BAB III Stabilitas Bendung [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

PERANCANGAN IRIGASI BANGUNAN AIR



BAB III ANALISA STABILITAS BENDUNG Gaya-gaya yang bekerja pada tubuh bendung, akibat: 1. Tekanan air 2. Tekanan lumpur 3. Tekanan berat sendiri bendung 4. Gaya gempa 5. Gaya angkat (uplift pressure)



3.1.



Tekanan Air 3.1.1 Tekanan Air Normal



Gambar 3.1 Diagram tekanan akibat air normal γ air = 1 ton/m3



Pa1 =



1 .γair.h 2 . 2



=



1 2 .1 . 3,85  . 2



= 7,411 ton



45



PERANCANGAN IRIGASI BANGUNAN AIR Tabel 3.1 Perhitungan Tekanan Akibat Air Normal Gaya (t)



Bagian Pa1



Momen (tm)



V



H



X



Y



Mr



M0



-



7,411



-



5,905



-



43,763



JUMLAH



3.1.2



Lengan (m)



7,411



43,763



Tekanan Air Banjir



Gambar 3.2 Diagram tekanan akibat air banjir



Pf1 =



1 . γair . h 2 2



Pf2 = b . h . γ air



1 2 .1 . 3,85  2



= 7,411 ton



= 1,851.(3,85).(1)



= 7,126 ton



=



1 1 2 . 2,634  Pf3 =  . γair . h 2 =  .1 2 2



Pf4 =



1 . γair . h 2 2



=



1 2 .1 . 2,634  2



= - 3,469 ton = 3,469 ton



46



PERANCANGAN IRIGASI BANGUNAN AIR Tabel 3.2 Perhitungan Tekanan Akibat Air Banjir Bagian



Berat (ton) V



H



Lengan (m) x



y



Momen ™ Mr



Mo



Pf1



7,411



5,663



41,972



Pf2



7,411



6,305



46,728



Pf3



-3,469



4,756



-16,498



Pf4



3,469



JUMLAH



3,469



0,892 11,354



3,094 3,904



72,202



3.2. Tekanan Lumpur



 lumpur



= 0,6 ton/m3



θ



= 300



Ka



= tan2 (450 – θ/2) = tan2 (450 – 30o/2) = 0,333



Keterangan : γlumpur = berat volume lumpur (t/m3) θ



= sudut gesek dalam



Ka



= tekanan lumpur aktif (0,333)



Gambar 3.3 Diagram tekanan akibat lumpur



47



PERANCANGAN IRIGASI BANGUNAN AIR



PL1 = =



1 . Ka .  lumpur . h2 2 1 .(0,333).(0,6).(3,85)2 2



= 1,481 ton



Tabel 3.3 Perhitugan Tekanan Akibat Lumpur Gaya (t) Bagian PL1



Lengan (m)



Momen (tm)



V



H



x



Y



Mr



M0



-



0,888



-



5,663



-



5,031



0,888



JUMLAH



5,301



3.3. Tekanan Berat Sendiri Bendung Berat volume pasangan batu γpas batu = 2,2 t/m2 Ditinjau 1 m lebar bendung



Gambar 3.4 Diagram tekanan berat sendiri bendung



W1



= b . h .  pasangan



= 2,0 . 2,0 . 2,2



W2



= b . h .  pasangan



= 1,649 . 3,848 . 2,2 = 13,960 ton



W3



= b . h .  pasangan



= 1,0 . 4,0 . 2,2



= 8,800 ton



W4



= b . h .  pasangan



= 1,5 . 3,5 . 2,2



= 11,550 ton



= 8,800 ton



48



PERANCANGAN IRIGASI BANGUNAN AIR W5



= b . h .  pasangan



W6



= 2/3 . b. h .  pasangan = 2/3 . 1,5 . 1,5 . 2,2 = 3,300 ton



W7



= 1/2 . b. h .  pasangan = 1/2 . 3,0 . 2,5 . 2,2 = 8,250 ton



= 2,5 . 3,0 . 2,2



= 16,500 ton



Tabel 3.4 Perhitungan Tekanan Berat Sendiri Bendung Bagian



Lengan (m)



