Bab II (Contoh Proposal Skripsi Jembatan Baja) [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

4



BAB 2. TINJAUAN PUSTAKA 2.1 Pengertian Umumnya jembatan merupakan suatu sarana transportasi yang berfungsi untuk menunjang arus lalu lintas dengan baik. Proses



perencanaan



jembatan



pun



sebaiknya



turut



mempertimbangkan data-data primer dan sekunder maupun berbagai aspek yang diperlukan seperti; (1) Aspek lalu lintas, (2) Aspek teknis, (3) Aspek estetika. (Supriyadi dan Muntohar, 2007:24). Salah satu tipe bentuk jembatan adalah jembatan rangka baja. Menurut (Nasution, 2012:11) jembatan rangka baja (truss bridge) merupakan struktur jembatan yang terdiri dari rangkaian profil batang-batang baja dan dihubungkan satu sama lain dengan pelat buhul, pengikat paku keling, baut atau las. Selain itu, jenis jembatan ini hanya memikul gaya dalam aksial (normal) tekan atau tarik, berbeda dengan jembatan gelagar lainnya yang memikul gaya-gaya momen lentur dan gaya lintang. 2.1.1 Jembatan Rangka (Truss Bridge) Menurut Satyarno (dalam Setiawan et al, 2015) jembatan rangka dibuat dari struktur rangka yang biasanya terbuat dari bahan baja dan dibuat dengan menyambung beberapa batang dengan las atau baut yang membentuk pola-pola segitiga. Jembatan rangka biasanya digunakan untuk bentang 20 meter sampai dengan 375 meter. Ada banyak tipe jembatan rangka yang dapat digunakan diantaranya sebagai berikut, seperti ditunjukkan pada Gambar 2.1 :



5



(a) Baltimore (Pratt) Truss



(b) Pennsylvania (Pratt) Truss



(c) Warren Truss



(d) Subdivided Warren Truss



(e) Howe Truss



(f) Wichert Truss



(g) Cantilever Through Truss



(h) Cantilever Through Truss



Gambar 2.1. Tipe-tipe Jembatan Rangka (Sumber : Satyarno, 2003)



2.1.2 Material Baja. Menurut menggunakan



Nasution



(2012:4)



material



rangka



perencanaan baja



memiliki



struktur berbagai



keuntungan dalam pembangunan jembatan bila dibandingkan dengan material beton dan kayu, antara lain : 1) Baja mempunyai kekuatan dan keliatan yang tinggi;



6



2) Ada jenis baja yang tahan terhadap cuaca, bahkan tidak perlu dicat; 3) Dari segi kekuatannya, bahan baja lebih murah dari beton 4) 5) 6) 7) 8)



ataupun



kayu,



sebab



dengan



kekuatannya



memerlukan volume bahan lebih sedikit; Rendahnya biaya pemasangan; Jadwal konstruksi yang lebih cepat; Tingkat keselamatan kerja tinggi; Mudah dalam pemasangan; Elemen struktur dapat dibuat di pabrik, dan dapat



dilakukan secara besar-besaran; 9) Dapat dilakukan bongkar pasang dengan cepat, tanpa ada bahan terbuang; 10) Membutuhkan ruang kerja yang lebih sempit; 11) Dapat mengikuti bentuk-bentuk arsitektur; 12) Ramah lingkungan, dapat menggantikan posisi kayu sebagai bahan konstruksi. Selain berbagai kelebihan yang telah disebutkan di atas, menurut Setiawan (2008:2) material baja juga memiliki beberapa kekurangan, terlebih dari segi pemeliharaan. Bagi konstruksi baja yang berhubungan langsung dengan air maupun udara harus dicat secara periodik. Selain itu, perlindungan dari bahaya kebakaran pun perlu ditanggapi secara serius, sebab temperatur yang cukup tinggi akan menyebabkan penurunan kekuatan material baja secara drastis. Di samping itu, material baja juga merupakan



konduktor



panas



yang



baik



sehingga



dapat



menyebabkan nyala api dalam suatu bangunan menyebar lebih cepat. Kelemahan lain dari stuktur baja adalah masalah tekuk yang merupakan fungsi dari kelangsingan penampang. Setiawan (2008:17) menjelaskan lebih lanjut mengenai sifaisifat mekanik dari baja yang biasa digunakan dalam struktur dan mengklasifikasikannya sebagai berikut : a. Baja karbon.



7



Baja karbon terbagi menjadi tiga kategori yang didasarkan pada presentase kandungan karbonnya, yaitu; (1) Baja karbon rendah (C = 0,03-0,35%); (2) Baja karbon medium (C = 0,35-0,50%), dan; (1) Baja karbon tinggi (C = 0,55-1,70%). b. Baja paduan rendah mutu tinggi. Baja paduan rendah mutu tinggi (high-strength lowalloy steel/ HSLA) memiliki tegangan leleh yang berkisar antara 290-550 MPa dengan tegangan putus (fu) antara 415-700 MPa. c. Baja paduan. Baja paduan rendah (low alloy) dapat ditempa dan dipanaskan untuk memperoleh tegangan leleh antara 550-760 MPa. 2.2 Tinjauan Umum Saat ini di Indonesia, perencanaan jembatan jalan raya menggunakan peraturan baru yaitu BMS (Bridge Management System) 1992 yang merupakan hasil kerjasama antara DPU-RI dengan Australian International Development Assistance Bureau yang



