπ‘₯ : 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯ 𝑀𝑛 π‘šπ‘Žπ‘₯



= 𝐢1 𝑦1 + 2𝐢2 𝑦2 = 0.85𝑓′𝑐 + (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) = 0.85(28)[75,000 π‘₯ 650 + 2 π‘₯ 14,263 π‘₯ 517.95] = 1511.9 π‘˜π‘ βˆ’ π‘š



πœ‘ = 0.65 + 0.25



800 βˆ’ 𝑓𝑦 = 0.824 1000 βˆ’ 𝑓𝑦



πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.824 π‘₯ 1511.9 πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = πŸπŸπŸ’πŸ“. πŸ‘ π’Œπ‘΅ βˆ’ π’Ž e) 𝑀𝑒 = 1200 π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ Refer to Figure 2.17 𝑀𝑒 = πœ‘0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 )



(𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘)



πœ‘ = 0.65 + 0.25



πœ‘ = 0.65 + 0.25



𝑓𝑠 + 𝑓𝑦 1000 βˆ’ 𝑓𝑦



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



725 βˆ’ 𝑐 βˆ’ 345 166.03 𝑐 = + 0.2893 1000 βˆ’ 345 𝑐



600



𝑧 = π‘Ž βˆ’ 150 = 0.85𝑐 βˆ’ 150 𝐴2 = 125𝑧 = 106.25𝑐 βˆ’ 18,750 𝑦2 = 725 βˆ’ 150 βˆ’ 1/2𝑧=575-1/2(0.85c-150) 𝑦2 = 650 βˆ’ 0.425𝑐 𝑀𝑒 = πœ‘0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 2𝐴2 𝑦2 ) 166.03 1200 π‘₯ 106 = ( + 0.2893) 0.85(28)[75,000](650) 𝑐 + 2(106.25𝑐 βˆ’ 18,750)(650 βˆ’ 0.425𝑐)] 𝑐 = 398.7 π‘šπ‘š πœ‘=



166.03 + 0.2893 = 0.706 398.7



𝐴2 = 106.25(398.7) βˆ’ 18,750 = 23,615 π‘šπ‘š2 𝑇=𝐢



𝐴𝑠 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 2𝐴2 ) 𝐴𝑠 (345) = 0.85(28)(75,000 + 2 π‘₯ 23,615) 𝐴𝑠 = 8,432 π‘šπ‘š2



PROBLEM 2.33 Design a singly reinforced rectangular beam to carry dead load moment of 110 kN-m (including self weight) and live load moment of180 kN-m.



Use steel ratio 𝜌 = 0.65πœŒπ‘ and take 𝑑 = 1.9𝑏. Assume 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž. SOLUTION 𝑀𝑒 = 1.2 𝑀𝐷 + 1.6 𝑀𝐿



πœŒπ‘ =



𝑀𝑒 = 1.2(110) + 1.6(180) 𝑀𝑒 = 420 π‘˜π‘ βˆ’ π‘š



0.85𝑓′𝑐 𝛽1 600 = 0.03765 𝑓𝑦 (600 + 𝑓𝑦 )



π‘π‘œπ‘‘π‘’: 𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 < 28 π‘€π‘ƒπ‘Ž



𝜌 = 0.65 πœŒπ‘ = 0.02447 πœ”=



πœŒπ‘“π‘¦ = 0.322 𝑓′𝑐



𝑅𝑛 = 𝑓 β€² 𝑐 πœ”(1 βˆ’ 0.59 πœ”)] = 5.473 π‘€π‘ƒπ‘Ž



𝐢𝑏 =



600𝑑 600 + 𝑓𝑦



𝐢𝑏 = 0.685𝑑



Note: For singly reinforced rectangular beam, 𝜌 is directly proportional to c. Thus, 𝑐 = 0.65 𝑐𝑏 𝑐 = 0.445𝑑 𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



πœ‘ = 0.65 + 0.25



𝑑 βˆ’ 0.445𝑑 0.445𝑑 𝑓𝑠 = 747.7 π‘€π‘ƒπ‘Ž < 1000 π‘€π‘ƒπ‘Ž "π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘–π‘‘π‘–π‘œπ‘›" 𝑓𝑠 = 600



𝑓𝑠 βˆ’ 𝑓𝑦 1000 βˆ’ 𝑓𝑦



πœ‘ = 0.65 + 0.25 πœ‘ = 0.813



747.7 βˆ’ 276 1000 βˆ’ 276



𝑀𝑒 = πœ‘π‘…π‘› 𝑏 𝑑2 420 π‘₯ 106 = 0.813(5.473)(𝑏)(1.9𝑏)2 𝑏 = πŸπŸ—πŸ• π’Žπ’Ž 𝑑 = 1.9𝑏 = πŸ“πŸ”πŸ’ π’Žπ’Ž 𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.02447(297)(564) 𝐴𝑠 = πŸ’, 𝟏𝟎𝟎𝟎 π’Žπ’ŽπŸ



PROBLEM 2.34 Repeat Problem 2.33 using a steel ratio 𝜌 = 0.5πœŒπ‘ SOLUTION 𝑀𝑒 = 420π‘˜π‘ βˆ’ π‘š πœŒπ‘ = 0.03765 𝜌 = 0.5πœŒπ‘ = 0.01883 πœ”=



πœŒπ‘“π‘¦ (1 βˆ’ 0.59πœ”) = 4.438 π‘€π‘ƒπ‘Ž 𝑓 ′𝑐



600𝑑 𝐢𝑏 = 0.685𝑑 600 + 𝑓𝑦 𝑐 = 0.5𝑐𝑏 = 0.34247 𝑑 𝐢𝑏 =



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑑 βˆ’ 0.34247𝑑 0.324247𝑑 𝑓𝑠 = 1152 π‘€π‘ƒπ‘Ž > 1000 π‘€π‘ƒπ‘Ž, πœ‘ = 0.90 𝑓𝑠 = 600 𝑑 βˆ’



𝑀𝑒 = πœ‘ 𝑅𝑛 𝑏 𝑑2 = 420 π‘₯ 106 = 0.90(5.473)(𝑏)(1.9𝑏)2 𝑏 = πŸ‘πŸŽπŸ– π’Žπ’Ž 𝑑 = 1.9𝑏 = πŸ“πŸ–πŸ“ π’Žπ’Ž 𝐴𝑠 = πœŒπ‘π‘‘



𝐴𝑠 = 0.01883(308)(585) 𝐴𝑠 = πŸ‘, πŸ‘πŸ—πŸŽ π’Žπ’ŽπŸ



SUPPLEMENTARY PROBLEMS PROBLEM 2.35 A rectangular beam has 𝑏 = 250 π‘šπ‘š, 𝑑 = 350 π‘šπ‘š, 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž, 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž. Determine (a) the maximum design moment if the beam is singly reinforced and (b) the required steel area if the beam is required to carry a dead load moment of 50 kN-m and a live load moment of 30 kN-m. Use the 2001 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: π‘Ž) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 148.3 π‘˜π‘π‘š 𝑏) 𝐴𝑠 = 1075 π‘šπ‘š2 PROBLEM 2.36 Repeat Problem 2.35 using the 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: π‘Ž) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 130.8 π‘˜π‘ βˆ’ π‘š 𝑏) 𝐴𝑠 = 1056 π‘šπ‘š2 PROBLEM 2.37 Design a rectangular beam reinforced for tension only carry dead load moment of 85 kN-m (including its estimated weight) and a live load of 102 kN-m. Use 𝜌 = 0.6πœŒπ‘ and use d= 1.75b. Assume 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 28 π‘€π‘ƒπ‘Ž. Use the 2001 NSCP π΄π‘›π‘ π‘€π‘’π‘Ÿ: 𝑏 = 250 π‘šπ‘š, 𝑑 = 436 π‘šπ‘š, 𝐴𝑠 = 3,273 π‘šπ‘š2 PROBLEM 2.38 Repeat Problem 2.37 using the 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ ∢ 𝑏 = 246 π‘šπ‘š, 𝑑 = 430 π‘šπ‘š, 𝐴𝑠 = 3182 π‘šπ‘š2



PROBLEM 2.39 A reinforced concrete beam has the following properties: Use 2001 NSCP) beam with, 𝑏 = 320π‘šπ‘š effective depth, 𝑑 = 640 π‘šπ‘š concrete strength, 𝑓′𝑐 = 25π‘€π‘ƒπ‘Ž reinforcing steel, 𝑓𝑦 = 400 π‘€π‘ƒπ‘Ž reinforcing steel modulus, 𝐸𝑠 = 200,000 π‘€π‘ƒπ‘Ž service dead load moment 350 = π‘˜π‘ βˆ’ π‘š a) If the beam is to be designed for a balanced condition, find the required area of steel area reinforcement, design balanced moment, and the corresponding service live load moment. b) Find the maximum steel area, the maximum design moment, and the corresponding service live load moment if the beam is to be designed as singly reinforced. π΄π‘›π‘ π‘€π‘’π‘Ÿ: π‘Ž) 𝐴𝑠𝑏 = 5,549 π‘šπ‘š2 , πœ‘π‘€π‘› = 952.44, 𝑀𝐿 = 272 π‘˜π‘ βˆ’ π‘š 𝑏) 𝐴𝑠 π‘šπ‘Žπ‘₯ = 4,162 π‘šπ‘š2 , πœ‘ 𝑀𝑛 π‘šπ‘Žπ‘₯ = 775.46, 𝑀𝐿 = 168 π‘˜π‘ βˆ’ π‘š PROBLEM 2.40 Repeat Problem 2.39 using the 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: π‘Ž) 5,549 π‘šπ‘š2 , πœ‘π‘€π‘› = 687.87 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 167.42 π‘˜π‘ βˆ’ π‘š 𝑏) 𝐴𝑠 π‘šπ‘Žπ‘₯ = 3,963 π‘šπ‘š2 , πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 677,7𝑀𝐿 = 161 π‘˜π‘ βˆ’ π‘š PROBLEM 2.41 Calculate the ultimate moment capacity of a rectangular beam with 𝑏 = 350 π‘šπ‘š, 𝑑 = 450 π‘šπ‘š, 𝐴𝑠 = 5 βˆ’ 25 π‘šπ‘š. Assume 𝑓′𝑐 = 24 π‘€π‘ƒπ‘Ž. 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. Use 2001 NSCP π΄π‘›π‘ π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 366.2 π‘˜π‘ βˆ’ π‘š PROBLEM 2.42 Repeat Problem 2.41 using the 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 366.2 π‘˜π‘ βˆ’ π‘š



PROBLEM 2.43 Calculate the ultimate moment capacity of a rectangular beam with 𝑏 = 350 π‘šπ‘š, 𝑑 = 540 π‘šπ‘š, 𝐴𝑠 = 7 βˆ’ 28 π‘šπ‘š. Assume 𝑓′𝑐 = 24 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. Use 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 582.9 π‘˜π‘ βˆ’ π‘š PROBLEM 2.44 Repeat Problem 2.43 using the 2010 NSCP. π΄π‘›π‘ π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 514.3 π‘˜π‘ βˆ’ π‘š PROBLEM 2.45 Calculate the ultimate moment capacity of a rectangular beam with 𝑏 = 300 π‘šπ‘š, 𝑑 = 500 π‘šπ‘š, 𝐴𝑠 = 9 βˆ’ 28 π‘šπ‘š2 . Assume 𝑓′𝑐 = 34 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž. Use 2010 NSCP π΄π‘›π‘ π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 729.6 π‘˜π‘ βˆ’ π‘š PROBLEM 2.46 Repeat Problem 2.45 using the 2010 NSCP. π΄π‘ π‘›π‘€π‘’π‘Ÿ: πœ‘π‘€π‘› = 522.5 π‘˜π‘ βˆ’ π‘š



SOLVED PROBLEMS IN T-BEAMS USING 2001 NSCP PROBLEM 3.1 Determine the effective flange with for symmetrical T-beam with a span of 6 m. The beam width of web is 250 mm, the slab thickness is 120 mm, and the clear distance to adjacent beams is 3m. SOLUTION For symmetrical T-beam, the effective flange width is the smallest of: 1. 1/4 span = 6000/4 = 1500 mm 2. 16𝑑 + 𝑏𝑀 = 16(120) + 250 = 2170 π‘šπ‘š 3. clear spacing of beams + 𝑏𝑀 = 3000 + 250 = 3250 π‘šπ‘š Therefore 𝑏𝑓 = πŸπŸ“πŸŽπŸŽ π’Žπ’Ž PROBLEM 3.2 Given the following elements of a T-beam: Flange width, 𝑏𝑓 = 1200 π‘šπ‘š πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑓′𝑐 = 30 π‘€π‘ƒπ‘Ž Flange thickness, 𝑑 = 130 π‘šπ‘š 𝑆𝑑𝑒𝑒𝑙 π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž, 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž Width of web, 𝑏𝑀 = 290 π‘šπ‘š Effective depth, 𝑑 = 470 π‘šπ‘š If the beam is reinforced for tension only, determine the ultimate moment capacity when the depth of compression concrete flange equals the flange thickness or π‘Ž = 𝑑. SOLUTION 𝑀𝑛 = 0.8 𝑓′𝑐 𝑏𝑓 π‘Ž(𝑑 βˆ’ π‘Žβ„2) π‘Šβ„Žπ‘’π‘› π‘Ž = 𝑑 Eq. 3-5



𝑀𝑛 = 0.85 𝑓 β€² 𝑐 𝑏𝑓 𝑑(𝑑 βˆ’ 𝑑⁄2)



𝑀𝑓𝑛 = 0.85(30)(120)(130)(470 βˆ’