Gaya (ton)



Momen (tm)



Vertikal



x



y



Mr



M0



W1



8,800



6,000



3,000



52,800



26,400



W2



13,960



5,825



5,924



81,311



82,701



W3



8,800



4,500



5,000



39,600



44,000



W4



11,550



3,250



3,750



37,538



43,313



W5



16,500



1,250



1,500



20,625



24,750



W6



3,300



3,500



6,000



11,550



19,800



W7



8,250



1,667



3,833



13,750



31,625







71,160



257,174



272,588



Pada badan bendung yang berbentuk parabola, luas penampang digunakan pendekatan : A = 2/3 . L . H



Didapat: ΣW



= 71,160 ton



ΣMo



= 272,588 tm



ΣMr



= 257,174 tm



3.4. Gaya Gempa 3.4.1 Gempa Horisontal Gaya Gempa Horisontal (H)



= Kh. ΣW = 0,10. 71,160 = 7,116 ton



Momen akibat H = Kh. ΣMo = 0,10. 272,588 = 27,259 tm



49



PERANCANGAN IRIGASI BANGUNAN AIR Keterangan: Kh = Koefisien gempa horisontal (diambil: Kh = 0,10) ΣW = Total berat sendiri bendung (t) Mo = Momen guling akibat berat sendiri bendung (tm)



3.4.2 Gempa Vertikal Gaya Gempa Vertikal (V) = Kv. ΣW = 0,05. 71,160 = 3,558 ton Momen akibat V = Kv. ΣMr = 0,05. 257,174 = 12,859 tm Keterangan : Kv = Koefisien gempa vertikal (diambil: Kv = 0,005) Mr = Momen tahanan akibat berat sendiri



3.5. Gaya Angkat (Uplift Pressure) 3.5.1 Tekanan Air Normal ΣL



= Lh + Lv = 19,15 + 10,62 = 29,77 m



ΔH (air normal) = elev. MAN – elev. Dasar sungai = 168,85 – 165,00 = 3,85 m 𝐿𝑋 . Δ𝐻 Σ𝐿 𝐿𝑋 𝑈𝑋 = 𝐻𝑋 − . 3,2 29,77 𝑈𝑋 = 𝐻𝑋 −



𝑈𝑋 = 𝐻𝑋 − 0,107 𝐿𝑋 Keterangan : Hx = tinggi muka air dari titik yang dicari (m) Lx



= panjang rayapan (m)



ΣL = total rayapan (m)



50



PERANCANGAN IRIGASI BANGUNAN AIR ΔH = tinggi muka air normal dari lantai dasar bendung (m) Ux = uplift pressure di titik x (t/m2)



Gambar 3.5 Rayapan gaya angkat akibat muka air normal



Tabel 3.5 Perhitungan Tinggi Air Normal Terhadap Muka Bendung Titik



Hx (m)



Lx (m)



Ux (t/m2)



A



5.23



29..77



1.380



B



8.23



26.77



4.768



C



8.23



24.27



5.091



D



6.23



22.27



3.350



E



6.23



20.77



3.544



F



5.23



19.77



2.673



G



5.23



18.77



2.803



H



6.23



17.77



3.932



I



6.23



15.77



4.191



J



4.23



13.77



2.449



51



PERANCANGAN IRIGASI BANGUNAN AIR U1



𝑐



𝑅 = (𝑈1 + 𝑈2) 2



𝐿=



𝑐(2𝑥𝑈1 + 𝑈2) 3(𝑈1 + 𝑈2)



c



R L U2



Keterangan: R



= Resultante Uplift Pressure (ton)



L



= Lengan momen (m)



U1



= Uplift Pressure terendah di setiap bagian (ton)



U2



= Uplift Pressure tertinggi di setiap bagian (ton)