mempunyai



konsep



desain



kekuatan



batas



(Load



Resistance and Factor Design). Beberapa



literatur



yang



dipakai



untuk



menunjang



perhitungan Perencanaan Jembatan Rangka Baja ini nantinya adalah 1. BMS (Bridge Management System) 1992; 2. SNI 03-1729-2002 Tata Cara Perencanaan Struktur Baja untuk Bangunan Gedung; 3. RSNI T-02-2005 Standar Pembebanan untuk Jembatan; 4. RSNI T-03-2005 Perencanaan Struktur Baja untuk Jembatan. 2.2.1 Pembebanan Struktur dengan BMS



8



Konsep desain struktur baru ini pertama kali diperkenalkan di Amerika pada tahun 1986 dengan terbitnya AISC-LRFD. Di Indonesia khususnya untuk desain jembatan, konsep tersebut mulai dipakai tahun 1992 dengan ditandainya kerja sama antara Dinas



Pekerjaan



Umum



dengan



Australian



International



Development Assistance Bureau dengan keluarnya Peraturan Perencanaan Teknik Jembatan atau lebih dikenal dengan nama Bridge Management System (BMS 1992). Menurut para ahli, konsep ini lebih rasional karena antara lain menggunakan angka keamanan (faktor beban) yang berbeda untuk setiap macam beban, dan kekuatan penampang (faktor resistensi/ reduksi) yang berbeda untuk setiap kondisi pembebanan. Konsep ini merupakan teori kekuatan batas (Limit State Design) yakni perencanaan pada pembebanan sesaat sebelum



terjadi



keruntuhan



dengan



batasan



mencapai



tegangan leleh (σy), sedangkan untuk analisa strukturnya dapat dipakai analisa elastis (jika



penampang profil baja tidak



kompak) dan analisa plastis (jika penampang profil baja kompak). 2.2.2 Pembebanan Struktur Berdasarkan



peraturan



RSNI



T-02-2005



(2005:3),



diperkirakan terdapat dua kategori aksi berdasarkan jangka waktu beban bekerja bila dibandingkan dengan umur rencana jembatan : a. Aksi tetap. Merupakan aksi yang bekerja sepanjang waktu dan bersumber pada sifat bahan, cara jembatan dibangun, dan



bangunan



jembatan. b. Aksi transien.



lain



yang



mungkin



menempel



pada



9



Merupakan aksi yang bekerja dengan jangka waktu yang pendek, walaupun mungkin seringkali terjadi. Setelah itu, dalam RSNI T-02-2005 (2005:5) dijelaskan lebih lanjut



mengenai



macam-macam



beban



yang



kemudian



dibedakan mejadi : 1. Beban tetap; 2. Beban lalu lintas; 3. Beban lingkungan. 2.2.2.1 Beban Tetap. 1. Berat Sendiri Berat sendiri dari bagian bangunan adalah berat dari bagian tersebut dan elemen-elemen struktural lain yang dipikulnya. Termasuk dalam hal ini adalah berat bahan dan bagian jembatan yang merupakan elemen struktural, ditambah dengan elemen non-struktural yang dianggap tetap. Berikut tabel berat isi untuk beban mati :



Tabel 2.1 Berat Isi untuk Beban Mati (kN/m3) No .



Berat/ Satuan Bahan



isi (kN/m3)



Kerapatan Masa (kg/m3)



Lap. 1



permukaan



22,0



2.240



17,2



1.760



22,0 22,0 - 25,0



2.240 2.240 - 2.560



25,0 - 26,0



2.560 - 2.640



beraspal Timbunan 2



tanah



3 4



dipadatkan Aspal beton Beton Beton



5



prategang



10



6 7 8 9 10



Beton bertulang Baja Kayu (keras) Air murni Besi tempa



23,5 - 25,5



2.400 - 2.600



77,0 11,0 9,8 75,5



7.850 1.120 1.000 7.680



Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan) 2. Beban Mati Tambahan/ Utilitas. Beban mati tambahan adalah berat seluruh bahan yang membentuk suatu beban pada jembatan yang merupakan



elemen



non-struktural



dan



mungkin



besarnya berubah selama umur rencana. Beban mati tambahan diantaranya : a. Perawatan permukaan khusus b. Pelapisan ulang dianggap sebesar 50 mm aspal beton



(hanya



digunakan



dalam



kasus



menyimpang dan dianggap nominal 22 kN/m3); c. Sandaran, pagar pegangan, dan penghalang beton; d. Tanda-tanda; e. Perlengkapan



umum,



seperti



pipa



air



dan



penyaluran (dianggap kosong atau penuh). 3. Pengaruh Penyusutan dan Rangkak. Susut dan rangkak menyebabkan momen, geser, dan reaksi ke dalam komponen tertahan. Penyebab gaya-gaya tersebut umumnya diperkecil dengan retakan beton dan baja leleh. Pengaruh ini dihitung dengan menggunakan beban mati dari jembatan.



Apabila



rangkak dan penyusutan bisa mengurangi pengaruh muatan



lainnya,



maka



harga



dari



rangkak



dan



penyusutan tersebut harus diambil minimum (misalnya pada waktu transfer dari beton prategang). 4. Pengaruh Prategang.