180 ) 2



𝑀𝑓𝑛 = 1611 π‘˜π‘ βˆ’ π‘š πœ‘ 𝑀𝑛 = 0.90 π‘₯ 1611 = πŸπŸ’πŸ“πŸŽ π’Œπ’ βˆ’ π’Ž



PROBLEM 3.3 Given the following elements of a T-beam: Flange width, 𝑏𝑓 = 900 π‘šπ‘š πΆπ‘œπ‘›π‘π‘Ÿπ‘’π‘‘π‘’ π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž Flange thickness, 𝑑 = 110 π‘š 𝑆𝑑𝑒𝑒𝑙 π‘ π‘‘π‘Ÿπ‘’π‘›π‘”π‘‘β„Ž, 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž Width of web, 𝑏𝑀 = 310 π‘šπ‘š Effective depth, 𝑑 = 460 π‘šπ‘š If the beam is reinforced for tension only, determine the following: a) The balanced steel area b) The nominal and ultimate balanced moment capacity c) The maximum steel area d) The nominal and ultimate maximum moment capacity SOLUTION 𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 30 π‘€π‘ƒπ‘Ž a) Balanced condition 𝐢𝑏 =



600𝑑 600 + 𝑓𝑦



600(460) 600 + 414 𝐢𝑏 = 272.2 π‘šπ‘š



𝐢𝑏 =



d = 460 mm



π‘Ž = 𝛽1 𝑐



π‘Ž = 0.85(272.2) π‘Ž = 231.4 π‘šπ‘š > 𝑑 = 900mm



t=10 0 C a



z T



=250 mm Figure 3.3



𝑧 = π‘Ž βˆ’ 𝑑 = 121.4 π‘šπ‘š 𝐴1 = 𝑏𝑓 π‘₯ 𝑑 = 900(110) = 99,000 π‘šπ‘š2 𝐴2 = 𝑏𝑀 π‘₯ 𝑧 = 310(121.4) = 37,622 π‘šπ‘š2 𝐴𝑐𝑏 = 𝐴1 + 𝐴2 = 136,622 π‘šπ‘š2 𝑇 = 𝐢1 + 𝐢2



𝐴𝑠𝑏 𝑓𝑦 = 0.85 𝑓 β€² 𝑐 ( 𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (414) = 0.85(20.7)99,000 + 37,622) 𝐴𝑠𝑏 = πŸ“, πŸ–πŸŽπŸ” π’Žπ’ŽπŸ β†’ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ 𝑠𝑑𝑒𝑒𝑙 π‘Žπ‘Ÿπ‘’π‘Ž



𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 405 π‘šπ‘š 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 289.3 π‘šπ‘š 𝑀𝑏𝑛 𝑀𝑏𝑛 𝑀𝑏𝑛 𝑀𝑏𝑛



= 𝐢2 𝑦1 + 𝐢2 𝑦2 = 0.85 𝑓 β€² 𝑐 ( 𝐴1 𝑦1 + 𝐴2 𝑦2 ) = 0.85(20.7)[99,000(405) + 37,622(289.3)] = πŸ“πŸ—πŸ• π’Œπ‘΅ βˆ’ π’Ž β†’ π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘™ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘šπ‘œπ‘šπ‘’π‘›π‘‘



𝑀𝑏𝑛 = 0.90(897) 𝑀𝑏𝑛 = πŸ–πŸŽπŸ•. πŸ‘ π’Œπ‘΅ βˆ’ π’Ž b)



β†’ π‘’π‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘šπ‘œπ‘šπ‘’π‘›π‘‘



Maximum steel area and moment. Refer to Figure 3.3.



𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.75 𝐴𝑠𝑏



𝐴𝑠 π‘šπ‘Žπ‘₯ = 0.75(5806) 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ’, πŸ‘πŸ“πŸ“ π’Žπ’ŽπŸ β†’ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š 𝑠𝑑𝑒𝑒𝑙 π‘Žπ‘Ÿπ‘’π‘Ž



𝐴𝑐 π‘šπ‘Žπ‘₯ = 0.75 𝐴𝑐𝑏 𝐴𝑐 π‘šπ‘Žπ‘₯ 𝐴𝑐 π‘šπ‘Žπ‘₯ = 𝐴1 + 𝐴2



𝐴𝑐 π‘šπ‘Žπ‘₯ = 0.75(136,622) = 102,466 π‘šπ‘š2 > 𝐴1 , π‘‘β„Žπ‘’π‘  π‘Ž > 𝑑 102,466=99,000 + 310(z) 𝑧 = 11.2 π‘šπ‘š



𝐴2 = 102,466 βˆ’ 99,000 = 3,466 π‘šπ‘š2 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 344.41 π‘šπ‘š 𝑀𝑛 π‘šπ‘›π‘₯ = 𝐢1 𝑦1 + 𝐢2 𝑦2



𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85 𝑓 β€² 𝑐 ( 𝐴1 𝑦1 + 𝐴2 𝑦2 )



𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(20.7)[99,000(405) + 3,466(289.3)] 𝑀𝑛 π‘šπ‘Žπ‘₯ = πŸ•πŸπŸ”. πŸ“ π’Œπ‘΅ βˆ’ π’Ž β†’ π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘™ π‘šπ‘Žπ‘₯ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.90(726.5) 𝑀𝑛 π‘šπ‘Žπ‘₯ = πŸ”πŸ“πŸ‘. πŸ– π’Œπ‘΅ βˆ’ π’Ž β†’ π‘’π‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ PROBLEM 3.4 A T-beam has the following properties: 𝑏𝑓 = 820 π‘šπ‘š, 𝑏𝑀 = 250 π‘šπ‘š, 𝑑 =



470 π‘šπ‘š, 𝑑 = 100 π‘šπ‘š. Concrete compressive strength 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž and steel area for the following load conditions: a) 𝑀𝐷 = 150π‘˜π‘› βˆ’ π‘š, 𝑀𝐿 = 120 π‘˜π‘ βˆ’ π‘š b) 𝑀𝐷 = 175 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 190 π‘˜π‘ βˆ’ π‘š SOLUTION



𝛽1 = 0.85 π‘†π‘œπ‘™π‘£π‘’ π‘“π‘œπ‘Ÿ ↑ πœ‘ 𝑀𝑛 π‘€β„Žπ‘’π‘› π‘Ž = 𝑑 𝑑 πœ‘π‘€π‘“π‘› = 0.85𝑓′𝑐 𝑏𝑓 𝑑 (𝑑 βˆ’ ) = 545.375 π‘˜π‘ βˆ’ π‘šπ‘š 2 π‘†π‘œπ‘™π‘£π‘’ π‘“π‘œπ‘Ÿ πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : Balanced condition: 600𝑑 𝑐𝑏 = = 278.11 π‘šπ‘š 600 + 𝑓𝑦



d = 470 mm



π‘Ž < 𝛽1 𝑐𝑏 = 236.39 π‘šπ‘š > 𝑑 = 820mm



t=1 00 C a



z T



FIGURE 3.4



=250 mm



𝑧 = π‘Ž βˆ’ 𝑑 = 136.39 π‘šπ‘š 𝐴1 = 𝑏𝑓 𝑑 = 82,000 π‘šπ‘š2 𝐴2 = 𝑏𝑀 𝑧 = 34,098 π‘šπ‘š2 𝐴𝑐𝑏 = 𝐴1 + 𝐴2 = 116,098 π‘šπ‘š2 Maximum condition: 𝐴𝑐 π‘šπ‘Žπ‘₯ = 0.75 𝐴𝑐 𝑏 = 87,073 π‘šπ‘š2 > 𝐴1 𝐴2 = 𝐴𝑐 π‘šπ‘Žπ‘₯ βˆ’ 82,000 = 5,073 π‘šπ‘š2 𝐴𝑠 𝑧= = 20.29 π‘šπ‘š 𝑏𝑀 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 359.85 π‘šπ‘š πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 𝑀𝑛 + 𝑀𝑛2 = 𝑀𝑓𝑛 + 0,85𝑓′𝑐 𝐴2 𝑦2 πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 574.28 π‘˜π‘ βˆ’ π‘š a) 𝑀𝐷 = 150 π‘˜π‘ βˆ’ π‘š, 𝐴𝑀𝐿 = 120 π‘˜π‘ βˆ’ π‘š



𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿 = 414 π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ Since 𝑀𝑒 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 𝑀𝑓𝑛 , "a" is less than t.



d = 470 mm



t =100



=820 mm



C d -a/2 T



𝑀𝑒 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ π‘Žβ„2)



414 π‘₯ 106 = 0.90(0.85)(20.7)π‘Ž(820)(470 βˆ’ π‘Žβ„2)



π‘Ž = 73.6 π‘šπ‘š 𝑇=𝐢



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 𝐴𝑠 = 2,565 π‘šπ‘š2



Minimum 𝐴𝑠 is the smaller of: βˆšπ‘“β€²π‘ 2𝑓𝑦



𝑏𝑀 𝑑 = 646 π‘šπ‘š2



βˆšπ‘“β€²π‘ 4𝑓𝑦



𝑏𝑓 𝑑 = 1059 π‘šπ‘š2



Thus, 𝐴𝑠 = 𝟐, πŸ“πŸ”πŸ“ π’Žπ’ŽπŸ b) 𝑀𝐷 = 175 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 190 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿 = 568 π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ Since 𝑀𝑒 is more than 𝑀𝑓𝑛, "π‘Ž"is more than t. = 820mm



d = 470 mm



t=100 C a



z



T



=250 mm 𝑀𝑒 = πœ‘π‘€π‘“π‘› + πœ‘π‘€π‘›2 568 π‘₯ 106 = 545.375 + 0.90(0.85)(20.7)(250)𝑧(470 βˆ’ 100𝑧⁄2) 𝑧 = 15.78 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 3,946 π‘šπ‘š2



𝑇 = 𝐢1 + 𝐢2



𝐴𝑠 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠 (414) = 0.85(20.7)(82,000 + 3946) 𝐴𝑠 = πŸ‘, πŸ”πŸ“πŸ‘ π’Žπ’ŽπŸ



PROBLEM 3.5 Design a T-beam for a floor system for which 𝑏𝑀 = 300 π‘šπ‘š and 𝑑 = 550 π‘šπ‘š. The beams are 4.5 m long and spaced at 3 mo.c. The slab thickness is 100 mm. 𝑀𝐷 = 450 π‘˜π‘ βˆ’ π‘š(𝑖𝑛𝑐𝑙𝑒𝑑𝑖𝑛𝑔 𝑖𝑑𝑠 π‘œπ‘€π‘› π‘€π‘’π‘–π‘”β„Žπ‘‘ ), 𝑀𝐿 = 350 π‘˜π‘ βˆ’ π‘š. 𝑓′𝑐 = 27 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. SOLUTION 𝛽1 = 0.85 𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿



𝑀𝑒 = 1.4(450) + 1.7(350) 𝑀𝑒 = 1225 π‘˜π‘ βˆ’ π‘š



Solve for bf: 𝑏𝑓 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘šπ‘Žπ‘™π‘™π‘’π‘ π‘‘ π‘œπ‘“: 1. L/4 = 1.125 m 2. 16𝑑 + 𝑏𝑀 = 16(100) + 300 = 1,900 π‘šπ‘š 3. center-to center spacing of beams = 3 m Thus, 𝑏𝑓 = 1,125 π‘šπ‘š Solve for πœ‘π‘€π‘› π‘€β„Žπ‘’π‘› π‘Ž = 𝑑 = 100π‘šπ‘š, πœ‘ = 0.90 πœ‘π‘€π‘“π‘› = πœ‘0.85𝑓′𝑐 𝑑 𝑏𝑓 (𝑑 βˆ’ 𝑑⁄2) πœ‘π‘€π‘› = 1161.844 π‘˜π‘ βˆ’ π‘š Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ to determine if compression steel is needed. 600𝑑



𝑐𝑏 = 600+𝑓 = 325.123 π‘šπ‘š 𝑦



π‘Ž = 𝛽1 𝑐𝑏 = 276.355 π‘šπ‘š > 𝑑



= 1125mm



d =550mm



t=1 00 C a



z 4 5 T =300 mm



𝑀𝑒 = πœ‘π‘€π‘“π‘› + πœ‘π‘2 𝑦2



𝑧 1225 π‘₯ 106 = 1161.844 π‘₯ 106 + 0.90 π‘₯ 0.85(27)(300𝑧)(450 βˆ’ ) 2 z=23.25 mm 𝐴2 = 𝑏𝑀 𝑧 = 6975.02 π‘šπ‘š2 𝑇 = 𝑐1 + 𝑐2



𝐴𝑠 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠 (415) = 0.85(27)(112,500 + 6,975.02) 𝐴𝑠 = 6,607 π‘šπ‘š2



Minimum 𝐴𝑠 is the smaller value of: βˆšπ‘“β€²π‘ 2𝑓𝑦



𝑏𝑀 𝑑 = 1033 π‘šπ‘š2



βˆšπ‘“β€²π‘ 4𝑓𝑦



𝑏𝑓 𝑑 = 1937 π‘šπ‘š2



Thus, 𝐴𝑠 = πŸ”, πŸ”πŸŽπŸ• π’Žπ’ŽπŸ PROBLEM 3.6 Determine the ultimate moment capacity of reinforced concrete T-beam with the following properties: Flange width b = 1500 mm, web width 𝑏𝑀 = 250 π‘šπ‘š, effective depth d = 600 mm, slab thickness t = 100 mm. Assume



𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. The beam is reinforced with six 28 mm bars. SOLUTION Solve for balanced 𝐴𝑠 : 600 𝑑 = 380.95 π‘šπ‘š 600 + 𝑓𝑦 π‘Ž = 𝛽1 𝑐𝑏 = 323.81 > 𝑑 𝑧 = π‘Ž βˆ’ 𝑑 = 22381 π‘šπ‘š 𝐴1 = 𝑏𝑓 𝑑 = 150,000 𝐴2 = 𝑏𝑀 𝑧 = 55,952 π‘šπ‘š2 𝑐𝑏 =



= 1500mm



d =600mm



t=100 C



a



z



=250 mm 𝑇=𝐢



𝐴𝑠 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(20.7)(150,00 + 55,952) 𝐴𝑠𝑏 = 10,503 πœ‹