Tabel 3.6 Perhitungan Uplift Pressure Akibat Air Normal Bagian



Gambar



Gaya angkat per 1 m panjang (t) H=



1.3800



U1  U 2 xH 2



=-



A



1,380  4,768 x3 2



= - 9,222 t A-B



 h  2a  b 3 a b



y = 



3.0000



B



4.7680



=



3  (2 x1,380 )  4,768    3  1,380  4,768 



= 1,224 m Ytotal = 1,224 m



52



PERANCANGAN IRIGASI BANGUNAN AIR



V= C



2.5000



U1  U 2 xH 2



B



V =-



4,768  5.091 x 2,5 2



= -12,324 t B-C



 h  2b  c 3 bc



x = 



4.7680



5.0910



=



2,5  (2 x 4,768)  5,091    3  4,768  5,091 



= 1,236 m X total = 3 – 1,236 = 1,764 m H=



U1  U 2 xH 2



H=



5,091  3,350 x 2,0 2



3.3500



D



= 8,441 t C–D



2.0000



 h  2c  d 3 cd



y=  



C 5.0910



=



2,0  (2 x5,091)  3,350    3  5,091  3,350 



= 1,069 m Ytotal = 1,069 m V= E



1.5000



D



U1  U 2 xH 2



V =D–E



3.5440



3.3500



3,350  3,544 x1,5 = - 5,170 t 2



 h  2d  e 3 d e



x = 



=



1,5  (2 x3,350)  3,544    = 0,743 m 3  3,350  3,544 



X total = (2,5 – 0,743) + 1,5 = 3,257 m



53



PERANCANGAN IRIGASI BANGUNAN AIR



2.6730



F



E–F



1.0000



H =



U1  U 2 xH 2



H =



3,544  2,673 x1 2



= 3,109 t



 h  2e  f 3 e f



y = 



E



3.5440



=



1  (2 x3,544 )  2,673    3  3,544  2,673 



= 0,523 m Ytotal = 0,523 + 1,0 = 1,523 m V =



G



1.0000



F



U1  U 2 xH 2



V =-



2,673  2,803 x1 2



= - 2,738 t F–G



2.6730



2.8030



h2f  g 3 f  g



x = 



=



1  (2 x 2,673)  2,803    = 0,496 m 3  2,673  2,803 



X total = (1 - 0,496) + 2,5 + 1,5 = 4,504 m



U1  U 2 xH 2 2,803  3,932 x1,0 H =2 = - 3,367 t



H=



G



G-H



2.8030



 h  2g  h 3 g h 1,0  (2 x 2,803)  3,932    = 3  2,803  3,932 



y = 



1.0000



H



3.9320



= 0,472 m Ytotal = 0,472 + 1,0 = 1,472 m



54



PERANCANGAN IRIGASI BANGUNAN AIR U1  U 2 xH 2 3,932  4,191 V =x2 2 = - 8,122 t



V=



2.0000



H



I



H-I



 h  2g  h 3 g h 2  (2 x3,932 )  4,191   =  3  3,932  4,191 



x = 



3.9320



4.1910



= 0,989 m Xtotal = (2 – 0,989) + 2,5 + 1,5 + 1 = 6,011 m U1  U 2 H = xH 2 H = 2.4490



J



4,191  2,449 x2 2



= 6,640 t I-J



2.0000



 h  2g  h 3 g h



y = 



I



4.1910



=



2  (2 x 4,191)  2,449    3  4,191  2,449 



= 1,087 m Ytotal = 1,087 + 1 = 2,087 m



Tabel 3.7 Gaya Angkat Air Normal Titik



Hx (m)



Lx (m)



Ux (t/m2)



A



5.23



29.77



1.380



Uplift Force (t) V



H



Lengan (m) x



-9.222 B



8.23



26.77



8.23



24.27



1.224 1.236



6.23



22.27



6.23



20.77



Mo



11.292



1.764



21.740



1.069



1.069



9.022



3.350 -5.170



E



Mr



5.091 8.441



D



1.224



Momen



4.768 -12.324



C



y



Lengan (m) x y (total) (total)