11



Prategang akan menyebabkan pengaruh sekunder pada



komponen-komponen



bangunan



statis



tidak



yang



tentu.



terkekang



Pengaruh



pada



sekunder



tersebut harus diperhitungkan baik pada batas daya layan



ataupun



diperhitungkan sesudah



batas



ultimit.



Prategang



sebelum



(selama



pelaksanaan)



kehilangan



tegangan



dalam



harus dan



kombinasinya



dengan beban-beban lainnya. 5. Tekanan Tanah Tekanan tanah horizontal akibat beban lalu lintas vertikal dianggap setara dengan beban tanah setebal 0,6 m yang bekerja secara merata pada bagian tanah yang dilewati oleh beban lalu lintas tersebut. Berat tanah vertikal dapat diambil dari tabel berikut : Tabel 2.2 Berat Tanah Vertikal Tanah Tanah dipadatkan - Timbunan tanah



Berat Tanah Nominal (kN/m3) 17,2



dipadatkan Tabel 2.2 Berat Tanah Vertikal (Lanjutan) Tanah Tanah tidak kohesif - Kerikil lepas - Kerikil kepasiran - Kerikil kelempungan - Pasir kasar - Pasir kelanauan Tanah kohesif - Lempung plastik - Lempung lembek



Berat Tanah Nominal (kN/m3) 16-19 18-20 21-22 17-20 15-17 16-19 17-20



12



-



Lempung teguh Lempung kenyal Lempung organik Gambut



18-21 21-22 14-17 10,5-14



2.2.2.2 Beban Lalu Lintas 1. Lajur lalu Lintas Rencana. Lajur lalu lintas Rencana harus mempunyai lebar 2,75 m. Lajur lalu lintas rencana harus disusun sejajar dengan sumbu memanjang jembatan. Jumlah maksimum lajur lalu lintas yang digunakan untuk berbagai lebar jembatan bisa dilihat dalam Tabel 2.3 berikut : Tabel 2.3 Jumlah Lajur Lalu Lintas Rencana Jumlah Lajur



Tipe



Lebar Jalur Kendaraan



Jembatan



(m)



Satu lajur Dua arah,



4,00 - 5,00



Rencana (n1) 1



5,50 - 8,25



2



11,30 - 15,00



4



8,25 - 11,25



3



11,30 - 15,00



4



15,10 - 18,75



5



18,80 - 22,50



6



tanpa median



Banyak arah



Lalu Lintas



Untuk jembatan tipe lain, jumlah lajur lalu lintas rencana harus ditentukan oleh instansi yang berwenang. Lebar jalur kendaraan adalah jarak minimum antara kerb atau rintangan untuk satu arah atau jarak antara kerb/ rintangan/ median dengan median untuk banyak arah. Lebar minimum yang aman untuk dua-lajur kendaraan adalah 6.0 m. Lebar jembatan antara 5,0 m sampai 6,0 m harus dihindari oleh karena hal ini akan memberikan kesan kepada pengemudi seolah-olah memungkinkan untuk menyiap. Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan)



13



2. Beban Lajur "D". Beban lalu lintas untuk rencana jembatan jalan raya terdiri dari pembebanan lajur “D” dan pembebanan truk “T”. Pembebanan lajur “D” ditempatkan melintang pada lebar penuh dari jalur lalu lintas pada jembatan dan



menghasilkan



pengaruh



pada



jembatan



yang



ekuivalen dengan rangkaian kendaraan sebenarnya. Jumlah total pembebanan lajur “D” yang ditempatkan tergantung pada lebar jalur pada jembatan. Beban lajur "D" terdiri dari beban tersebar merata (BTR) yang digabung dengan beban garis (BGT) seperti terlihat dalam Gambar 2.2 berikut :



Gambar 2.2 Beban lajur "D" Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan)



a) Beban terbagi rata (BTR) mempunyai intensitas q kPa,



di



mana



besarnya



q



tergantung



pada



panjang total yang dibebani. Adapun besar beban tersebut adalah sebagai berikut : L ≤ 30 mq



=



9,0



kPa............................................ 2.1 L ≥ 30 mq = 9,0 ( 0,5 + 1 5 / L ) kPa..................



2.2



14



di mana : q = intensitas beban terbagi rata (BTR) dalam arah memanjang jembatan. L = panjang total jembatan yang dibebani. b) Beban garis (BGT) dengan intensitas p kN/m harus ditempatkan tegak lurus terhadap arah lalu lintas pada jembatan.