Steel area provided, 𝐴𝑠 = 6 π‘₯ 4 (28)2 = 3,695 π‘šπ‘š2 > 𝐴𝑠𝑏 steel yields Therefore, 𝑓𝑠 = 𝑓𝑦 𝐢=𝑇 0.85 𝑓′𝑐 𝐴𝑐 = 𝐴𝑠 𝑓𝑦 0.85(20.7) 𝐴𝑐 = 3,695(345) 𝐴𝑐 = 72,441 < 𝐴1 π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ "a" is less than t



=1500 mm



d = 600 mm



t =100



C d -a/2



T 𝐴𝑐 = π‘Ž 𝑏𝑓



72,441 = a (1500) π‘Ž = 48.29 π‘šπ‘š2



𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ π‘Žβ„2)



𝑀𝑛 = 0.85(20.7)(48.29)(1500)(600 βˆ’ 48.29⁄2) 𝑀𝑛 = 733.99 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(733.99) πœ‘π‘€π‘› = πŸ”πŸ”πŸŽ. πŸ” π’Œπ‘΅ βˆ’ π’Ž PROBLEM 3.7 Given the following properties of T-beam: Flange width, 𝑏𝑓 = 900 π‘šπ‘š 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž Flange thickness, t=1200 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž Width of web, 𝑏𝑀 = 400 π‘šπ‘š Effective depth, d = 580 mm Service deal load, 𝑀𝐷 = 410 π‘˜π‘› βˆ’ π‘š Determine the safe service live load if the beam is reinforced for tension only with twelve (12) 28-mm-diameter bars. SOLUTION 𝛽1 = 0.85; πœ‘ = .90



= 900mm



d =580mm



t=120 C



a



z



πœ‹ 𝐴𝑠 = 12 π‘₯ (28)2 = 7,389 π‘šπ‘š2 4 𝐴1 = 𝑏𝑓 𝑑 = 108,000 π‘šπ‘š2



=400 mm



Solve for balance 𝐴𝑠 : 600𝑑 𝑐𝑏 = = 368.25 π‘šπ‘š 600 + 𝑓𝑦 𝑐 = 𝛽1 𝑐𝑏 = 313.02 π‘šπ‘š > 𝑑 𝑧 = π‘Ž = 𝑑 = 193.02 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 77,206 π‘šπ‘š2 𝑇=𝐢



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(21)(108,000 + 77,206) 𝐴𝑠𝑏 = 9,582 π‘šπ‘š2



Steel area provided is less than the balanced steel area. Steel yields. 𝐢=𝑇



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠 𝑓𝑦 0.85(21)𝐴𝑐 = 7,389(345) 𝐴𝑐 = 142,813 π‘šπ‘š2 > 𝐴1



a>𝑑



= 900mm



d =580mm



t=120 C a



z 46 0 T



=400 mm 𝐴𝑐 = 𝐴1 + 𝐴2



142,813=108,000+𝐴2 𝐴2 = 34,813 π‘šπ‘š2



𝐴2 = 𝑏𝑀 𝑧



34,813 = 400z 𝑧 = 87.03 π‘šπ‘š



𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 520 π‘šπ‘š 𝑧 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ = 416.48 π‘šπ‘š 2



𝑀𝑛 = 𝐢1 𝑦1 + 𝐢2 𝑦2 𝑀𝑛 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) 𝑀𝑛 = 0.85(21)[108,000(520) + 34,813(416.48)] 𝑀𝑛 = 1,261.3 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(1,261.3) πœ‘π‘€π‘› = 1135.138 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 𝑀𝑒



𝑀𝑒 = 1.4 𝑀𝐷 + 1.7𝑀𝐿 1,135.138 = 1.4(410) + 1.7𝑀𝐿 𝑀𝐿 = πŸ‘πŸ‘πŸŽ. 𝟎 π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 3.8 The section of a reinforced concrete T-beam is shown in Figure 3.5. The beam is reinforced with 10 32-mm-diameter tension bars with 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. Concrete strength 𝑓′𝑐 = 32 π‘€π‘ƒπ‘Ž. If the total service dead load moment on the beam is 330 kN-m, determine the safe service live load moment.



=500mm



d=530mm



t = 120mm 10-32 mm SOLUTION πœ‹ 𝐴𝑠 = 10 π‘₯ (32)2 4 𝐴𝑠 = 8,042 π‘šπ‘š2 𝐴1 = 𝑏𝑓 𝑑 = 60,000 π‘šπ‘š2



𝛽1 = 0.836



t = 120mm



0.05 (32 βˆ’ 30) 7



Solve for balance 𝐴𝑠 : 600𝑑 600 + 𝑓𝑦 𝐢𝑏 = 313.3 π‘šπ‘š π‘Ž = 𝛽1 𝐢𝑏 = 261.83 π‘šπ‘š > 𝑑 𝑧 = π‘Ž βˆ’ 𝑑 = 141.83 π‘šπ‘š



Figure 3.5 =500m m a



d=530mm



𝛽1 = 0.85 βˆ’



=320mm



z



𝐢𝑏 =



𝐴2 = 𝑏𝑀 𝑧 = 45,385.5 π‘šπ‘š2



=320m m



𝑇=𝐢



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(21)(60,00 + 45,385.5) 𝐴𝑠𝑏 = 6,907 π‘šπ‘š2



Since 𝐴𝑠 > 𝐴𝑠𝑏 , tension steel does not yield



=500m m



t = 120mm



d=530m m



a z



T



𝐴1 = 60,000 π‘šπ‘š2 𝐴2 = 𝑏𝑀 𝑧 = 𝑏𝑀 (π‘Ž βˆ’ 𝑑) 𝐴2 = 𝑏𝑀 (𝛽1 𝑐 βˆ’ 𝑑) π‘‘βˆ’π‘ 𝑓𝑠 = 600 𝑐 𝑇 = 𝐢1 + 𝐢2



=320m m



𝐴𝑠 𝑓𝑠 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 530βˆ’π‘



8,042 π‘₯ 600 𝑐 = 0.85(32)[60,000 + 320(0.836𝑐 βˆ’ 120)] 𝑐 = 327.95 π‘šπ‘š π‘Ž = 𝛽1 𝑐 = 261.83 π‘šπ‘š 𝑧 = π‘Ž βˆ’ 𝑑 = 141.83 π‘šπ‘š



𝐴2 = 𝑏𝑀 𝑧 = 49,303 π‘šπ‘š2 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 332.97mm 𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 470mm



𝑀𝑛 = 𝐢1 𝑦1 + 𝐢2 𝑦2



𝑀𝑛 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴1 𝑦2 ) 𝑀𝑛 = 0.85(32)[60,000(470) + 49,303(332.97)] 𝑀𝑛 = 1,213.56 π‘˜π‘ βˆ’ π‘š



πœ‘π‘€π‘› = 0.90(1,213.56) πœ‘π‘€π‘› = 1,092.2 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = πœ‘π‘€π‘›



𝑀𝑒 = 1.4𝑀𝐷 + 1.7 𝑀𝐿 1,092 = 1.4(330) + 1.7 𝑀𝐿 𝑀𝐿 = πŸ‘πŸ•πŸŽ. πŸ• π’Œπ‘΅ βˆ’ π’Ž



SOLVED PROBLEMS IN T-BEAMS USING 2010 NSCP PROBLEM 3.9 Repeat Problem 3.3 using the 2010 NSCP. SOLUTION Given: 𝑏𝑓 = 900 π‘šπ‘š 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž 𝑑 = 110 π‘šπ‘š 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž 𝑏𝑀 = 3210 π‘šπ‘š 𝑑 = 460 π‘šπ‘š 𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓 β€² 𝑐 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 28 π‘€π‘ƒπ‘Ž a) Balanced condition, πœ‘ = 0.65 𝑐𝑏 =



600 𝑑 600 + 𝑓𝑦



600(460) 600 + 414 𝑐𝑏 = 272.2 π‘šπ‘š 𝑐𝑏 =



π‘Ž = 𝛽1 𝑐



π‘Ž = 0.85(272.2) π‘Ž = 231.4 π‘šπ‘š > 𝑑



= 900mm



d = 460 mm



t=110 C a



z



T =310 mm Figure 3.6



𝑧 = π‘Ž βˆ’ 𝑑 = 121.4 π‘šπ‘š 𝐴1 = 𝑏𝑓 π‘₯ 𝑑 = 900(110) = 99,000 π‘šπ‘š2 𝐴2 = 𝑏𝑀 π‘₯ 𝑧 = 310(121.4) = 37,622 π‘šπ‘š2 𝐴𝑐𝑏 = 𝐴1 + 𝐴2 = 136,622 π‘šπ‘š2 𝑇 = 𝑐1 + 𝑐2



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (414) = 0.85(20.7)(99,000 + 37,622) 𝐴𝑠𝑏 = πŸ“, πŸ–πŸŽπŸ” π’Žπ’ŽπŸ β†’ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ 𝑠𝑑𝑒𝑒𝑙 π‘Žπ‘Ÿπ‘’π‘Ž



𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 405 π‘šπ‘š 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 289.3 π‘šπ‘š 𝑀𝑏𝑛 = 𝑐1 𝑦1 + 𝑐2 𝑦2 𝑀𝑏𝑛 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) 𝑀𝑏𝑛 = 0.85(20.7)[99,000(405)37,622(289.3)] 𝑀𝑏𝑛 = πŸ–πŸ—πŸ• π’Œπ‘΅ βˆ’ π’Ž β†’ π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘™ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ πœ‘π‘€π‘π‘› = 0.65(897) πœ‘π‘€π‘π‘› = πŸ“πŸ–πŸ‘ π’Œπ‘΅ βˆ’ π’Ž β†’ π‘’π‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ b) Maximum steel area and moment. Refer to Figure 3.6. 800 βˆ’ 𝑓𝑦 3 𝑐 = 𝑑 = 197.14 π‘šπ‘š; πœ‘ = 0.65 + 0.25 = 0.815 7 1000 βˆ’ 𝑓𝑦 π‘Ž = 𝛽1 𝑐



π‘Ž = 0.85(197.14) π‘Ž = 167.6 π‘šπ‘š



𝑧 = π‘Ž βˆ’ 𝑑 = 57.571 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 310(57.6) = 17,847 π‘šπ‘š2 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 321.21 π‘šπ‘š 𝑇 = 𝑐1 + 𝑐2 𝐴𝑠 π‘šπ‘Žπ‘₯



𝐴𝑠 π‘šπ‘Žπ‘₯ 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠 π‘šπ‘Žπ‘₯ (414) = 0.85𝑓 β€² 𝑐 (99,000 + 17,847) = πŸ’πŸ—πŸ”πŸ” π’Žπ’ŽπŸ β†’ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š 𝑠𝑑𝑒𝑒𝑙 π‘Žπ‘Ÿπ‘’π‘Ž



𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝑐1 𝑦1 + 𝑐2 𝑦2 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(20.7)[99,000(415) + 17,847(321.2)] 𝑀𝑛 π‘šπ‘Žπ‘₯ = πŸ–πŸŽπŸ”. πŸ‘πŸ’ π’Œπ‘΅ βˆ’ π’Ž β†’ π‘›π‘œπ‘šπ‘–π‘›π‘Žπ‘™ π‘šπ‘Žπ‘₯ π‘šπ‘œπ‘šπ‘’π‘›π‘‘ πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.815(806.34) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = πŸ”πŸ“πŸ”. πŸ— π’Œπ‘΅ βˆ’ π’Ž β†’ π‘’π‘™π‘‘π‘–π‘šπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘šπ‘œπ‘šπ‘’π‘›π‘‘ PROBLEM 3.10 Repeat Problem 3.2 using the 2010 NSCP. SOLUTION Given: 𝑏𝑓 = 1200 π‘šπ‘š 𝑑 = 130 π‘šπ‘š 𝑑 = 470 π‘šπ‘š



𝑏𝑀 = 290 π‘šπ‘š 𝑓′𝑐 = 30 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 345π‘€π‘ƒπ‘Ž



𝑀𝑓𝑛 = 0.85𝑓′𝑐 𝑑 𝑏𝑓(𝑑 βˆ’ 𝑑⁄2)



𝑀𝑓𝑛 = 0.85(30)(1200)(130)(470 βˆ’ 130⁄2) 𝑀𝑓𝑛 = 1611π‘˜π‘ βˆ’ π‘š Solving for πœ‘: π‘Ž = 130 π‘šπ‘š 0.05 β€² 𝛽1 = 0.85 βˆ’ (𝑓 𝑐 βˆ’ 28) = 0.836 7 𝑐 = π‘Žβ„π›½ = 155.56 π‘šπ‘š 1 π‘‘βˆ’π‘ 𝑓𝑠 = 600 = 1213 π‘€π‘ƒπ‘Ž > 1000 𝑀𝑃 𝑐 πœ‘π‘€π‘“π‘› = 090(1611) πœ‘π‘€π‘“π‘› = πŸπŸ’πŸ“πŸŽ π’Œπ‘΅ βˆ’ π’Ž



"π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› βˆ’ π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ , πœ‘ = 0.90"



PROBLEM 3.11 Repeat Problem 3.4 using the 2010 NSCP. Additional questions: c) Find the required steel area if 𝑀𝐷 = 195 π‘˜π‘ βˆ’ π‘š and 𝑀𝐿 = 210 π‘˜π‘ βˆ’ π‘š. d) Find the maximum design moment so that section is tensioncontrolled if it is reinforced for tension only.



