Athallah Winengku - Review Jurnal Internasional (Q2) [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

JURNAL INTERNASIONAL Judul



Design and Construction of Vertical Axis Wind Turbine (Q2)



Jurnal



International Journal of Mechanical Engineering and Technology (Q2)



Volume dan Halaman



Vol. 5, Hal 148-155



Tahun



2014



Penulis



Piyush Gulve, Dr. S.B. Barve



Reviewer



Athallah Winengku Raharjo (201910101008)



Tanggal



11 Maret 2021



Tujuan Penelitian



Penelitian ini bertujuan utama untuk menghasilkan desain Turbin Angin Sumbu Vertikal yang cukup “compact” untuk bisa di letakkan diatas atap rumah dengan biaya yang terjangkau dan mudah di buat serta di rawat. Dengan meneliti parameter yang mempengaruhi performa turbin angin, seperti swept area, power&power coefficient, tip speed ratio, ketebalan bilah, jumlah bilah, dan kekuatan bilah untuk menghindari faktor-faktor yang menurunkan bahkan merusak performa turbin angin.



Subjek Penelitian



Subjek penelitian ini adalah turbin angin sumbu vertikal Tipe -J dengan 3 bilah berbahan GI sheet (Seng) ber-frame kayu dengan panjang 1 m dan luas swept area sekitar 1 m2, yang dihubungkan langsung ke generator DC tanpa gearbox. Yang kemudian di observasi dan di uji kemampuannya.



Metode Penelitian



Metode yang digunakan pada penelitian ini adalah metode eksperimental, yakni dengan pengujian dan control langsung semua variabel uji dengan aspek-aspek pertimbangan lain untuk mendapat data yang di butuhkan. Dalam hal ini mendesain dan menguji turbin angin sumbu vertikal yang “compact”, efisien, dan terjangkau.



Definisi Operasional Variabel Depeden



Cara dan alat ukur mengukur variabel depeden



Variabel dependen adalah variabel yang terikat yang dimana variabel tersebut sudah ditentukan dan tidak dapat berubah lagi. Adapun variabel depeden dalam penelitian ini yaitu jenis turbin angin sumbu vertikal tipe -J yang digunakan dengan 3 bilah panjang 1 m, cup radius 0,126 m, material seng frame kayu, dan lebar airfoil 140 mm dengan wing chord 282 mm, serta generator DC tanpa gearbox yang digunakan. Cara menghitung perkiraan kemampuan turbin saat desain adalah menggunakan rumus Energi Kinetik serta pengembangan dari rumus tersebut dan Teori Betz. Untuk mengukur kemampuan turbin angin hasil desain adalah dengan alat pengukur kecepatan (rpm) tachometer,



pengukur voltase & arus (Voltmeter dan ampere meter), serta pengukur daya yang dihasilkan (watt meter). Alat diatas digunakan untuk melihat performa yang dihasilkan turbin angin sumbu vertika tipe -J ini.



Definisi Operasional Variabel independent



Langkah-langkah penelitian



Variabel independent yaitu variabel bebas atau boleh berubah dalam penelitian ini. Adapun variabel independent dalam penelitian ini yaitu kecepatan, voltase, ampere, dan daya yang dihasilkan turbin angin sumbu vertikal tipe-J ini. Lalu power&power coefficient, tip speed ratio juga termasuk dalam variabel ini. 1. Mempelajari tentang bagaimana cara kerja turbin angin sumbu vertikal itu sendiri. 2. Membaca literatur dan teori tentang bagaimana dapat mencapai efisiensi maksimum untuk turbin angin sumbu vertikal ini. 3. Mendata hal-hal yang dapat mempengaruhi efisiensi turbin angin sumbu vertikal ini, serta membandingkn dengan trubin-turbin angina lainnya. 4. Memilih jenis turbin angin sumbu vertikal yang akan digunakan, yakni tipe-J. 5. Melakukan riset tentang parameter apa saja yang perlu dipertimbangkan dalam mendesain dan membuat turbin angin sumbu vertikal tipe-J. 6. Menghitung dengan rumus hasil membaca literatur dan teori untuk memperhitungkan dimensi turbin yang tepat agar mendapat efisiensi maksimal. 7. Mulai desain seluruh bagian turbin dengan software desain 3D. 8. Mulai membuat turbin angin sumbu vertikal sesuai perhitungan dan hasil riset. 9. Setelah seluruh bagian turbin di rangkai, uji turbin untuk melihat performa dan efisiensi. 10. Mendiskusikan hasil pengujian dan membuat rencana ke depan, serta menulis kesimpulan dari seluruh penelitian yang dilakukan.



Hasil Penelitian



Dari penelitian ini dihasilkan bahwa, Turbin Angin Sumbu Vertika TipeJ setelah di kalkulasi dan diskusi urbin ini mendapat nilai efisiensi 23,3% dari expetasi secara teori sekitar 25% hal ini terjadi pengurangan karena kemungkinan sedikit kesalahan saat manufaktur dan gaya gesek yang dihasilkan turbin selama pengujian. Tapi untuk nilai efisiensi tersebut sudah sangat baik dan bisa di aplikasikan dalam skala industri jika sedikit di kembangkan kembali.