Besarnya intensitas p



adalah 49,0 kN/m.



a



intensitas beban lajur "D" untuk "b ≤ 5,5 meter"



)



b



intensitas beban lajur "D" untuk "b > 5,5 meter"



) b



c



penempatan alternatif intensitas beban lajur "D"



)



untuk "b > 5,5 meter"



Gambar 2.3 Penyebaran pembebanan pada arah melintang Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan)



3. Pembebanan Truk "T". Pembebanan truk “T” adalah kendaraan berat



15



tunggal



(semitriller)



dengan



tiga



gandar



yang



ditempatkan dalam kedudukan jembatan pada lajur lalu lintas rencana. Tiap gandar terdiri dari dua pembebanan bidang kontak yang dimaksud agar mewakili pengaruh roda kendaraan berat. Hanya satu truk “T” yang boleh ditempatkan per-spasi lajur lalu lintas rencana. Bila dibandingkan, umunya pembebanan “D” akan menentukan untuk bentang sedang sampai panjang dan pembebanan



“T”



pendek



sistem



dan



akan



menentukan



lantai.



untuk



Pembebanan



beban



truk



"T"



mempunyai susunan dan berat as seperti terlihat dalam Gambar 2.4 berikut :



Gambar 2.4. Pembebanan truk "T" (500 kN) Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan)



Berat dari masing-masing as disebarkan menjadi 2 beban merata sama besar yang merupakan bidang kontak antara roda dengan permukaan lantai. Jarak antara 2 as tersebut bisa diubah-ubah antara 4,0 m sampai 9,0 m untuk mendapatkan pengaruh terbesar pada arah memanjang jembatan. Hanya satu truk yang



16



harus ditempatkan dalam tiap lajur lalu lintas rencana untuk panjang penuh dari. Beban truk “T” harus ditempatkan ditengah lajur lalu lintas. Lajur-lajur ini ditempatkan dimana saja antara kerb. 4. Faktor Beban Dinamis (FBD). Untuk pembebanan lajur "D", faktor beban dinamis (FBD) merupakan hasil interaksi antara kendaraan yang bergerak dengan jembatan.



Untuk perencanaan, FBD



dinyatakan



statis



bentang



sebagai



beban



menerus



panjang



ekuivalen.



bentang



Untuk



ekuivalen



LE



diberikan dengan rumus : LE



=



Lav Lmax ............................................................ di mana :



√ Lav Lmax 2.3.



LE



= panjang bentang ekuivalen



Lav



= panjang bentang rata-rata dari kelompok bentang



Lma x



menerus. = panjang



yang



disambungkan



bentang



secara



maksimum



dalam



kelompok bentang yang disambung secara



menerus. Untuk pembebanan truk "T", faktor beban dinamis (FBD) diambil 30%. Untuk bagian bangunan bawah dan fondasi yang berada dibawah garis permukaan, harga FBD harus diambil sebagai peralihan linier dari harga pada



garis



permukaan



tanah



sampai



nol



pada



kedalaman 2 m. 5. Gaya Rem. Pengaruh gaya rem dan traksi yang ditinjau untuk kedua lajur lalu lintas harus diperhitungkan sebesar 5% dari beban lajur "D" (rumus 2.1.) yang dianggap ada pada semua jalur lalu lintas tanpa dikalikan dengan



17



faktor beban dinamis dan dalam satu jurusan. Gaya rem tersebut dianggap bekerja horisontal dalam arah sumbu jembatan dengan titik tangkap setinggi 1,8 m di atas permukaan lantai kendaraan. 6. Pembebanan untuk Pejalan Kaki. Intensitas beban pejalan kaki untuk jembatan jalan raya tergantung pada luas beban yang dipikul oleh unsur yang direncanakan. Bagaimanapun elemen dari trotoar atau jembatan penyeberangan yang langsung memikul pejalan kaki harus direncanakan untuk beban nominal 5 kPa. Bila memungkinkan untuk dilewati kendaraan ringan atau ternak tidak maka, trotoar juga harus direncanakan agar dapat menahan beban terpusat 20 kN. 7. Beban Tumbukan pada Penyangga Jembatan. Penyangga jembatan dalam daerah lalu lintas harus direncanakan agar menahan tumbukan sesaat atau dilengkapi dengan penghalang pengaman yang khusus direncanakan sebagai berikut : a) Tumbukan



kendaraan



diambil



sebagai



beban



statis sebesar 100 kN pada 10o terhadap garis pusat jalan pada tinggi 1,8 m di atas permukaan jalan; b) Pengaruh



tumbukan



kereta



api



dan



kapal



ditentukan oleh yang berwenang dengan relevan. 2.2.2.3 Beban Lingkungan. Pada perencanaan bangunan atas dari suatu jembatan, beban



lingkungan



yang



berpengaruh



dalam



perhitungan



nantinya yaitu, beban angin dan beban gempa. Menurut RSNI T02-2005 (2005:33) pasal 7.6. gaya angin pada bangunan atas tergantung pada luas ekuivalen diambil sebagai luas padat jembatan dalam arah tegak lurus sumbu memanjang jembatan.



18



Untuk jembatan rangka luas ekuivalen ini diambil 30% luas yang dibatasi oleh unsur rangka terluar. Gaya nominal ultimit dan daya layan jembatan akibat angin tergantung kecepatan angin rencana seperti berikut : TEW



=



0,0006



(VW)2



CW



[ kN ]............................................



Ab 2.4.



Angin harus dianggap bekerja secara merata pada seluruh bangunan atas. Apabila suatu kendaraan sedang berada di atas jembatan, beban garis merata tambahan arah horisontal harus diterapkan pada permukaan lantai seperti diberikan dengan rumus berikut : TEW



=



0,0012



(VW)2



CW



[ kN ]............................................