SOLUTION Given: 𝑏𝑓 = 820 π‘šπ‘š 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž 𝑏𝑀 = 250 π‘šπ‘š 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž 𝑑 = 470 π‘šπ‘š 𝑑 = 100 π‘šπ‘š 𝛽1 = 0.85 𝑠𝑖𝑛𝑐𝑒 𝑓′𝑐 < 28 < π‘€π‘ƒπ‘Ž Solve for πœ‘π‘€π‘› when π‘Ž = 𝑑: 𝑀𝑓𝑛 = 0.85𝑓′𝑐 𝑏𝑓 𝑑(𝑑 βˆ’ 𝑑⁄2) = 605.97 π‘˜π‘ βˆ’ π‘šπ‘š 𝑐 = π‘Žβ„π›½ = 117.65 π‘šπ‘š 1



𝑓𝑠 = 600



π‘‘βˆ’π‘ = 1797π‘€π‘ƒπ‘Ž > 1000π‘€π‘ƒπ‘Ž, πœ‘ = 0.90 𝑐



πœ‘π‘€π‘“π‘› = πŸ“πŸ’πŸ“. πŸ‘πŸ•πŸ“ π’Œπ‘΅ βˆ’ π’Ž Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : 3 πΆπ‘šπ‘Žπ‘₯ = 𝑑 = 201.43 π‘šπ‘š 7 800 βˆ’ 𝑓𝑦 = 0.815 1000 βˆ’ 𝑓𝑦 = 171.21 π‘šπ‘š > 𝑑



πœ‘ = 0.65 + 0.25 π‘Ž = 𝛽1 π‘π‘šπ‘Žπ‘₯



= 820mm



d = 470 mm



t=100 C



a



z



T 𝑧 = π‘Ž βˆ’ 𝑑 = 71.21 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 17,803.6 π‘šπ‘š2 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 334.39π‘šπ‘š



=250 mm



𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝑀𝑓𝑛 + 0.85𝑓′𝑐 𝐴2 𝑦2 𝑀𝑛 π‘šπ‘Žπ‘₯ = 710.72 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 579 π‘˜π‘ βˆ’ π‘š a) 𝑀𝐷 = 150 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 120 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = 1.2𝑀𝐷 + 1.6 𝑀𝐿 = 372 π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯, 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ Since 𝑀𝑒 is less than πœ‘π‘€π‘“π‘› ,”a” is less than t.



d = 470 mm



t =100



=820 mm



C d -a/2 T



Assume πœ‘ = 0.90 𝑀𝑒 = πœ‘0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ π‘Žβ„2) 372 π‘₯ 106 = 0.90(0.85)(20.7)π‘Ž(820)(470 βˆ’ π‘Žβ„2) π‘Ž = 65.52 π‘šπ‘š 𝑐 = π‘Žβ„π›½ = 77.08π‘šπ‘š 1 π‘‘βˆ’π‘ 𝑓𝑠 = 600 = 3,058 π‘€π‘ƒπ‘Ž > 1000 π‘€π‘ƒπ‘Ž, π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ , πœ‘ = 0.90 𝑐 𝑇=𝐢



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 𝐴𝑠 (345) = 0.85(20.7)(65.52)(820) 𝐴𝑠 = 2,283 π‘šπ‘š2



Minimum 𝐴𝑠 is the smaller value of: 𝑓′𝑐 𝑏 𝑑 = 646 π‘šπ‘š2 2𝑓𝑦 𝑀



βˆšπ‘“β€²π‘ 𝑏 𝑑 = 1059 π‘šπ‘š2 4𝑓𝑦 𝑓



Thus, 𝐴𝑠 = 𝟐, πŸπŸ–πŸ‘ π’Žπ’ŽπŸ b) 𝑀𝐷 = 175 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 190 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = 1.2 𝑀𝐷 + 1.6 𝑀𝐿 = 514 π‘˜π‘ βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ Since 𝑀𝑒 𝑖𝑠 𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› πœ‘π‘€π‘“π‘› , "π‘Ž"is less than t. Assume πœ‘ = 0.90 𝑀𝑒 = πœ‘0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ π‘Žβ„2) 514 π‘₯ 106 = 0.90(0.85)(20.7)π‘Ž(820)(470 βˆ’ π‘Žβ„2) π‘Ž = 93.53 π‘šπ‘š 𝑐 = π‘Žβ„π›½ = 110.03 π‘šπ‘š 1



t =100



d = 470 mm



=820 mm



C d -a/2



T 𝑓𝑠 = 600 𝑇=𝐢



π‘‘βˆ’π‘ = 1,963 π‘€π‘ƒπ‘Ž > 1000π‘€π‘ƒπ‘Ž, π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ , πœ‘ = 0.90 𝑐 𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 𝐴𝑠 (345) = 0.85(20.7)(93.53)(820) 𝐴𝑠 = πŸ‘, πŸπŸ“πŸ— π’Žπ’ŽπŸ



c) 𝑀𝐷 = 195 π‘˜π‘ βˆ’ π‘š, 𝑀𝐿 = 210 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = 1.2𝑀𝐷 + 1.6𝑀𝐿 = 570 π‘˜π‘› βˆ’ π‘š < πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , 𝑠𝑖𝑛𝑔𝑙𝑦 π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ Since 𝑀𝑒 𝑖𝑠 π‘šπ‘œπ‘Ÿπ‘’ π‘‘β„Žπ‘Žπ‘› πœ‘π‘€π‘’ , "π‘Ž"is more than t.



= 820mm



d =470mm



t=10 0 C



a



z



T =250 mm



Assume πœ‘ = 0.90 𝑀𝑒 = πœ‘π‘€π‘“π‘› + πœ‘π‘€π‘›2 570 π‘₯ 106 = 545.375 + 0.90(0.85)(20.7)(250)𝑧(470 βˆ’ 100 βˆ’ 𝑧⁄2) 𝑧 = 17.05 π‘šπ‘š π‘Ž = 𝑑 + 𝑧 = 117.05 π‘šπ‘š; 𝑐 = π‘Žβ„π›½1 = 137.7π‘šπ‘š π‘‘βˆ’π‘ = 1448π‘€π‘ƒπ‘Ž > 1000π‘€π‘ƒπ‘Ž, π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ , πœ‘ = 0.90 𝑐 𝐴2 = 𝑏𝑀 𝑧 = 3,908 π‘šπ‘š2 𝑓𝑠 = 600



𝐴𝑠 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 )



𝑇 = 𝐢1 + 𝐢2 𝐴𝑠 = 3,666 π‘šπ‘š2 3



d) 𝑐 = 𝑏 𝑑 = 176.25 π‘šπ‘š, πœ‘ = 0.90 π‘Ž = 𝛽1 𝑐 = 149.81 π‘šπ‘š > 𝑑



= 820mm



d = 470 mm



t=100 C



a



z



T =250 mm 𝑧 = π‘Ž βˆ’ 𝑑 = 49.81π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 12,453 π‘šπ‘š2 𝑧 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ = 3450.9π‘šπ‘š 2



𝑀𝑑𝑛 = 𝑀𝑓𝑛 + 0.85 𝑓′𝑐 𝐴2 𝑦2 𝑀𝑑𝑛 = 681.59 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘‘π‘› = πŸ”πŸπŸ‘. πŸ’ π’Œπ‘΅ βˆ’ π’Ž Note: If 𝑀𝑒 is less than or equal to πœ‘π‘€π‘› , the beam is tension-controlled. PROBLEM 3.12 Repeat Problem 3.6 using the 2010 NSCP. SOLUTION Given: 𝑏𝑓 = 1500π‘šπ‘š 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž 𝑏𝑀 = 250 π‘šπ‘š 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž 𝑑 = 600 π‘šπ‘š 𝛽1 = 0.85 𝐴𝑠 = 6 βˆ’ 28 π‘šπ‘š = 3,694 π‘šπ‘š2 Solve for balanced 𝐴𝑠 : 600𝑑



𝑐𝑏 = 600+𝑓 = 380.95 π‘šπ‘š 𝑦



π‘Ž = 𝛽1 𝑐𝑏 = 323.81 > 𝑑 𝐴1 = 𝑏𝑓 𝑑 = 150,000 𝐴2 = 𝑏𝑀 𝑧 = 55,952 π‘šπ‘š2



= 1500mm



d =600mm



t=100 C



a



z



=400 mm



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(20.7)(150,000 + 55,952) 𝐴𝑠𝑏 = 10,503



𝑇=𝐢



Steel area provided, 𝐴𝑠 = 6 π‘₯



πœ‹ 4



(28)2 = 3,695 π‘šπ‘š2 < 𝐴𝑠𝑏 "𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠"



therefore, 𝑓𝑠 = 𝑓𝑦 𝐢=𝑇



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠 𝑓𝑦 0.85(20.7)𝐴𝑐 = 3,695(345) 𝐴𝑐 = 72,441 < 𝐴1 π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ "π‘Ž" is less than t



t =100



d = 600 mm



=1500 mm



C d -a/2 T



𝐴𝑐 = π‘Ž 𝑏𝑓



72,441 = π‘Ž(1500) π‘Ž = 48.29 π‘šπ‘š2



Solve for πœ‘: 𝑐 = π‘Žβ„π›½ = 56.82 π‘šπ‘š 1 𝑓𝑠 = 600



π‘‘βˆ’π‘ = 5,736π‘€π‘ƒπ‘Ž > 1000π‘€π‘ƒπ‘Ž 𝑐



therefore πœ‘ = 0.90



π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ 



𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 = 0.85(20.7)(48.29)(1500)(600 βˆ’ 48.29⁄2) 𝑀𝑛 = 733.99 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(733.99) πœ‘π‘€π‘› = πŸ”πŸ”πŸŽ. πŸ” π’Œπ‘΅ βˆ’ π’Ž PROBLEM 3.13 Repeat Problem 3.7 using 2010 NSCP. SOLUTION Given the following properties of a T-beam: Flange width, 𝑏𝑓 = 900 π‘šπ‘š 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž Flange thickness, 𝑑 = 120 π‘šπ‘š 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž Width of web, 𝑏𝑀 = 400 π‘šπ‘š 𝐴𝑠 = 7,389 π‘šπ‘š2 Effective depth, 𝑑 = 580 π‘šπ‘š Service deal load, 𝑀𝐷 = 410 π‘˜π‘ βˆ’ π‘š 𝛽1 = 0.85; πœ‘ = 0.90 πœ‹ 𝐴𝑠 = 12 π‘₯ 4 (28)2 = 7,389 π‘šπ‘š2 𝐴1 = 𝑏𝑓 𝑑 = 108,000 π‘šπ‘š2



𝐢𝑏 =



600𝑑 = 368.25 π‘šπ‘š 600 + 𝑓𝑦



d =580mm



Solve for balance 𝐴𝑠 :



= 900mm



t=120 C



a



z



π‘Ž = 𝛽1 𝑐𝑏 = 313.02 π‘šπ‘š > 𝑑 𝑧 = π‘Ž βˆ’ 𝑑 = 193.02 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 77,206 π‘šπ‘š2 𝑇=𝐢



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(21)(108,000 + 77,206) 𝐴𝑠𝑏 = 9,582 π‘šπ‘š2



=400 mm



Steel area provided is less than the balanced steel area. Steel yields. 𝐢=𝑇



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠 𝑓𝑦 0.85(21)𝐴𝑐 = 7,389(345) 𝐴𝑐 = 142,813 π‘šπ‘š2 > 𝐴1 = 900mm



d = 580 mm



t=120 C



a



β€œa” >t



z 46 0 T =400 mm



𝐴𝑐 = 𝐴1 + 𝐴2 𝐴2 = 𝑏𝑀 𝑧



142,813 = 108,000 + 𝐴2 𝐴2 = 34,813 π‘šπ‘š2 34,813 = 400𝑧 𝑧 = 87.03 π‘šπ‘š



𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 520 π‘šπ‘š 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧⁄2 = 416.48 π‘šπ‘š 𝑀𝑛 𝑀𝑛 𝑀𝑛 𝑀𝑛



= 𝐢1 𝑦1 + 𝐢2 𝑦2 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) = 0.85(21)[108,000(520) + 34,813(416.48)] = 1,261.6 π‘˜π‘› βˆ’ π‘š



Solve for πœ‘: π‘Ž = 𝑑 + 𝑧 = 203.03 π‘šπ‘š



𝑐 = π‘Žβ„π›½ = 243.57π‘šπ‘š 1



𝑓𝑠 = 600



π‘‘βˆ’π‘ = 828.76 π‘€π‘ƒπ‘Ž < 1000 π‘€π‘ƒπ‘Ž 𝑐



Since 𝑓𝑦 < 𝑓𝑠 < 1000 π‘€π‘ƒπ‘Ž,Transition region πœ‘ = 0.65 + 0.25



𝑓𝑠 βˆ’ 𝑓𝑦 = 0.8346 1000 βˆ’ 𝑓𝑦



πœ‘π‘€π‘› = 0.8346(1,261.3) πœ‘π‘€π‘› = 1,052.703 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 𝑀𝑒



𝑀𝑒 = 1.2 𝑀𝐷 + .6 𝑀𝐿 1,052.703 = 1.2(410) + 1.7 𝑀𝐿 𝑀𝐿 = πŸ‘πŸ“πŸŽ. πŸ’πŸ’ π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 3.14 Repeat Problem 3.8 using 2010 NSCP.



t = 120mm 10-32 mm



=320mm



Figure 3.7



d=530mm



=500mm



t =120 mm



=500mm



d=530mm



a Z



SOLUTION 𝐴𝑠 = 10 π‘₯



πœ‹ (32)2 4



=320mm



𝐴𝑠 = 8,042 π‘šπ‘š2 𝐴1 = 𝑏𝑓 𝑑 = 60,000 π‘šπ‘š2 𝛽1 = 0.85 βˆ’ 𝛽1 = 0.821



0.05 (32 βˆ’ 28) 7



Solve for balanced 𝐴𝑠 : 600𝑑 600 + 𝑓𝑦 π‘Ž = 313.3 π‘šπ‘š π‘Ž = 𝛽1 𝑐𝑏 = 257.35 π‘šπ‘š > 𝑑 𝑧 = π‘Ž βˆ’ 𝑑 = 137.35 π‘šπ‘š 𝐴2 = 𝑏𝑀 𝑧 = 43,953 π‘šπ‘š2 𝑐𝑏 =



𝑇=𝐢



𝐴𝑠𝑏 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠𝑏 (345) = 0.85(21)(60,000 + 43,953) 𝐴𝑠𝑏 = 6,813 π‘šπ‘š2



Since 𝐴𝑠 > 𝐴𝑠𝑏 , π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑠𝑑𝑒𝑒𝑙 π‘‘π‘œπ‘’π‘  π‘›π‘œπ‘‘ 𝑦𝑖𝑒𝑙𝑑