0.743



3.257



16.840



3.544



55



PERANCANGAN IRIGASI BANGUNAN AIR 3.109 F



5.23



19.77



5.23



18.77



0.496



6.23



17.77



6.23



15.77



0.472 0.989



4.23 13.77 Σ (JUMLAH)



12.332 1.472



4.957



6.011



48.824



4.191 6.640



J



4.504



3.932 -8.122



I



4.734



2.803 -3.367



H



1.523



2.673 -2.738



G



0.523



1.087



2.087



13.857



2.449 - 28.355



5.600



30.106



113.491



Catatan : Searah jarum jam (+) Berlawanan arah jarum jam (-)



Gaya Angkat Akibat Air Normal : 1. Tekanan Vertikal V = fu x ΣV = 0,5 x (- 28,355) = - 14,178 ton 2. Tekanan Horizontal H = fu x ΣH = 0,5 x 5,600



= 2,800 ton



3. Momen Mr = 0.5 x ΣMr = 0,5 x (30,106) = 15,053 t.m Mo = 0.5 x ΣMo = 0,5 x (113,491) = 56,746 t.m Dimana :



fu = koefisien reduksi untuk jenis tanah keras (50 %)



3.5.2 Tekanan Air Banjir ΣL



= 29,77 m



ΔH (air banjir) = elev. M.A.B – elev. Dasar sungai = 170,701 – 165,000 = 5,701 m 𝑈𝑋 = 𝐻𝑋 −



𝐿𝑋 𝐿𝑋 . Δ𝐻 = 𝐻𝑋 − . 5,701 = 𝐻𝑋 − 0,192 𝐿𝑋 Σ𝐿 29,77



Keterangan: Hx = tinggi muka air dari titik yang dicari (m) Lx = panjang rayapan (m) ΣL = total rayapan (m)



56



PERANCANGAN IRIGASI BANGUNAN AIR ΔH = tinggi muka air banjir dari lantai dasar bendung (m) Ux = uplift pressure di titik x (t/m2)



Gambar 3.6 Rayapan gaya angkat akibat muka air banjir



Tabel 3.8 Perhitungan Tinggi Air Banjir Terhadap Muka Bendung Titik



Hx (m)



Lx (m)



Ux (tm²)



A B C D E F G H I J



7.08 10.08 10.08 8.08 8.08 7.08 7.08 8.08 8.08 6.08



29.77 26.77 24.27 22.27 20.27 19.77 18.77 17.77 15.77 13.77



1.380 4.995 5.433 3.816 4.104 3.295 3.487 4.678 5.061 3.444



57



PERANCANGAN IRIGASI BANGUNAN AIR Tabel 3.9 Perhitungan Uplift Pressure Akibat Air Banjir Bagian