Ab 2.5.



di mana : TEW VW



= gaya nominal ultimit jembatan akibat angin. = kecepatan angin rencana (m/s) untuk keadaan



CW



batas yang ditinjau. = koefisien seret; untuk bangunan atas rangka nilai,



Ab



CW = 1,20. = Luas koefisien bagian samping jembatan (m2). Tabel 2.4 Koefisien Seret CW.



Tipe Jembatan Bangunan atas masif; (1), (2)



CW



b/d = 1,0



2,10 (3)



b/d = 2,0



1,50 (3)



b/d ≥ 6,0 Bangunan atas rangka



1,25 (3) 1,20



di mana : b = lebar keseluruhan jembatan dihitung dari sisi luar sandaran. d = tinggi bangunan atas, termasuk tinggi bagian sandaran yang masif. Untuk harga antara dari b/d bisa diinterpolasi linier. Apabila



19



bangunan atas mempunyai superelevasi, C W harus dinaikkan sebesar 3 % untuk setiap derajat superelevasi, dengan kenaikkan maksimum 2,5 %. Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan) Tabel 2.5 Kecepatan Angin Rencana V W. Keadaan Batas Daya layan Ultimit



Lokasi ≤ 5 km dari pantai > 5 km dari pantai 30 m/s 25 m/s 35 m/s 30 m/s



Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan)



Adapun menurut RSNI T-03-2005 (2005:122) pasal 14.1.2. beban gempa rencana lateral harus ditinjau dalam dua arah horisontal utama dengan kombinasi linier sebesar



30% unuk



arah memendek konstruksi dan 100% untuk arah memendek konstruksi. 2.2.3 Faktor Pembebanan Jembatan. Menurut RSNI T-02-2005 pasal 4.2, faktor beban aksi rencana dapat dilihat pada tabel dibawah ini : Tabel 2.6 Faktor Beban untuk Keadaan Batas Ultimit. Faktor Beban Jenis



Beban mati



Keadaan Batas Ultimit Keterangan Faktor Beban Baja 1,10 Beton cor 1,30 ditempat Keadaan umum 2,00



tambahan



Keadaan



Berat sendiri



1,40



20



khusus Pengaruh penyusutan dan



-



rangkak Pengaruh



-



prategang



Tekanan tanah



Vertikal Lateral;



1,00 1,00 (1,15 pada prapenegangan) 1,25



- aktif



1,25



Beban lajur "D”



- pasif -



1,40 1,80



Beban Truk “T”



-



1,80



Gaya rem



-



1,80



Beban pejalan kaki



-



1,80



Beban angin



-



1,20



Sumber : RSNI T-02-2005 (Standar Pembebanan untuk Jembatan) 2.2.4 Faktor Reduksi Penampang Baja. Menurut RSNI T-03-2005 (2005:9) pasal 4.5, faktor reduksi kekuatan untuk penampang baja dapat dilihat pada tabel berikut : Tabel 2.7 Faktor Reduksi Kekuatan untuk Keadaan Batas Ultimit. Situasi Rencana



Faktor Reduksi



a



Lentur



Kekuatan, ϕ 0,90



. b



Geser



0,90



. c



Aksial tekan



0,85



. d



Aksial tarik;



.



21



1. terhadap kuat tarik leleh. 2. terhadap kuat tarik fraktur. e Penghubung geser



0,90 0,75 0,75



. f. g



Sambungan baut Hubungan las;



0,75



1. Las tumpul penetrasi penuh 2. Las sudut dan las tumpul



0,90



. 0,75



penetrasi sebagian



Sumber : RSNI T-03-2005 (Perencanaan Struktur Baja untuk Jembatan) 2.2.5 Komponen Struktur Lentur. 2.2.5.1 Kelangsingan Penampang. Kelangsingan penampang adalah



ukuran



dari



kecenderungan untuk menekuk pada lentur atau beban aksial atau kombinasi keduanya. Kelangsingan penampang ini sangat mempengaruhi



kecenderungan



tekuk



suatu



unsur.



Dengan



kelangsingan besar, suatu unsur akan lebih mudah menekuk dibanding dengan kelangsingan kecil. Menurut RSNI T-03-2005 (2005:31) pasal 7.2. kelangsingan penampang dapat dirumuskan melalui beberapa paduan rumus seperti di bawah ini : 1) Penampang kompak. Penampang



baja



yang



digunakan



dapat



dikatakan



kompak bila memenuhi persamaan; λ ≤ λp....................................................................................... ..... 2.6. Sehingga



nilai



Momen



Mp.................................... 2) Penampang tidak kompak.



nominal,



(M n)



= 2.7.



22



Penampang baja yang digunakan dapat dikatakan tidak kompak bila memenuhi persamaan; λ ≤ λp ≤ λr .................................................................................. 2.8. Sehingga nilai Momen nominal, (Mn) = Mp - (Mp - Mr) λ−λ p λ r−λ p



.....



2.9.



3) Penampang langsing. Penampang baja yang



digunakan



dapat



dikatakan



langsing bila memenuhi persamaan; λ > λr .......................................................................................... .. 2.10. Sehingga



nilai



Momen



nominal,



(M n)



=



Mr



(λr/



λ)2........................ 2.11. di mana : Λ λp



= Parameter kelangsingan. = Batas maksimum parameter



kelangsingan



λr



untuk penampang kompak. = Batas maksimum parameter



kelangsingan



Mn Mp Mr



untuk penampang tidak kompak. = Momen nominal penampang. = Momen lentur plastis penampang. atau = Momen batas tekuk.