=500m m



t =120 mm



d=530mm



a Z



T



=320m m



πœ‘ = 0.65 π‘π‘π‘šπ‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› π‘π‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™π‘ 



𝐴1 = 60,000 π‘šπ‘š2 𝐴2 = 𝑏𝑀 𝑧 = 𝑏𝑀 (π‘Ž βˆ’ 𝑑) = 𝑏𝑀 (𝛽1 𝑐 βˆ’ 𝑑) 𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑇 = 𝐢1 + 𝐢2



𝐴𝑠 𝑓𝑠 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 )



530 βˆ’ 𝑐 = 0.85(32)[60,000 + 320(0.821𝑐 βˆ’ 1200)] 𝑐 𝑐 = 329.27 π‘šπ‘š 8,042 π‘₯ 600



π‘Ž = 𝛽1 𝑐 = 270.47 π‘šπ‘š 𝑧 = π‘Ž βˆ’ 𝑑 = 150.47 π‘šπ‘š 𝑦1 = 𝑑 βˆ’ 𝑑⁄2 = 470 π‘šπ‘š 𝑀𝑛 = 𝐢1 𝑦1 + 𝑐2 𝑦2



𝐴2 = 𝑏𝑀 𝑧 = 48,151 π‘šπ‘š2 𝑧 𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 2 = 334.76 π‘šπ‘š 𝑀𝑛 = 0.85𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) 𝑀𝑛 = 0.85(32)[60,000(470) + 48,151(334.76)] 𝑀𝑛 = 1,205.48 π‘˜π‘ βˆ’ π‘š



πœ‘π‘€π‘› = 0.65(1,205.48) πœ‘π‘€π‘› = 783.56 π‘˜π‘› βˆ’ π‘š 𝑀𝑒 = πœ‘π‘€π‘›



𝑀𝑒 = 1.2 𝑀𝐷 + 1.6𝑀𝐿 78.56 = 1.2(330) + 1.6 𝑀𝐿 𝑀𝐿 = πŸπŸ’πŸ. πŸπŸ‘ π’Œπ‘΅ βˆ’ π’Ž



DESIGN PROBLEMS Doubly Reinforced Beams PROBLEM 3.15 a .305-mm wide rectangular beam has an overall depth of 560 mm. The beam is reinforced with four 25-mm-diameter compression bars. The centroid fiber. Assume 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž and 𝑓′𝑐 = 29 π‘€π‘ƒπ‘Ž. Determine the following: a) The balanced tension steel area and the nominal and ultimate balanced moment. b) The maximum tension steel area and the nominal and ultimate maximum moment. SOLUTION 305 mm



d=490 mm d-d’420



70 mm



a



4-25 mm



+



=



70 mm 𝛽1 = 0.85 a) Balanced condition 𝑐𝑏 =



π‘Ž = 𝛽1 𝑐𝑏



600𝑑 600 + 𝑓𝑦



600(490) 600 + 415 𝑐𝑏 = 289.66 π‘šπ‘š



𝑐𝑏 =



π‘Ž = 0.85(289.66) π‘Ž = 246.21 π‘šπ‘š



𝑓𝑠𝑐 = 600



π‘‘βˆ’π‘



𝑓𝑠𝑐 = 600



𝑐



289.66βˆ’70 289.66



𝑓𝑠𝑐 = 455 π‘€π‘ƒπ‘Ž > 𝑓𝑦 yield 𝑓𝑠𝑐 = 𝑓𝑦 𝑇1 = 𝐢𝑐



𝑇2 = 𝐢′𝑠



𝐴𝑠1 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 𝐴𝑠1 (415) = 0.85(29)(246.21)(305) 𝐴𝑠1 = 4,460 π‘šπ‘š2 𝐴𝑠2 𝑓𝑦 = 𝐴′𝑠 𝑓𝑦 𝐴𝑠2 = 1,964 π‘šπ‘š2



Balanced steel area, 𝐴𝑠𝑏 = 𝐴𝑠1 + 𝐴𝑠2 = πŸ”, πŸπŸ’πŸ π’Žπ’ŽπŸ 𝑀𝑛𝑏 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑 β€² ) π‘Ž 𝑀𝑛𝑏 = 0.85𝑇𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ ) + 𝐴′ 𝑠 𝑓𝑦 (𝑑 βˆ’ 𝑑 β€² ) 2 𝑀𝑛𝑏 = 0.85(29)(246.21)(305)(490 βˆ’ 246.21⁄2) 𝑀𝑛𝑏 = 𝟏, 𝟎𝟐𝟏. πŸ’ π’Œπ‘΅ βˆ’ π’Ž πœ‘π‘€π‘›π‘ = 0.90(1,021.4) = πŸ—πŸπŸ—. πŸπŸ’ π’Œπ‘΅ βˆ’ π’Ž b) Maximum tension steel area: According to Section 410.4.3, for members with compression reinforcement, the portion of πœŒπ‘ equalized by compression reinforcement need not be reduced by the 0.75 factor. 𝐴𝑠1 = 0.75𝐴𝑠1 𝐴𝑠2 = 1,964 π‘šπ‘š2 𝐴𝑠 π‘šπ‘Žπ‘₯ = 𝐴𝑠1 π‘šπ‘Žπ‘₯ + 𝐴𝑠2



𝐴𝑠1 π‘šπ‘Žπ‘₯ = 0.75(4,460) 𝐴𝑠1 π‘šπ‘Žπ‘₯ = 3,345 π‘šπ‘š2



𝐴𝑠 π‘šπ‘Žπ‘₯ = 3,345 + 1,964 𝐴𝑠 π‘šπ‘Žπ‘₯ = πŸ“, πŸ‘πŸŽπŸ— π’Žπ’ŽπŸ



𝐢𝑐 = 𝑇1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1π‘šπ‘Žπ‘₯ 𝑓𝑦 0.85(29)(π‘Ž)(305) = 3,345(415) π‘Ž = 184.7 π‘šπ‘š



𝑐 = π‘Ž/𝛽1



𝑓′𝑠 = 600



𝑐 = 184.7/0.85 𝑐 = 217.2 π‘šπ‘š π‘βˆ’π‘‘β€² 𝑐



217.2βˆ’70



𝑓′𝑠 = 600 217.2 𝑓′𝑠 = 406.7 π‘€π‘ƒπ‘Ž < 𝑓𝑦



(𝑀𝑖𝑙𝑙 π‘›π‘œπ‘‘ 𝑦𝑖𝑒𝑙𝑑)



𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85𝑓′𝑐 π‘Ž 𝑏(𝑑 βˆ’ π‘Žβ„2) + 𝐴′ 𝑠 𝑓 β€² 𝑠 (𝑑 βˆ’ 𝑑 β€² ) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(29)(184.7)(305)(490 βˆ’ 184.7⁄2) +1964(406.7)(490 βˆ’ 70) 𝑀𝑛 π‘šπ‘Žπ‘₯ = πŸ–πŸ–πŸ•. πŸ’πŸ“ π’Œπ‘΅ βˆ’ π’Ž πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90(887.45) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = πŸ•πŸ—πŸ–. πŸ• π’Œπ‘΅ βˆ’ π’Ž PROBLEM 3.16 (CE NOVEMBER 2009) A reinforced concrete beam has width of 300 mm and effective depth of 460 mm. The beam is reinforced with 2-28 mm compression bars placed 70 mm from extreme concrete. Concrete strength 𝑓′𝑐 = 35 π‘€π‘ƒπ‘Ž and steel strength 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž. a) What is the balanced steel area considering the contribution of the compression steel? b) What is the maximum tension steel area allowed by the code?



SOLUTION 𝛽1 = 0.85 βˆ’



0.05 (35 βˆ’ 30) = 0.814 7



𝐴′𝑠 =



πœ‹ (28)2 π‘₯ 2 = 1,232 π‘šπ‘š2 4



a) Balanced condition considering compression steel: 𝑐𝑏 =



600 𝑑 600 + 𝑓𝑦



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑐𝑏 =



600(460) 600 + 345



𝑓′𝑠 = 600



292 βˆ’ 70 292



𝑓′𝑠 = 456 π‘€π‘ƒπ‘Ž > 𝑓𝑦 , π‘‘β„Žπ‘’π‘  𝑓′𝑠 = 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž 𝐢𝑐 + 𝐢𝑠 = 𝑇 0.85 𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓′𝑠 = 𝐴𝑠 𝑓𝑦 0.85(35)(0.814 π‘₯ 292)(300) + 1232(345) = 𝐴𝑠 (345) 𝐴𝑠 = πŸ•, πŸ‘πŸ–πŸ’ π’Žπ’ŽπŸ b) Maximum steel area: For rectangular beams: πΆπ‘šπ‘Žπ‘₯ = 0.75 𝑐𝑏 = 0.75(292) πΆπ‘šπ‘Žπ‘₯ = 219.05 π‘šπ‘š π‘Ž = 𝛽1 π‘π‘šπ‘Žπ‘₯ = 178.37 π‘šπ‘š 𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑓′𝑠 = 600



219.05 βˆ’ 70 219.05



𝑓′𝑠 = 408 π‘€π‘ƒπ‘Ž > 𝑓𝑦 , π‘‘β„Žπ‘’π‘  𝑓′𝑠 = 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž 𝐢𝑐 + 𝐢𝑠 = 𝑇



0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓′𝑠 = 𝐴𝑠 𝑓𝑦 0.85(35)(178.37)(300) +1232(345) = 𝐴𝑠 (345) 𝐴𝑠 = πŸ“, πŸ–πŸ’πŸ” π’Žπ’ŽπŸ‘



PROBLEM 3.17 A rectangular beam has b=300 mm and d= 490 mm. Concrete compressive strength 𝑓′𝑐 = 27.6 π‘€π‘ƒπ‘Ž and steel yield strength 𝑓𝑦 = 276 π‘€π‘ƒπ‘Ž. Compressive steel if required shall have its centroid 60 mm from extreme concrete fiber. Calculate the required tension steel area if the factored moment 𝑀𝑒 is 620 kN-m. SOLUTION This is the same problem in Chapter 2. Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : 𝑐𝑏 =



600𝑑 = 335.616 π‘šπ‘š 600 + 𝑓𝑦



π‘Žπ‘ = 𝛽1 𝑐𝑏 = 285.27 π‘šπ‘š π‘Ž 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85𝑓′𝑐 π‘Ž 𝑏(𝑑 βˆ’ ) 2 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(27.6)(213.96)(300)(490 βˆ’ 213.96⁄2) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 576.76 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90(576.76) = 519 π‘˜π‘ βˆ’ π‘š Since 𝑀𝑒 = 620 π‘˜π‘› βˆ’ π‘š > πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , the beam must be doubly reinforced.



b d ’



ca



=



d – a/2



+



d – d’



𝑀𝑛1 = 𝑀𝑛 π‘šπ‘Žπ‘₯ = 576.76 π‘˜π‘ βˆ’ π‘š 𝑀𝑛2 =



𝑀𝑒 βˆ’ 𝑀𝑛1 πœ‘



620 0.90 βˆ’ 576.76 = 112.13 π‘˜π‘ βˆ’ π‘š



𝑀𝑛2 = 𝑀𝑛2



π‘Ž = 213.96 π‘šπ‘š 𝐴𝑠1 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏



𝐴𝑠1 (276) = 0.85(27.6)(213.96)(300) 𝐴𝑠1 = 5456 π‘šπ‘š2



Note: 𝐴𝑠1 = 𝐴𝑠 π‘šπ‘Žπ‘₯ Solve for 𝑓′𝑠 : 𝑐 = π‘Žβ„π›½ = 251.71 π‘šπ‘š 1



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



251.71 βˆ’ 60 251.71 𝑓′𝑠 = 457 π‘€π‘ƒπ‘Ž > 𝑓𝑦 𝑓′𝑠 = 600



Compression steel yields



π‘ˆπ‘ π‘’ 𝑓′𝑠 = 𝑓𝑦 𝑀𝑛2 = 𝑇2 (𝑑 βˆ’ 𝑑′ )



112.13 π‘₯ 106 = 𝐴𝑠2 (276)(490 βˆ’ 60) 𝐴𝑠2 = 945 π‘šπ‘š2



Tension steel area, 𝐴𝑠 = 𝐴𝑠1 + 𝐴𝑠2 = πŸ”πŸ’πŸŽπŸ π’Žπ’ŽπŸ Compression steel: 𝑐′𝑠 = 𝑇2



𝐴′𝑠 𝑓𝑦 = 𝐴𝑠2 𝑓𝑦 𝐴′𝑠 = 𝐴𝑠2 𝐴′𝑠 = πŸ—πŸ’πŸ“ π’Žπ’ŽπŸ



PROBLEM 3.18 A rectangular beam has b=310 mm and d=460 mm. The beam will be designed to carry a service dead load of 230 kN-m and service live load of190 kn-m. Compression reinforcement if necessary will have its centroid 70 mm from extreme concrete fiber. Determine the required steel area. Use 𝑓′𝑐 = 30π‘€π‘ƒπ‘Ž and 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. SOLUTION 𝛽1 = 0.85 𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿



𝑀𝑒 = 1.4(230) + 1.7(190) 𝑀𝑒 = 645 π‘˜π‘ βˆ’ π‘š



Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ : Note: For rectangular beams, π‘π‘šπ‘Žπ‘₯ = 0.75 𝑐𝑏 π‘π‘šπ‘Žπ‘₯ = 0.75



600𝑑 = 203.94 π‘šπ‘š 600 + 𝑓𝑦



π‘Ž = 𝛽1 π‘π‘šπ‘Žπ‘₯ = 173.35 π‘šπ‘š 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ π‘Žβ„2) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(30)(173.35)(310)(460 βˆ’ 173.35/2) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 511.58 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90(511.58) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 460.42 π‘˜π‘ βˆ’ π‘š Since 𝑀𝑒 = 645 π‘˜π‘ βˆ’ π‘š > πœ‘π‘€π‘› π‘šπ‘Žπ‘₯, π‘π‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘œπ‘› 𝑠𝑑𝑒𝑒𝑙 𝑖𝑠 π‘›π‘’π‘π‘’π‘ π‘ π‘Žπ‘Ÿπ‘¦



b



d ’



ca



=



d– a/2



+



d– d’