Kelebihan Penelitian



Kelebihan penelitian ini adalah seluruh langkah kerja, mulai dari perhitungan, Analisa, pengujian di jabarkan dan dijelaskan secara singkat, padat, dan jelas. Lalu peneitian ini sangat berguna bagi masa depan untuk renewable energy dan bahasa yang digunakan oun mudah dipahami.



Kekurangan Penelitian



Kekurangan penelitian ini reviewer sendiri belum menemukan kekurangan yang signifikan di dalamnya.



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



AND TECHNOLOGY (IJMET)



ISSN 0976 – 6340 (Print) ISSN 0976 – 6359 (Online) Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME: www.iaeme.com/IJMET.asp Journal Impact Factor (2014): 7.5377 (Calculated by GISI) www.jifactor.com



IJMET ©IAEME



DESIGN AND CONSTRUCTION OF VERTICAL AXIS WIND TURBINE Piyush Gulve,



Dr. S.B.Barve



Department of Mechanical Engineering, MIT College of Engineering, Pune, India-411038.



ABSTRACT The principle objective of this project is Rural Electrification via hybrid system which includes wind and solar energy. Our intention is to design a wind turbine compact enough to be installed on roof tops. So we decided to design a vertical axis wind turbine (VAWT) over Horizontal Axis Wind Turbine (HAWT). Advantages of VAWT over HAWT are compact for same electricity generation, less noise, easy for installation and maintenance and reacts to wind from all directions. The wind turbine designed to generate electricity sufficient enough for a domestic use. The electricity generated will be stored in the battery and then given to the load. This project emphasizes on electrification of remote areas with minimum cost where load shading still has to be done to meet with demand of urban areas. Nomenclature V- Air Velocity A - Turbine Swept area D - Rotor Diameter h - Rotor Height ρ - Air Density KE - Kinetic Energy ω - Angular Speed [rad/s], R - Rotor Radius [m] N - Number of Blades c - Blade Chord L - Blade length



148



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



1. INTRODUCTION Wind power devices are used to produce electricity, and commonly termed wind turbines. The orientation of the shaft and rotational axis determines the classification of the wind turbines. A turbine with a shaft mounted horizontally parallel to the ground is known as a horizontal axis wind turbine or (HAWT). A vertical axis wind turbine (VAWT) has its shaft normal to the ground.[1]



Fig 1: Configurations for shaft and rotor orientation The two configurations have instantly distinguishable rotor designs, each with its own favorable characteristics. Vertical-axis wind turbines (VAWT) can be divided into two major groups: those that use aerodynamic drag to extract power from the wind and those that use lift. The advantages of the VAWTs are that they can accept the wind from any direction. This simplifies their design and eliminates the problem imposed by gyroscopic forces on the rotor of a convectional machine as the turbine tracks the wind. The vertical axis of rotation also permits mounting the generator and drive train at ground level [2]. The disadvantages of this type of rotors is that it is quite difficult to control power output by pitching the rotor blades, they are not self – starting and they have low tip-speed ratio [3]. Horizontal – axis wind turbines (HAWT) are convectional wind turbines and unlikely the VAWT are not omnidirectional. As the wind changes direction, HAWTs must change direction with it. They must have some means for orienting the rotor with respect to the wind. 2. LITERATURE SURVEY 2.1 Theoretical Maximum Efficiency [1] High rotor efficiency is desirable for increased wind energy extraction and should be maximized within the limits of affordable production. Energy (P) carried by moving air is expressed as a sum of its kinetic energy [Equation (1)]: K E = ½ρAV3 Where, V - Air Velocity A – Turbine Swept area ρ- Air Density



(1)



A physical limit exists to the quantity of energy that can be extracted, which is independent of design. The energy extraction is maintained in a flow process through the reduction of kinetic energy 149



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



and subsequent velocity of the wind. The magnitude of energy harnessed is a function of the reduction in air speed over the turbine. 100% extraction would imply zero final velocity and therefore zero flow. The zero flow scenario cannot be achieved hence all the winds kinetic energy may not be utilised. This principle is widely accepted and indicates that wind turbine efficiency cannot exceed 59.3%. This parameter is commonly known as the power coefficient Cp, where max Cp = 0.593 referred to as the Betz limit . The Betz theory assumes constant linear velocity. Therefore, any rotational forces such as wake rotation, turbulence caused by drag or vortex shedding (tip losses) will further reduce the maximum efficiency. 2.2 Practical Efficiency In practice rotor designs suffer from the accumulation of minor losses resulting from: 1. Tip losses 2. Wake effects 3. Drive train efficiency losses 4. Blade shape simplification losses Comparison of Different Wind Turbines Table. 1: Comparison of wind turbines.



J- Type Vertical Axis Wind Turbine J type wind turbine is basically a drag type wind turbine. Our aim was to produce electricity at low cost. The procedure for other turbines especially lift type turbines was too expensive and hence this led us to choose the drag type wind turbines with less complexities involved in construction. 150



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



Wind Turbine Design Parameters: [4] The wind turbine parameters considered in the design process are: i. ii. iii. iv. v. vi.