Mcr Secara garis besar, kekuatan unsur terhadap momen lentur ultimit rencana (Mu) tergantung pada tekuk pada penampang elemen unsur, sehingga ditentukan M u ≤ Ø Mn. Jika elemen berpenampang kompak (λ ≤ λ p) maka, besarnya momen nominal adalah sama dengan momen plastis (Mn = Mp). Momen plastis sendiri dapat dirumuskan sebagai berikut :



23



Mp = Z . fy ......................................................................................... 2.12. sedangkan, Z



=



f. S .......................................................................... 2.13. di mana : Z



= Modulus elastis penampang



f



= Faktor bentuk penampang (penampang I, f = 1,12)



S



= Modulus elastisitas penampang



fy



= Tegangan leleh minimum (Mpa)



2.2.5.2 Pelat Badan dengan Pengaku Vertikal. Menurut RSNI T-03-2005 pasal 7.7. ketebalan pelat badan dengan pengaku vertikal tetapi tanpa pengaku memanjang harus memenuhi persamaan berikut : E (h/tw) ≤ 7,07 fy jika







1,0



3,0







a/h







...................................... 2.14.



(a/tw) ≤ 7,07







E fy



jika



1,0



0,74







a/h







.................................... 2.15.



(h/tw) ≤ 7,07







E fy



jika



0,74



a/h



............................................ 2.16.



di mana : H tw







= Tinggi bersih pelat sayap profil baja, (mm). = Tebal pelat badan profil baja, (mm).



24



A = Luas penampang profil baja, (mm). E = Modulus elastisitas profil baja, (200.000 Mpa). Semua pelat badan yang mempunyai a/h > 3,0 harus dianggap tidak diperkaku, dengan h adalah tinggi panel yang terbesar di bentang tersebut. 2.2.5.3



Kuat Geser Pelat Badan.



Menurut RSNI T-03-2005 (2005:40)



pasal 7.8. kekuatan



unsur terhadap gaya geser terfaktor (Vu) ditentukan oleh kekuatan geser pelat badan dan harus memenuhi persamaan berikut : Vu ≤ ϕ Vn ........................................................................................ 2.17. dengan; Vn



=



0,6



fy Aw .................................................................. 2.18. kuat geser nominal penampang pipa;



Vn



= 0,36 fy Ae .................... 2.19. di mana : Vu Φ Vn E Aw Ae



= = = = = =



Gaya geser terfaktor, (N). Faktor reduksi sesuai tabel 2.7. Kuat geser nominal pelat badan. Modulus elastisitas profil baja, (200.000 Mpa). Luas kotor pelat badan. Luas kotor penampang bulat berongga.



2.2.5.4 Tahanan Nominal Batang Tekan dan Panjang Tekuk. Suatu komponen strktur yang mengalami gaya tekan konsentris akibat beban terfaktor Nu, menurut SNI 03-1729-2002 (2002:55) pasal 9.1 harus memenuhi persamaan berikut :



25



Nu ≤ ϕc . Nn ...................................................................................... 2.20. di mana : Nu = Beban terfaktor. ϕc = 0,85 Nn = Kuat tekan nominal komponen struktur = Ag . fcr Daya dukung nominal, Nn struktur tekan dihitung sebagai berikut : Nn = Ag . fcr = Ag .



fy ω



..................................................................... 2.21. di mana : Ag = fcr = fy = Ω = Berikut



Luas penampang bruto (mm2). Tegangan kritis penampang, Mpa. Tegangan leleh material, Mpa. Besaran yang ditentukan oleh nilai λc besarnya nilai ω yang ditentukan oleh nilai λc



yaitu : Untuk = Untuk



= Untuk = Menurut



λc
2/3 atau penampang T yang dipotong dari penampang I, dan sambungan pada pelat sayap dengan jumlah baut lebih atau sama dengan 3 buah per-baris (arah gaya), maka; U = 0,90 .................................................................................. 



..... 2.36. Untuk penampang yang lain (termasuk penampang tersusun) dengan jumlah alat pengencang minimal 3 buah per-baris, maka; U = 0,85 .................................................................................. ..... 2.37.



30







Semua penampang dengan banyak baut = 2 per-baris (arah gaya). maka; U = 0,75 .................................................................................. ..... 2.38.



2.2.5.6



Momen Lentur dan Gaya Aksial untuk Penampang



Simetris. Menurut RSNI T-03-2005 (2005:48) pasal 7.16. komponen struktur yang mengalami momen lentur dan gaya aksial harus direncanakan memenuhi ketentuan sebagai berikut : Nu A. Untuk ∅ c Nn ≥ 0,2 maka; Nu ∅ c Nn



8 9



+



Muy + ( ∅bMux Mnx ∅ b Mny )







1,0



............................................. 2.39.