𝑀𝑛1 = 𝑀𝑛 π‘šπ‘Žπ‘₯ = 511.58 π‘˜π‘ βˆ’ π‘š 𝑀𝑛2 =



𝑀𝑒 βˆ’ 𝑀𝑛1 πœ‘



𝑀𝑛2 =



645 βˆ’ 511.58 0.90



𝑀𝑛2 = 205.088 π‘˜π‘ βˆ’ π‘š 𝑐 = π‘π‘šπ‘Žπ‘₯ = 203.94 π‘šπ‘š π‘Ž = 173.35 π‘šπ‘š Tension Steel: 𝑇1 = 𝐢𝑐



𝑀𝑛2 = 𝑇2 (𝑑 βˆ’ 𝑑′ ) 𝐴𝑠 = 𝐴𝑠1 + 𝐴𝑠2



𝐴𝑠1 𝑓𝑦 = 0.85 𝑓′𝑐 π‘Ž 𝑏 𝐴𝑠1 (415) = 0.85(30)(173.35)(310) 𝐴𝑠1 = 3,302 π‘šπ‘š2 205.088 x 106 = 𝐴𝑠2 (415)(460 βˆ’ 70) 𝐴𝑠2 = 1,267 π‘šπ‘š2 𝐴𝑠 = 3,302 + 1,267 𝐴𝑠 = πŸ’, πŸ“πŸ”πŸ— π’Žπ’ŽπŸ



Compression steel: 𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑓′𝑠 = 600



203.94 βˆ’ 70 203.94



Compression steel does not yield, 𝑓′𝑠 = 394.06 π‘ƒπ‘Ž 𝐢′𝑠 = 𝑇2



𝐴′𝑠 𝑓′𝑠 = 𝐴𝑠2 𝑓𝑦 𝐴′ 𝑠 (394.06) = 1,267(415) 𝑨′𝒔 = πŸπŸ‘πŸ‘πŸ’ π’Žπ’ŽπŸ



PROBLEM 3.19 A floor system consists of a 100-mm concrete slab supported by continuous T beam with 9 m span, 1.2 m on centers as shown in Figure 3.10. Web dimensions, as determined by negative-moment requirements, are 𝑏𝑀 = 280 π‘šπ‘š, and 𝑑 = 500π‘šπ‘š. Concrete cover is 70 mm from the centroid of the bars. The beam is subjected to a maximum positive factored moment of 1080 kN-m. Use 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž, 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. Unit weight of concrete is 23.5 kN/π‘š3 . a) Calculate the required tension steel area at the point of maximum positive moment. b) Using the tributary area method, what is the uniform service dead load acting on the beam? c) Calculate the uniform service live load acting on the beam.



A



L=9m



B



L=9m



SOLUTION 𝑓′𝑐 = 21π‘€π‘ƒπ‘Ž 𝑏𝑀 = 280 π‘šπ‘š 𝑓𝑦 = 414 π‘€π‘ƒπ‘Ž 𝑑 = 500π‘šπ‘š 𝛽1 = 0.85 𝑑 β€² = 70 π‘šπ‘š Maximum factored moment, 𝑀𝑒 π‘šπ‘Žπ‘₯ = 1080 π‘˜π‘ βˆ’ π‘š



C



Effective flange width, 𝑏𝑓 : 1. L/4=9/4=2.25 m 2. 16t+𝑏𝑀 = 16(100) + 280 = 1.88 π‘š 3. π‘†π‘œπ‘ = 1.2π‘š Use 𝑏𝑓 = 1.2 π‘š Solve for πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ to determine if compression steel is required. Balanced condition: 𝑐=



600𝑑 600 + 𝑓𝑦



𝑐=



π‘Ž = 𝛽1 𝑐



π‘Ž = 0.85(295.57) π‘Ž = 251.23 π‘šπ‘š = 1200mm



t=100



d =500mm



600(500) 600 + 415



C



a



z



=280 mm 𝑧 =π‘Žβˆ’π‘‘



𝑧 = 251.23100 𝑧 = 151.23 π‘šπ‘š



𝐴1 = 1200 π‘₯ 100 = 120,000 π‘šπ‘š2 𝐴2 = 280(151.23) = 42,345 π‘šπ‘š2 𝐴𝑐𝑏 = 𝐴1 + 𝐴2 = 162,345 π‘šπ‘š2



Maximum condition: 𝐴𝑐 π‘šπ‘Žπ‘₯ = 0.75 𝐴𝑐𝑏



𝐴𝑐 π‘šπ‘Žπ‘₯ = 0.75(162,345) 𝐴𝑐 π‘šπ‘Žπ‘₯ = 121,759 π‘šπ‘š2 > 𝐴1 = 1200mm



d =500mm



t=100 C a



z T =280 mm



𝐴2 = 𝐴𝑐 π‘šπ‘Žπ‘₯ βˆ’ 𝐴1



𝐴2 = 121,759 βˆ’ 120,000 𝐴2 == 1,759 π‘šπ‘š2



𝐴2 = 𝑏𝑀 𝑧



1,759 = 280 𝑧 𝑧 = 6.28 π‘šπ‘š



𝑦1 = 𝑑 βˆ’ 𝑑/2



𝑦1 = 500 βˆ’ 100/2 𝑦1 = 450 π‘šπ‘š



𝑦2 = 𝑑 βˆ’ 𝑑 βˆ’ 𝑧/2



𝑦2 = 500 βˆ’ 100 βˆ’ 6.28/2 𝑦2 = 396.86 π‘šπ‘š



𝑀𝑛 π‘šπ‘Žπ‘₯ = 𝐢1 𝑦1 + 𝑐2 𝑦2



πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 0.90(976.36) πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ = 878.72 π‘˜π‘ βˆ’ π‘š



𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85 𝑓 β€² 𝑐 (𝐴1 𝑦1 + 𝐴2 𝑦2 ) 𝑀𝑛 π‘šπ‘Žπ‘₯ = 0.85(21)(120,000 π‘₯ 450) +1,759 π‘₯ 396.86 𝑀𝑛 π‘šπ‘Žπ‘₯ = 976.36 π‘˜π‘ βˆ’ π‘š



Since 𝑀𝑒 = 1,080 π‘˜π‘ βˆ’ π‘š > πœ‘π‘€π‘› π‘šπ‘Žπ‘₯ , the compression reinforcement must be provided.



=1200mm



d=500mm



430



500 mm



Z



d’=7 0



=820mm π‘Ž =𝑑+𝑧



π‘Ž = 100 + 6.28 π‘Ž = 106.28 π‘šπ‘š



𝑐 = π‘Ž/𝛽1



𝑐 = 106.28/0.85 𝑐 = 125.04



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑓′𝑠 = 600



125.04 βˆ’ 70 125.04



𝑓′𝑠 = 264.1 π‘€π‘ƒπ‘Ž < 𝑓𝑦 𝑀𝑛1 = 𝑀𝑛 π‘šπ‘Žπ‘₯ = 976.36 π‘˜π‘ βˆ’ π‘š 𝐴𝑠1 = 𝐴𝑠 π‘šπ‘Žπ‘₯ 𝑇1 = 𝐢1 + 𝐢2 𝐴𝑠1



𝐴𝑠1 𝑓𝑦 = 0.85𝑓 β€² 𝑐 (𝐴1 + 𝐴2 ) 𝐴𝑠1 (415) = 0.85(21)(120,000 + 1,759) = 5,237 π‘šπ‘š2



d-d’



d’=70



a



𝑀𝑛2 = 𝑀𝑛 βˆ’ 𝑀𝑛1



𝑀𝑛2 =



𝑀𝑒



βˆ’ 𝑀𝑛1



πœ‘ 1080



𝑀𝑛2 = 0.90 βˆ’ 976.36 𝑀𝑛2 = 223.64 π‘˜π‘ βˆ’ π‘š 𝑀𝑛2 = 𝑇2 (𝑑 βˆ’ 𝑑′ )



𝑀𝑛2 = 𝐴𝑠2 𝑓𝑦 (𝑑 βˆ’ 𝑑 β€² ) 223.64 π‘₯ 106 = 𝐴𝑠2 (415)(500 βˆ’ 70) 𝐴𝑠2 = 1,253 π‘šπ‘š2



Tension steel area, 𝐴𝑠 = 𝐴𝑠1 + 𝐴𝑠2 = πŸ”, πŸ’πŸ—πŸŽ π’Žπ’ŽπŸ Compression steel area: 𝐢′𝑠 = 𝑇2



𝐴′𝑠 𝑓′𝑠 = 𝐴𝑠2 𝑓𝑦 𝐴′ 𝑠 (264.1) = 1,253(415) 𝐴′𝑠 = 1,969 π‘šπ‘š2



b) Dead load=weight of concrete: Area=1.2(0.1)+0.28(0.47)=0.2516 π‘š3 𝑀𝑐 = 𝛾𝑐 π‘₯ π΄π‘Ÿπ‘’π‘Ž 𝑀𝑐 = 23.5(0.2516) 𝑀𝑐 = πŸ“. πŸ—πŸπŸπŸ” π’Œπ‘΅β„π’Ž



β†’ π‘‘π‘’π‘Žπ‘‘ π‘™π‘œπ‘Žπ‘‘



c) Uniform live load



5-32 mmΓΈA



7.6 m 3-32



L=9 mmΓΈ m 145 kN-m



5-32 5-32 B mmΓΈ mmΓΈ



7.6 m 3-32



L=9 mmΓΈ m



145 kN-m 202 kNm



5-32



CmmΓΈ



Maximum positive moment (at midspan) 𝑀𝑒 =



𝑀𝑒 𝐿2 24



𝑀𝑒 = 1.4𝑀𝐷 + 1.7𝑀𝐿



𝑀𝑒 (9)2 24 𝑀𝑒 = 320 π‘˜π‘/π‘š 1,080 =



320 = 1.4(5.9126) + 1.7𝑀𝐿 𝑀𝐿 = πŸπŸ–πŸ‘. πŸ‘πŸ• π’Œπ‘΅β„π’Ž β†’ 𝑙𝑖𝑣𝑒 π‘™π‘œπ‘Žπ‘‘



INVESTIGATION (ANALYSIS) PROBLEMS PROBLEM 3.20 The beam shown in Figure 3.11 is subjected to a maximum service dead load moment of 230 kN-m. Determine the service live load that the beam can carry. Use 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž π‘Žπ‘›π‘‘ 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž.



350 mm



60 mm



600 mm



540 mm



2-28 mm



4-36 mm



Figure 3.11 SOLUTION πœ‹ 𝐴𝑠 = 4 (36)2 π‘₯ 4 = 4,072 π‘šπ‘š2 πœ‹



𝐴′𝑠 = 4 (28)2 π‘₯2 = 1,232 π‘šπ‘š2



b



d’



ca



=



d – a/2+



d – d’



Assume all steel yield: 𝑓𝑠 = 𝑓′𝑠 = 𝑓𝑦 𝐴𝑠2 = 𝐴′𝑠 = 1,232 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 2,840 π‘šπ‘š2 𝐢𝑐 = 𝑇1



𝑐=



π‘Ž = 187.18 π‘šπ‘š 𝛽1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 0.85(20.7)π‘Ž(350) = 2,840(345) π‘Ž = 159.1 π‘šπ‘š



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



600 βˆ’ 187.18 187.18 𝑓𝑠 = 1.323 > 𝑓𝑦 π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑠𝑑𝑒𝑒𝑙 𝑦𝑖𝑒𝑙𝑑𝑠



𝑓𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



187.18 βˆ’ 60 187.18 𝑓𝑠 = 407.7 > 𝑓𝑦 compression steel yields



𝑓𝑠 = 600



𝑓𝑠 = 600



Assumption is correct, all steel yield. 𝑀𝑛 = 𝑀𝑛1 + 𝑀𝑛2 π‘Ž 𝑀𝑛 = 𝑇1 (𝑑 βˆ’ ) + 𝑇2 (𝑑 βˆ’ 𝑑′ ) 2 π‘Ž 𝑀𝑛 = 𝐴𝑠1 𝑓𝑦 (𝑑 βˆ’ ) + 𝐴𝑠2 𝑓𝑦 (𝑑 βˆ’ 𝑑 β€² ) 2 159.1 𝑀𝑛 = 2,840(345) (600 βˆ’ ) + 1,232(345)(600 βˆ’ 60) 2 𝑀𝑛 = 739.4 π‘˜π‘› βˆ’ π‘š πœ‘π‘€π‘› = 0.90(739.4) = 665.43 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 𝑀𝑒 = 1.4𝑀𝐷 + 1.7𝑀𝐿 665.43 = 1.4(230) + 1.7 𝑀𝐿 𝑀𝐿 = 𝟐𝟎𝟐. 𝟎𝟐 π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 3.21 A rectangular beam has the following properties: Width, b=400 mm 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž Effective depth, d=620 mm 𝑓′𝑐 = 22 π‘€π‘ƒπ‘Ž Tension bars, 3 pcs 25-mm-diameter d’=70 mm Determine the design strength of the beam and the safe service live load if the service dead load is 320 kN-m. SOLUTION πœ‹ 𝐴𝑠 = 10 π‘₯ (28)2 = 6,158 π‘šπ‘š2 4 πœ‹ 𝐴′𝑠 = 3 π‘₯ (25)2 = 1,473 π‘šπ‘š2 4 Assume all steel yields: 𝐴𝑠2 = 𝐴′𝑠 = 1,473 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 4,685 π‘šπ‘š2



b d’



ca d – a/2+



=



0.85𝑓 β€² 𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 𝑐 = π‘Žβ„π›½ = 305.8 π‘šπ‘š 1



0.85(22)π‘Ž(400) = 4,685(415) π‘Ž = 260 π‘šπ‘š



d – d’