Swept area Power and power coefficient Tip speed ratio Blade chord Number of blades Solidity



3. DESIGN CALCULATIONS 3.1 Power calculations The wind turbine works on the principle of converting kinetic energy of the wind to mechanical energy. The kinetic energy of any particle is equal to one half its mass times the square of its velocity, K.E=½mv2.………………….. (1) Where, K.E = kinetic energy m = mass v = velocity, M is equal to its Volume multiplied by its density ρ of air M = ρAV ………………….. (2) Substituting eq. (2) in eq. (1) We get, K E = ½ρAV.V2 K E = ½ρAV3watts. Where, A= swept area of turbine. ρ= density of air (1.225 kg/m3) V=wind velocity. For 35 Watt power, calculate design parameters of turbine, P=35 watts. Considering turbine efficiency as 25% and generator efficiency 85%, P = 35/ (0.25*0.85) P= 166 watts. = ½ρAV3 For wind velocity 6.67 m/s (18mph) Density of air (1.225 kg/m3) 166 = ½*1.125*A*(6.67)3 A= 1 Sq.m A = D*H (Sq.m) D= diameter of the blade Taking diameter as 1 meter, height of turbine can be calculated as 151



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



H=A/D =1/1 H =1m. Diameter and height of wind turbine are 1m and 1m2. Design of Turbine Blades [6] Wing width= diameter*0.14 = 1*0.14 = 0.140m = 140 mm Wing chord = circumference*.09 = π*1*.09 = 0.282m = 282mm



Fig 3: Blade parameters Block diagram



Fig. 4: Block Diagram



152



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



4. CAD DESIGN Wooden frame



Blades



Exploded view



153



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



Assembly



5. DESIGN SPECIFICATIONS Table.2: Turbine specifications Rated power 35W Cut in speed 3 m/s Rated speed 6.67 m/s Rotor diameter 1m Swept area 1 m^2(1 m*1 m) Gear box type None gear box, direct given to generator Brake Not required



Wind rotor



Generator Turbine blade



Blade dimension Controller



Generator type Electric Transmission Blade type Blade number Blade material Hub material Length Cup radius PC16877A



DC generator Brushless J-type(drag) 3 GI sheet with Wooden frame MS 1m 0.126 m



Observation Table



Sr.No.



Speed (rpm)



1 2 3 4 5



30 39 48 70 97



Table 3: Observation table Voltage Current (Volts) (Ampere) 4.39 4.64 5.73 6.14 7.16



1.86 2.28 2.28 2.98 3.64



154



Power (Watts) 8.16 10.61 13.06 17.78 26.39



International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 10, October (2014), pp. 148-155 © IAEME



6. RESULT DISCUSSION The results obtain were up to expectations. While in theoretical design we considered the efficiency of turbine to be 25%, but we got efficiency as 23.3%. The efficiency was decreased due various manufacturing errors and friction losses 7. CONCLUSION Our work and the results obtained so far are very encouraging and reinforce the conviction that vertical axis wind energy conversion systems are practical and potentially very contributive to the production of clean renewable electricity from the wind even under less than ideal siting conditions this project will be helpful in rural areas where the electricity supply is scarce. Also in most cities, bridges are a faster route for everyday commute and in need of constant lighting makes this an efficient way to produce energy 8. FUTURE SCOPE The efficiency can be increased by precise fabrication of prototype and also by designing the blades of the turbine more aerodynamically and use simulation software like CFD. The development of effective alternators and dynamos can be used to harness wind energy from relatively small winds. The use of materials like Acrylic Plastic Sheets can be used to develop low cost VWAT. REFERENCES 1. 2. 3. 4.



5. 6. 7.



8.



9.



Peter J. Schubel and Richard J. Crossley, Wind Turbine Blade Design, Energies, 2012, 5, 3425-3449. W. Denson, The history of reliability prediction, failure causes for electronic systems, IEEE Trans Reliab, 1998, Vol. 47, p. 325. P. Gipe, Wind Power, James & James, London, 2004, p. 85-88. Javier Castillo, Small-scale Vertical Axis Wind Turbine Design Bachelor’s Thesis, December 2011, Degree program in Aeronautical Engineering, Tampereen ammattikorkeakoulu Tampere University of Applied Sciences. www.windgenkits.com www.windstuffnow.com T. Vishnuvardhan and Dr. B. Durga Prasad, “Finite Element Analysis and Experimental Investigations on Small Size Wind Turbine Blades”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp. 493 - 503, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. M.Z.I.Sajid, Dr. K.Hema Chandra Reddy and Dr. E.L.Nagesh, “Design of Vertical Axis Wind Turbine for Harnessing Optimum Power”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 4, Issue 2, 2013, pp. 172 - 177, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. Navin Kumar Kohli and Eshan Ahuja, “Performance Prediction in HAWT Wind Power Turbine”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 2, Issue 2, 2011, pp. 14 - 24, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359.



155