Nu ∅ c Nn



B. Untuk Nu 2 ∅ c Nn



< 0,2 maka;



+



Muy + ( ∅bMux Mnx ∅ b Mny ) 1,0



8 9







........................................... 2.40.



di mana : Nu Nn Mux,



= Gaya aksial (tarik atau tekan) terfaktor. = Kuat nominal penampang. = Momen lentur terfaktor terhadap sumbu-x



31



Muy Mnx,



dan sumbu-y. = Kuat nominal lentur penampang terhadap



Mny ϕc ϕb



sumbu-x dan sumbu-y = Faktor reduksi kekuatan komponen tekan. = 0,90; faktor reduksi kuat lentur.



2.3 Desain Bridge Management System. Menurut BMS 1992 beban pada pelat lantai jembatan berupa beban truk “T” yang merupakan beban roda ganda sebesar 100 kN, dari kendaraan truk semitriller. Beban ini mempunyai bidang kontak pada pelat (20 x 50 cm 2) dan disebarkan 45o ke arah bawah sampai ke tengah-tengah tebal pelat.



Adapun



langkah-langkah



perencanaannya



adalah



sebagai berikut : 1. Menentukan mutu beton (f’c) dan mutu tulangan (fy) yang dipakai. 2. Menentukan tebal plat yang direncanakan (tebal total + tebal ekuivalen). 3. Menghitung pembebanan. a. Beban mati, berupa beban perkerasan dan beban trotoar (faktor beban). b. Beban hidup, berupa beban truk “T” (faktor beban dan beban dinamik) dan beban air hujan (faktor beban). c. Beban angin pada kendaraan (faktor beban). 4. Analisa struktur (momen), perencanaan pelat dua arah (metode amplop dan koefisien momen). 5. Memilih momen yang paling menentukan (momen terbesar) antara kombinasi (1,2 Dead Load + 1,6 Life Load) atau (1,2 Dead Load + 0,5 Life Load + 1,3 Wind Load). 6. Menghitung tulangan dua arah pada daerah serat atas/ tekan saja. 2.4 Perencanaan Struktur Atas.



32



2.4.1 Perencanaan Plat Lantai. Pelat lantai berfungsi sebagai konstruksi penahan beban lalu lintas. Konstruksi pelat lantai dicor dan menumpu seluruhnya pada metal dek (dek gelombang), sehingga pelat lantai hanya menahan beban tekan saja dari beban lalu lintas dan tidak mengalami lentur karena sudah ditahan oleh dek gelombang tadi. Artinya perencanaan tulangan pelat lantai hanya pada daerah tekan saja. Menurut RSNI T-03-2005 (2005:73) pasal 10.6. dek gelombang harus dirancang dapat memikul beban berupa : a. Berat sendiri beton bertulang (termasuk yang ada di dalam gelombang); b. Beban konstruksi 2400 N/m2; c. Berat sendiri dek gelombang. Selain itu, lendutan yang timbul akibat beban mati tidak boleh melampaui L/180 (13 mm) untuk panjang bentang di bawah atau sama dengan 3,00 meter (L ≤ 3,00 m) atau L/240 (19 mm) untuk panjang bentang di atas 3,00 meter (L ≤ 3,00 m). Sebenarnya konstruksi pelat lantai bagian tengah diasumsikan tertumpu menerus pada gelagar-gelagar di empat sisi-sisinya, sedangkan



pada



bagian



tepi



dianggap



sebagai



konstruksi



kantilever yang menumpu pada gelagar memanjang. 2.4.2 Perencanaan Gelagar Memanjang. Gelagar memanjang berfungsi menahan beban pelat lantai, beban perkerasan, beban lalu lintas “D” dan beban air hujan, kemudian menyalurkannya ke gelagar utama/ melintang. Gelagar ini



tidak



direncanakan



sebagai



struktur



komposit



karena



bentangnya pendek (L = 5 m) namun tetap saja diberikan elemen pengikat (baut) antara profil gelagar dengan metal dek (dek gelombang) yang berfungsi juga sebagai pengikat lateral gelagar memanjang.



33



2.4.3 Perencanaan Gelagar Melintang. Gelagar jembatan berfungsi untuk menerima beban-beban yang bekerja diatasnya dan menyalurkannya ke bangunan di bawahnya. Pembebanan pada gelagar memanjang meliputi : 



Beban mati Beban mati terdiri dari berat sendiri gelagar dan bebanbeban yang bekerja di atasnya (pelat lantai jembatan, perkerasan, dan air hujan).







Beban hidup Beban hidup pada gelagar jembatan dinyatakan dengan beban “D” atau beban jalur, yang terdiri dari beban terbagi rata “q” ton per-meter panjang per-jalur, dan beban garis “P” ton per-jalur lalu lintas tersebut.



2.4.4 Perencanaan Penghubung Geser (Shear Connector). Menurut SNI 03-1729-2002 (2002:91) pasal 12.6.3. kuat nominal penghubung geser jenis paku/ stud yang ditanam dalam beton ditentukan melalui adalah sebagai berikut : Qn = 0,5.Asc



√ f ' c Ec



Asc.



fu



≤ ........................................................