π‘‘βˆ’π‘ = 616.5 π‘€π‘ƒπ‘Ž > 𝑓𝑦 𝑐 𝑐 βˆ’ 𝑑′ 𝑓′𝑠 = 600 = 463 π‘€π‘ƒπ‘Ž > 𝑓𝑦 𝑐 𝑓𝑠 = 600



(𝑦𝑖𝑒𝑙𝑑) (𝑦𝑖𝑒𝑙𝑑)



All steel yields. Assumption is correct 𝑀𝑛 = 𝑀𝑛1 + 𝑀𝑛2 𝑀𝑛 = 𝑇1 (𝑑 βˆ’ π‘Žβ„2) + 𝑇2 (𝑑 βˆ’ 𝑑′ ) 𝑀𝑛 = 𝐴𝑠1 𝑓𝑦 (𝑑 βˆ’ π‘Žβ„2) + 𝐴𝑠2 (𝑑 βˆ’ 𝑑 β€² ) 𝑀𝑛 = 4,685(415)(620 βˆ’ 260⁄2) + 1,473(415)(620 βˆ’ 70) 𝑀𝑛 = 1288.9 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(1288.9) = 1,160 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 𝑀𝑒 = 1.4 𝑀𝐷 + 1.7𝑀𝐿 1160 = 1.4(320) + 1.7𝑀𝐿 𝑀𝐿 = πŸ’πŸπŸ— π’Œπ‘΅ βˆ’ π’Ž PROBLEM 3.22 A 12-m long rectangular reinforced concrete beam is simply supported at its ends. The beam is provided with an addition support at the mid span. Width of beam is 300 mm and the overall depth is 450 mm. The beam is reinforced with 25-mm-diameter bars, four bars at the tension side and 2 bars at the compression side .Concrete protective coverings is 70 mm form the centroid of the bars. Concrete strength 𝑓′𝑐 = 30 π‘€π‘ƒπ‘Ž and steel yield 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž. Use 0.75 πœŒπ‘ = 0.023. a) Determine the depth of the compression block. b) Determine the nominal moment capacity of the beam. c) Determine the factored uniform load, including its own weight, the beam can carry. SOLUTION 𝛽1 = 0.85 𝑓′𝑐 = 30π‘€π‘ƒπ‘Ž 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž



300 mm 70 mm



πœ‹ (25)2 4 𝐴𝑠 = 1963 π‘šπ‘š2 πœ‹ 𝐴′𝑠 = 2 π‘₯ (25)2 4 𝐴′𝑠 = 982 π‘šπ‘š2 𝐴𝑠 = 4 π‘₯



Assuming all steel yields: 𝐴𝑠2 = 𝐴′𝑠 = 982 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 982 π‘šπ‘š2



450 mm



310 mm



380 mm



2-25 mm



4-25 mm 70 mm



𝐢𝑐 = 𝑇1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 0.85(30)π‘Ž(30) = 982(415) π‘Ž = 53.26 π‘šπ‘š



𝑐 = π‘Žβ„π›½ = 62.66 π‘šπ‘š < 70 π‘šπ‘š compression steel does not yield 1



Assuming tension steel yields and compression steel does not. 𝑇 = 𝐢𝑐 + 𝐢′𝑠



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓′𝑠 1963(415) = 0.85(30(0.85𝑐)(300) π‘βˆ’70 +982 π‘₯ 600 𝑐 𝑐 = 98.87 π‘šπ‘š



𝑓′𝑠 = 600 𝑓𝑠 = 600



98.86 βˆ’ 70 = 175.17 π‘€π‘ƒπ‘Ž < 𝑓𝑦 98.86



π‘‘βˆ’π‘ = 1,706 > 𝑓𝑦 (𝑦𝑖𝑒𝑙𝑑) 𝑐



π‘Ž = 𝛽1 𝑐 = πŸ–πŸ’. πŸŽπŸ‘ π’Žπ’Ž β†’ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑛 π‘ƒπ‘Žπ‘Ÿπ‘‘ π‘Ž



𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ π‘Žβ„2) + 𝐢𝑠 (𝑑 βˆ’ 𝑑 β€² ) 𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′ 𝑠 𝑓 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 𝑀𝑛 = πŸπŸ•πŸŽ. πŸ“πŸ– π’Œπ‘΅ βˆ’ π’Ž β†’ π‘Žπ‘ π‘›π‘€π‘’π‘Ÿ 𝑖𝑛 π‘π‘Žπ‘Ÿπ‘‘ 𝑏 πœ‘π‘€π‘› = 0.90𝑀𝑛 πœ‘π‘€π‘› = 243.53 π‘˜π‘ βˆ’ π‘š c) Maximum factored uniform load:



Factored load, A



B



C



By there-moment equation: 𝑀𝐴 𝐿1 + 2𝑀𝐡 (𝐿1 + 𝐿2 ) + 𝑀𝑐 𝐿2 +



6𝐴1 π‘ŽΜ…1 6𝐴2 π‘ŽΜ…2 + =0 𝐿1 𝐿2



𝑀𝐴 = 𝑀𝐢 = 0 6𝐴1 π‘ŽΜ…1 𝑀𝑒 𝐿1 3 = 𝐿1 4 6𝐴2 π‘ŽΜ…2 𝑀𝑒 𝐿1 3 = 𝐿2 4 𝑀𝑒 (6)3 𝑀𝑒 (6)3 0 + 2𝑀𝐡 (+6 +) + 0 + + =0 4 4 𝑀𝑒 = πŸ“πŸ’. 𝟏𝟐 π’Œπ‘΅/π’Ž



PROBLEM 3.23 (CE NOVEMBER 2010) A 6 meter long simply supported reinforced concrete beam has a width of 350mm and an overall depth of 470 mm. The beam is reinforced with 228 mm compression bars on top and 4-28 tension bars at the bottom, each located 70 mm from the extreme concrete fiber. Concrete strength 𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž, and steel yield strength 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž.Determine the following: a) Depth of compression blocks assuming both tension and compression steel yields. b) What is the ultimate moment capacity of the beam in kN-m? c) Determine the additional concentrated live load that can be applied at midspan if the dead load including the weight of the beam is 20 kN/m.



SOLUTION Given : 𝐿 = 6π‘š 𝑏 = 350 π‘šπ‘š 𝑑 = 400π‘šπ‘š 𝑑 β€² = 70 π‘šπ‘š



𝑓′𝑐 = 20.7 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž 𝑑𝑏 = 28 π‘šπ‘š πœ‹



Tension steel area 𝐴𝑠 = 4 (28)2 π‘₯ 4 = 2463 π‘šπ‘š2 πœ‹



Compression steel area, 𝐴′𝑠 = 4 (28)2 π‘₯ 2 = 132 π‘šπ‘š2 𝛽1 = 0.85 πœ‘ = 0.90 Assuming tension & compression steel yields: 𝐴𝑠2 = 𝐴′𝑠 = 1232 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 1232 π‘šπ‘š2 𝑐𝑐 = 𝑇1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 0.85(20.7)π‘Ž(350) = 1232(415) π‘Ž = πŸ–πŸ‘ π’Žπ’Ž β†’ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑛 π‘ƒπ‘Žπ‘Ÿπ‘‘ π‘Ž



𝑐 = π‘Ž/𝛽1



𝑐 = 83/0.85 𝑐 = 97.64 π‘šπ‘š



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



97.64 βˆ’ 70 97.64 𝑓′𝑠 = 170 π‘€π‘ƒπ‘Ž < 𝑓𝑦 𝑓′𝑠 = 600



Thus, compression steel does not yield.



Since compression steel does not yield, 𝑓′𝑠 = 600



π‘βˆ’π‘‘β€² 𝑐



Assuming tension steel yields: 𝐢𝑐 + 𝐢𝑠 = 𝑇𝑠 0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓′𝑠 = 𝐴𝑠 𝑓𝑦 0.85(20.7)(0.85𝑐)(350) + 1232 π‘₯ 600 𝑐 = 130.08 π‘šπ‘š π‘Ž = 𝛽1 𝑐 = 110.6 π‘šπ‘š 𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



𝑐 βˆ’ 70 = 2463(415) 𝑐



𝑓𝑠 = 600



400 βˆ’ 130.08 130.08



𝑓𝑠 = 1245 > 𝑓𝑦 (𝑦𝑖𝑒𝑙𝑑) 𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑓′𝑠 = 600



130.08 βˆ’ 70 130.08



𝑓′𝑠 = 277.11 π‘€π‘ƒπ‘Ž < 𝑓𝑦 π‘Ž 𝑀𝑛 = 𝑐𝑐 (𝑑 βˆ’ ) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 2 π‘Ž 𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ ) + 𝐴′ 𝑠 𝑓 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 2 𝑀𝑛 = 0.85(20.7)(110.6)(350)(400 βˆ’ 110.6⁄2) + 1232(277.11)(400 βˆ’ 70) 𝑀𝑛 = 347.33 π‘˜π‘ βˆ’ π‘š



Ultimate moment capacity= πœ‘π‘€π‘› = 0.90(347.33) Ultimate moment capacity= πœ‘π‘€π‘› = 312.6 π’Œπ‘΅ βˆ’ π’Ž β†’ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ 𝑖𝑛 π‘ƒπ‘Žπ‘Ÿπ‘‘ 𝑏



3 m



3 m



L=6 m 𝑀𝑒 = πœ‘π‘€π‘› = 312.6 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿



𝑀𝑒 = 1.4



𝑀𝐷 𝐿2 8



+ 1.7



20(6)2



𝑃𝐿 𝐿 4



312.6 = 1.4 8 + 1.7 𝑃𝐿 = πŸ•πŸ‘. πŸπŸ•πŸ“ π’Œπ‘΅



𝑃𝐿 (6)2 4



PROBLEM 3.24 A beam section is shown in Figure 3.12. The beam will be subjected to a maximum service dead load of 215 kN-m. What is the safe service live load moment for this beam? Use 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž π‘Žπ‘›π‘‘ 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž.



525mm 8 - 25mm



30 mm



650 mm



Figure 3.12



25 mm



360 mm



30 mm



360 mm d’



πœ‹



(25)2 4



𝑑′ = 30 +



πœ‹ 4



(25)2



d



1 = 42.5 π‘šπ‘š 2(25)



8 - 25mm



Effective depth to extreme tension bar: 1 𝑑𝑑 = 650 βˆ’ 30 βˆ’ = 607.5 π‘šπ‘š 2(25) Effective depth (to centroid of tension bar) 𝑑 = 650 βˆ’ 30 βˆ’ 25 βˆ’ 1/2(25) 𝑑 = 582.5 π‘šπ‘š 𝑀𝐷 βˆ’ 215 π‘˜π‘ βˆ’ π‘š 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž Assume all steel yields: 𝐴𝑠2 = 𝐴′𝑠 = 2,454 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 1,473 π‘šπ‘š2 𝐢𝑐 = 𝑇1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 0.85(21)π‘Ž(360) = 1.473(415) π‘Ž = 95.1 π‘šπ‘š



𝑐 = π‘Ž/𝛽1



𝑐 = 95.1/0.85 𝑐 = 111.9 π‘šπ‘š



𝑓′𝑠 = 600



π‘βˆ’π‘‘β€² 𝑐



𝑓′𝑠 = 600



111.9βˆ’42.5 111.9



30 mm



650 mm



Compression steel, 𝐴′𝑠 = 5 π‘₯ 𝐴′𝑠 = 2,454 π‘šπ‘š2



5- 25mm



25 mm



SOLUTION 𝛽1 = 0.85 Tension steel, 𝐴𝑠 = 8 π‘₯ 𝐴𝑠 = 3,927 π‘šπ‘š2



30 mm



𝑓′𝑠 = 372 π‘€π‘ƒπ‘Ž < 𝑓𝑦 Compression steel does not yield.



360 mm d’



25 mm



d



5-5-25mm 25mm



c



a d-a/2



d-d’



8 - 825mm 25mm



T



𝑡𝒐𝒕𝒆: π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘™π‘Žπ‘€π‘¦π‘’π‘Ÿπ‘  π‘œπ‘“ π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘Žπ‘Ÿπ‘  π‘€β„Žπ‘–π‘β„Ž π‘œπ‘π‘£π‘–π‘œπ‘’π‘ π‘™π‘¦ 𝑦𝑖𝑒𝑙. π‘‡β„Žπ‘’π‘ , π‘‘β„Žπ‘–π‘’π‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘  π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘‘β„Ž 𝑠𝑒𝑑 π‘’π‘žπ‘’π‘Žπ‘™ π‘‘π‘œ 𝑓𝑦 π‘Žπ‘›π‘‘ π‘‘β„Žπ‘–π‘’π‘Ÿ 𝑐𝑔 𝑖𝑠 π‘™π‘œπ‘π‘Žπ‘‘π‘’π‘‘ π‘Žπ‘‘ π‘‘β„Žπ‘’π‘–π‘Ÿ π‘”π‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘. 𝑇 = 𝐢𝑐 + 𝐢′𝑠



𝐴𝑠 𝑓𝑦 = 0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓′𝑠 π‘βˆ’π‘‘β€²



𝐴𝑠 𝑓𝑦 = 0.85 𝑓 β€² 𝑐 (𝛽1 𝑐)𝑏 + 𝐴′𝑠 π‘₯ 600 𝑐 3,927(415) = 0.85(21)(0.85𝑐)(360) π‘βˆ’42.5 +2,454 π‘₯ 600 𝑐 𝑐 = 122.38 π‘šπ‘š 𝑓′𝑠 = 600



π‘Ž = 𝛽1 𝑐



π‘βˆ’π‘‘β€² 𝑐



122.38βˆ’42.5



𝑓′𝑠 = 600 122.38 𝑓𝑠 = 391.64 π‘€π‘ƒπ‘Ž < 𝑓𝑦 π‘Ž = 0.85(122.38) π‘Ž = 104.03 π‘šπ‘š



π‘Ž 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ ) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 2 π‘Ž 𝑀𝑛 = 0.85 𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ ) + 𝐴′𝑠 𝑓 β€² 𝑠 (𝑑 βˆ’ 𝑑 β€² ) 2 104.03 𝑀𝑛 = 0.85(21)(104.03)(360)(582.5 βˆ’ ) 2 +2,454(391.64)(582.5 βˆ’ 42.5) 𝑀𝑛 = 873.68 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(873.68) πœ‘π‘€π‘› = 786.31 π‘˜π‘› βˆ’ π‘š 𝑀𝑒 = πœ‘ 𝑀𝑛



𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿 786.31 = 1.4(215) + 1.7(𝑀𝐿 ) 𝑀𝐿 = πŸπŸ–πŸ“. πŸ“ π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 3.25 A beam section is shown in Figure 3.13. The beam will be subjected to a maximum service dead load of 360 kN-m. What is the safe service live load moment for this beam? Use 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž π‘Žπ‘›π‘‘ 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž.