2.41. di mana : Qn Asc



= Kuat geser nominal untuk penghubung geser, N. = Luas penampang penghubung geser jenis paku,



f'c Ec



mm2. = Kuat tekan beton. = Modulus elastisitas beton; 4700



fu



= Tegangan putus penghubung geser jenis paku,



√f ' c



34



Mpa. Persyaratan mengenai jarak antar penghubung geser diatur dalam SNI 03-1729-2002 (2002:92) pasal 12.6.6 yang antara lain menjelaskan sebagai berikut : 1. Selimut lateral minimum = 25 mm, kecuali ada dek baja; 2. Diameter maksimum = 2,5 kali tebal flens profil baja; 3. Jarak longitudinal minimum = 6 kali diameter penghubung geser; 4. Jarak longitudinal maksimum = 8 kali tebal pelat beton; 5. Jarak minimum dalam arah tegak lurus sumbu longitudinal = 4 kali diameter; 6. Jika digunakan dek baja gelombang, jarak minimum penghubung



geser



dapat



diperkecil



menjadi



4



kali



diameter. 2.4.5 Perencanaan Rangka Baja. Rangka baja berfungsi menahan semua beban yang bekerja pada jembatan dan menyalurkannya pada tumpuan untuk disalurkan ke tanah dasar melalui struktur bawah jembatan. 2.4.5.1 Desain Load Resistance and Factor Design (LRFD). Adapun langkah-langkah perencanaannya adalah : 1. Menentukan profil yang digunakan beserta mutu baja (σy). 2. Menghitung pembebanan yang terjadi; a. Beban mati berupa berat sendiri profil, beban trotoar, beban pelat lantai, beban perkerasan, beban gelagargelagar, beban ikatan angin, dan lain-lain (faktor beban). b. Beban hidup



berupa



beban



satu satuan/



beban



berjalan yang dikonversikan terhadap beban “D” (faktor beban). c. Beban akibat tekanan angin (faktor beban).



35



d. Semua beban dikonversikan per-simpul (joint) rangka. 3. Menghitung gaya-gaya batang, dengan manual maupun bantuan program (SAP 2000) untuk tiap pembebanan. 4. Menghitung kombinasi beban yang terjadi akibat Dead Load, Life Load, dan Wind Load yang kemudian diambil perpaduan gaya-gaya yang terbesar untuk batang tekan atau batang tarik. 5. Kontrol kekuatan/ tegangan (tarik, tekan dan lentur). 6. Menghitung alat penyambung. 2.4.6 Perencanaan Ikatan Angin. Ikatan



angin



berfungsi



untuk



menahan



gaya



yang



diakibatkan oleh tekanan angin samping, sehingga struktur dapat



lebih



kaku.



Untuk



pekerjaan



Jembatan



Setail



ini



perencanaan ikatan angin meliputi ikatan angin atas dan ikatan angin bawah. 2.5 Perencanaan Struktur Bawah. 2.5.1 Perhitungan dan Penulangan Abutment. Pembebanan yang direncanakan pada abutment meliputi : a. Gaya akibat struktur atas; b. Gaya akibat berat sendiri abutment; c. Gaya akibat beban tekanan tanah aktif; d. Gaya akibat rem dan traksi; e. Gaya akibat gesekan; f. Gaya akibat beban gempa pada abutment; g. Gaya akibat beban gempa pada struktur atas jembatan; h. Gaya akibat beban angin. Adapun untuk penulangan abutment menggunakan rumus perhitungan sebagai berikut : Pu



= 1,2 PDL + 1,6 PLL …………………………………………..….. 2.42



Mu = 1,2 MDL + 1,6 MLL ……………………………………………. 2.43



36



e



=



Mu Pu



…………………………………………………..………....



2.44 xb



600 x d 600+ fy



=



……………………………………………………



2.45 ab



= β1 x xb …………………………………………………... 2.46



f’s



=



200.000



x



0,003



( Xb−ds) Xb



x



………………………………. 2.47 Bila



f’s



>



fy



maka,



digunakan



f’s



=



fy



………………………….... 2.48 Pnb = 0,85 x f’c x b x ab + A’s x f’s x – As x fy ……………......... 2.49 Mnb =



0,85



f’c



x



b



x



ab



x



……………………………….... eb



=



(



h ab − ¿ 2 2 2.50



Mnb Pnb



………………………………………………………..







e 2.51



2.5.2 Penulangan Wing Wall dan Pelat Injak. Wing Wall merupakan bagian struktur bawah jembatan yang berfungsi menahan gaya horizontal yang disebabkan oleh tanah



37



di sisi jembatan. Adapun untuk penulangannya menggunakan rumus sebagai berikut : Mnb =



0,85



f’c



x



b



x



ab



x



(d







0,5a



………………………………….. Cc



)



2.52



= Ts = As x fy ……………………………………………………. 2.53



As



0,85 f c ' x a x b fy



=



………………………………………………...



2.54 2.5.3 Perencanaan Dinding Penahan Tanah. Perencanaan struktur ini harus berdasarkan angka aman (safety factor) yang dapat diterima sebagaimana rumus di bawah ini : SF



Jml . momen yang melawan guling Jml . momen guling



=



………………………



SF ……….. x



1,5 4.55



Jml . momen yang melawan guling Jml . momen guling



=











2 (tanah kohesif)



4.56



Jml . momen−momen guling R



=



…………………………………



4.57 e



=



0,5 B – x ……………………………………………………………



4.58 e







B 6



………………………………………………………………



4.59 qult = c Nc + ɣ D Nq + 0,5ɣ B Nɣ …………………………………… 4.60



38



qsafe = 4.61



q ult SF



...…………………………………………………………