Compression steel, 𝐴′𝑠 = 2 π‘₯



𝐴′𝑠 = 982 π‘šπ‘š2



πœ‹ 4



(25)2



𝑑′ = 30 + 1⁄2(25) = 42.5 π‘šπ‘š



30 mm 2- 25mm



10 - 28mm



650 mm



(28) 4



2



28 mm



Tension steel, 𝐴𝑠 = 10 π‘₯ 𝐴𝑠 = 6,158 π‘šπ‘š2



𝛽1 = 0.85



πœ‹



Effective depth (to centroid of tension bars) 𝑑 = 650 βˆ’ 30 βˆ’ 28 βˆ’ 1/2(28) 𝑑 = 578 π‘šπ‘š 𝑀𝐷 = 360 π‘˜π‘ βˆ’ π‘š 𝑓′𝑐 = 21 π‘€π‘ƒπ‘Ž 𝑓𝑦 = 415 π‘€π‘ƒπ‘Ž



30 mm



Figure 3.13



320 mm 2 - 25mm



650 mm



d’



30 mm



28 mm



d



10 - 28mm



30 mm



Assume all steel yields: 𝐴𝑠2 = 𝐴′𝑠 = 982 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 5,176 π‘šπ‘š2 𝐢𝑐 = 𝑇1



0.85𝑓′𝑐 π‘Ž 𝑏 = 𝐴𝑠1 𝑓𝑦 0.85(21)π‘Ž(320) = 5,176(415) π‘Ž = 376.04 π‘šπ‘š



𝑐 = π‘Ž/𝛽1



𝑐 = 376.04/0.85 𝑐 = 442.4 π‘šπ‘š



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



𝑓′𝑠 = 600



442.4 βˆ’ 42.5 442.4



𝑓𝑠 = 222 π‘€π‘ƒπ‘Ž < 𝑓𝑦 Tension steel does not yield.



320 mm d’



10 - 28mm 825mm



𝑡𝒐𝒕𝒆: π‘‡β„Žπ‘’π‘Ÿπ‘’ π‘Žπ‘Ÿπ‘’ π‘‘π‘€π‘œ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  π‘œπ‘“ π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› π‘π‘Žπ‘Ÿπ‘  π‘€β„Žπ‘–π‘β„Ž β„Žπ‘Žπ‘£π‘’ π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘  𝑙𝑒𝑠𝑠 π‘‘β„Žπ‘Žπ‘› 𝑓𝑦 . π‘‡β„Žπ‘’π‘ , π‘‘β„Žπ‘–π‘’π‘Ÿ 𝑐𝑔 𝑖𝑠 π‘›π‘œπ‘‘ π‘™π‘œπ‘π‘Žπ‘‘π‘’π‘‘ π‘Žπ‘‘ π‘‘β„Žπ‘–π‘’π‘Ÿ π‘”π‘’π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘ π‘π‘’π‘›π‘‘π‘Ÿπ‘œπ‘–π‘‘. 𝑑1 = 650 βˆ’ 30 βˆ’ 14 = 606 π‘šπ‘š 𝑑2 = 650 βˆ’ 30 βˆ’ 28 βˆ’ 28 βˆ’ 14 = 550 π‘šπ‘š 𝐴𝑠𝑑1 = 𝐴𝑠𝑑2 = 5 π‘₯



πœ‹ (28)2 = 3,079 π‘šπ‘š2 4



𝑇1 + 𝑇2 = 𝐢𝑐 + 𝐢′𝑠 𝐴𝑠𝑑1 𝑓𝑠1 + 𝐴𝑠𝑑2 𝑓𝑠2 = 0.85 𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓𝑦 𝑑1 βˆ’ 𝑐 𝑑2 βˆ’ 𝑐 𝐴𝑠𝑑1 600 + 𝐴𝑠𝑑2 600 = 0.85𝑓′𝑐 π‘Ž 𝑏 + 𝐴′𝑠 𝑓𝑦 𝑐 𝑐 606 βˆ’ 𝑐 550 βˆ’ 𝑐 + 3,079 π‘₯ 600 𝑐 𝑐 = 0.85(21)(0.85𝑐)(320) + 982(415) 3,079 π‘₯ 600



𝑐 = 363.9 π‘šπ‘š π‘Ž = 𝛽1 𝑐 = 309.29 π‘šπ‘š



d-d’



c a



d-a/2



28 mm



5- 25mm 525mm



d



𝑓𝑠1 = 600



𝑑1 βˆ’ 𝑐 𝑐



𝑓𝑠2 = 600



𝑑2 βˆ’ 𝑐 𝑐



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



π‘Ž = 𝛽1 𝑐



𝑓𝑠1 = 600



606 βˆ’ 363.9 363.9



𝑓𝑠1 = 399.25 π‘€π‘ƒπ‘Ž < 𝑓𝑦 550 βˆ’ 363.9 𝑓𝑠2 = 600 363.9 𝑓𝑠2 = 306.9 π‘€π‘ƒπ‘Ž < 𝑓𝑦 363.9 βˆ’ 42.5 𝑓′𝑠 = 600 363.9 𝑓′𝑠 = 530 π‘€π‘ƒπ‘Ž > 𝑓𝑦 π‘Ž = 0.85(345.4) π‘Ž = 301.2 π‘šπ‘š



Solve for d: 𝑇1 = 𝐴𝑠𝑑1 𝑓𝑠1 𝑇2 = 𝐴𝑠2 𝑓𝑠2



𝑇1 = 3,079(399.25) 𝑇1 = 1,229.2 π‘˜π‘ 𝑇2 = 3,079 (306.9) 𝑇2 = 944.9 π‘˜π‘



𝑇 π‘₯ 𝑑 = 𝑇1 π‘₯ 𝑑1 + 𝑇2 π‘₯ 𝑑2 2,174.1 𝑑 = 1,229.2(606) + 944.9(550) 𝑑 = 581.66π‘š π‘Ž 𝑀𝑛 = 𝑐𝑐 (𝑑 βˆ’ ) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 2 π‘Ž 𝑀𝑛 = 0.85 𝑓′𝑐 π‘Ž 𝑏 (𝑑 βˆ’ ) + 𝐴′𝑠 𝑓𝑦 (𝑑 βˆ’ 𝑑′ ) 2 𝑀𝑛 = 0.85(21)(309.29)(320)(578 βˆ’ 309.29⁄2) + 982(415)(581.66 βˆ’ 42.5) 𝑀𝑛 = 974.07 π‘˜π‘› βˆ’ π‘š πœ‘π‘€π‘› = 0.90(947.07) = 876.65 π‘˜π‘ βˆ’ π‘š 𝑀𝑒 = πœ‘π‘€π‘›



𝑀𝑒 = 1.4 𝑀𝐷 + 1.7 𝑀𝐿 876.65 = 1.4(360) + 1.7(𝑀𝐿 ) 𝑀𝐿 = πŸπŸπŸ—. 𝟐𝟏 π’Œπ‘΅ βˆ’ π’Ž



PROBLEM 3.26 Calculate the design flexural strength of the T-beam shown in Figure 3.14. Use 𝑓′𝑐 = 27 π‘€π‘ƒπ‘Ž π‘Žπ‘›π‘‘ 𝑓𝑦 = 350π‘€π‘ƒπ‘Ž.



=600mm 25mm t=100mm 3-23mm



Figure 3.14



10mm stirrup 10-25mm 25mm



20mm =300mm



.



SOLUTION 𝛽1 = 0.85



πœ‹ (25)2 = 4,909 π‘šπ‘š2 4 πœ‹ 𝐴′𝑠 = 3 π‘₯ (22)2 = 1,140 π‘šπ‘š2 4 Flange area, 𝐴𝑓 = 600(110) = 66,000 π‘šπ‘š2 𝐴𝑠 = 10 π‘₯



Assume all steel yields: 𝑑 = 110 + 390 βˆ’ 20 βˆ’ 10 βˆ’ 25 βˆ’ 1⁄2(25) = 432.5π‘šπ‘š 𝑑′ = 25 + 10 + 1⁄2 (22) = 46π‘šπ‘š 𝐴𝑠2 = 𝐴′𝑠 = 1,140 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 3,768 π‘šπ‘š2



=390mm



Area of compression concrete: 𝐢𝑐 = 𝑇1



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠1 𝑓𝑦 0.85(27)𝐴𝑐 = 3,768(350) 𝐴𝑐 = 57,468 π‘šπ‘š2 < 𝐴𝑓 π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ π‘Ž < 𝑑 57,469 = π‘Ž(600) π‘Ž = 95.8 π‘šπ‘š < 𝑑 𝑐 = 95.8/0.85 𝑐 = 112.7 π‘šπ‘š



𝐴𝑐 = π‘Ž 𝑏𝑓 𝑐 = π‘Žβ„π›½1



𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



112.7 βˆ’ 46 112.7 𝑓′𝑠 = 355 π‘€π‘ƒπ‘Ž > 𝑓𝑦



𝑓′𝑠 = 600



(𝑦𝑖𝑒𝑙𝑑)



=600mm t=110mm



25mm



𝑓𝑠 = 600



π‘‘βˆ’π‘ 𝑐



10-25mm 1025mm =300mm



10mm stirrup 20mm



432.5 βˆ’ 112.7 112.7 𝑓𝑠 = 1,703 > 𝑓𝑦 (𝑦𝑖𝑒𝑙𝑑)



𝑓𝑠 = 600



d-d’



d



d-a/2



3-22mm 323mm



=390mm



25mm



Verify if the upper layer of tension steel yields 𝑑2 = 𝑑 βˆ’ 1⁄2(25) βˆ’ 1⁄29(25) = 407.5 π‘šπ‘š 𝑓𝑠2 = 600



𝑑2 βˆ’ 𝑐 = 1,567 π‘€π‘ƒπ‘Ž > 𝑓𝑦 𝑐



(𝑦𝑖𝑒𝑙𝑑)



All steel yields, assumption is correct: π‘Ž 𝑀𝑛 = 𝐢𝑐 (𝑑 βˆ’ ) + 𝐢 β€² 𝑠 (𝑑 βˆ’ 𝑑′ ) 2 π‘Ž 𝑀𝑛 = 0.85𝑓′𝑐 π‘Ž 𝑏𝑓 (𝑑 βˆ’ ) + 𝐴′ 𝑠 𝑓𝑦 (𝑑 βˆ’ 𝑑′ ) 2 𝑀𝑛 = 0.85(27)(95.8)(600)432.5 βˆ’ 46) + 1,140(350)(432.5 βˆ’ 46) 𝑀𝑛 = 661.5 π‘˜π‘ βˆ’ π‘š πœ‘π‘€π‘› = 0.90(661.5) πœ‘π‘€π‘› = πŸ“πŸ—πŸ“. πŸ’ π’Œπ‘΅ βˆ’ π’Ž PROBLEM 3.27 Calculate the design flexural strength of the T-beam shown in Figure 3.15. Use 𝑓′𝑐 = 25 π‘€π‘ƒπ‘Ž π‘Žπ‘›π‘‘ 𝑓𝑦 = 345 π‘€π‘ƒπ‘Ž.



=600mm 25mm t=100mm 2-22mm



Figure 3.15



10mm stirrup 10-28mm



25mm



20mm =315mm



=390mm



SOLUTION 𝛽1 = 0.85



πœ‹ (28)2 = 6,158 π‘šπ‘š2 4 πœ‹ 𝐴′𝑠 = 2 π‘₯ (22)2 = 760 π‘šπ‘š2 4 Flange area, 𝐴𝑓 = 600(100) = 60,000 π‘šπ‘š2 𝐴𝑠 = 10 π‘₯



Assume all steel yields: 𝑑 = 100 + 390 βˆ’ βˆ’20 βˆ’ 10 βˆ’ 28 βˆ’ 1⁄2(25) = 419.5 π‘šπ‘š 𝑑′ = 25 + 10 + 1⁄2(22) = 46 π‘šπ‘š 𝐴𝑠2 = 𝐴′𝑠 = 760 π‘šπ‘š2 𝐴𝑠1 = 𝐴𝑠 βˆ’ 𝐴𝑠2 = 5,397 π‘šπ‘š2 Area of compression concrete: 𝐢𝑐 = 𝑇1



𝐴𝑐 = 𝐴𝑓 + 𝐴𝑀 𝐴𝑀 = 𝑏𝑀 𝑧



0.85𝑓′𝑐 𝐴𝑐 = 𝐴𝑠1 𝑓𝑦 0.85(25)𝐴𝑐 = 5,397(345) 𝐴𝑐 = 87,626 π‘šπ‘š2 > 𝐴𝑓 π‘‘β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’ π‘Ž > 𝑑 87,626 = 60,00 + 𝐴𝑀 𝐴𝑀 = 27,626 π‘šπ‘š2 27,626 = 315 𝑧 𝑧 = 87.7 π‘šπ‘š



π‘Ž = 100 + 𝑧 = 187.7 π‘šπ‘š 𝑐 = π‘Žβ„π›½1 = 220.83 π‘šπ‘š 𝑓′𝑠 = 600



𝑐 βˆ’ 𝑑′ 𝑐



220.83 βˆ’ 46 220.83 𝑓′𝑠 = 475 π‘€π‘ƒπ‘Ž > 𝑓𝑦



𝑓′𝑠 = 600



(𝑦𝑖𝑒𝑙𝑑)