Gambar



Gaya angkat per 1 m panjang (t) U1  U 2 xH 2



H= A



1.3800



=-



1,380  4,955 x3,0 2



= - 9,502 t



3.0000



 h  2a  b 3 a b



A-B



y =  B 4.9550



3,0  (2 x1,380 )  4,955    3  1,380  4,955 



=



= 1,218 m Ytotal = 1,218 m U1  U 2 xH 2



V= 2.5000



B



C



V =-



4,955  5,433 x 2,5 2



= - 12,985 t B-C



 h  2b  c 3 bc



4.9550



x = 



5.4330



2,5  (2 x 4,955)  5,433    3  4,955  5,433 



=



= 1,231 m X total = 2,5 – 1,231 = 1,269 m H=



U1  U 2 xH 2



H =



5,433  3,816 x 2,0 = 9,250 t 2



3.8160



D



2.0000



C-D



 h  2c  d 3 cd



y=   C 5.4330



=



2,0  (2 x5,433)  3,816    = 1,058 m 3  5,433  3,816 



Ytotal = 1,058 m



58



PERANCANGAN IRIGASI BANGUNAN AIR



E



D-E



1.5000



U1  U 2 xH 2 3,816  4,104 V =x1,5 2 = - 5,940 t



V= D



 h  2d  e 3 d e 1,5  (2 x3,816 )  4,104   =  3  3,816  4,104 



x = 



3.8160



4.1040



= 0,741 m X total = (1,5 - 0,741) + 2,5 = 3,259 m



3.2950



F 1.0000



E-F



H=



U1  U 2 xH 2



H =



4,104  3,295 x1 2



= 3,699 t



 h  2e  f 3 e f



y = 



E



4.1040



=



1  (2 x 4,104 )  3,295    3  4,104  3,295 



= 0,518 m Ytotal = 0,518 + 1,0 = 1,518 m V=



G



1.0000



F



U1  U 2 xH 2



V =-



3,295  3,487 x1,0 2



= - 3,391 t



h2f  g 3 f  g



x = 



F-G 3.4870



3.2950



=



1,0  (2 x3,295)  3,487    3  3,295  3,487 



= 0,495 m X total = (1,0-0,495)+2,5+1,5 = 4,505 m



59



PERANCANGAN IRIGASI BANGUNAN AIR



H=



U1  U 2 xH 2



H =3.4870



G



G-H



3,487  4,678 x1,0 2



= - 4,082 t



 h  2g  h 3 g h



y = 



1.0000



H



4.6780



=



1,0  (2 x3,487 )  4,678    3  3,487  4,678 



= 0,476 m Ytotal = 0,476 + 1,0 = 1,476 m V= I



2.0000



H



U1  U 2 xH 2



V =-



4,678  5,061 x 2,0 2



= - 9,739 t H-I



 h  2g  h 3 g h



x = 



4.6780



5.0610



=



2,0  (2 x 4,678)  5,061    3  4,678  5,061 



= 0,987 m Xtotal = (2 – 0,987) + 2,5 + 1,5 + 1,0 = 6,013 m



3.4440



J



2.0000



I-J 5.0610



I



H=



U1  U 2 xH 2



H=



5,061  3,444 x 2,0 2



= 8,505 t



 h  2g  h 3 g h



y = 



=



2,0  (2 x5,061)  3,444    = 1,063 m 3  5,061  3,444 



Ytotal = 1,063 + 2 = 3,063 m



60



PERANCANGAN IRIGASI BANGUNAN AIR Tabel 3.10 Gaya Angkat Akibat Air Banjir Titik



Hx (m)



Lx (m)



Ux (t/m2)



A



7.08



29.77



1.380



Uplift Force (t) V



H



Lengan (m) x



-9.502 B



10.08



26.77



10.08



24.27



1.214 1.231



8.08



22.27



8.08



20.77



7.08



19.77



0.741



7.08



18.77



8.08



17.77



8.08



15.77



6.08 13.77 Σ (JUMLAH)



3.259



0.495



19.358 1.518



5.615



4.505



15.275



3.487 0.476



1.476



6.025



4.678 0.987



6.031



58.736



5.061 8.505



J



9.789



3.295



-9.739 I



1.058



0.518



-4.082 H



16.478



4.104



-3.391 G



11.572



1.269 1.058



3.699 F



Mo



3.816 -5.940



E



Mr



5.433 9.250



D



1.218



Momen



4.955 -12.985



C



y



Lengan (m) x y (total) (total)



1.063



3.063



26.051



3.444 - 32.054



7.870



43.648



125.251



Catatan : Searah jarum jam (+) Berlawanan arah jarum jam (-)



Gaya Angkat Akibat Air Banjir : 1. Tekanan Vertikal V = fu x ΣV = 0,5 x (-32.054) = - 16.027 ton 2. Tekanan Horizontal H = fu x ΣH = 0,5 x (7.870) = 3.935 ton 3. Momen Mr = 0.5 x ΣMr = 0,5 x (43.648) = 21.824 t.m Mo = 0.5 x ΣMo = 0,5 x (125.251) = 62.626 t.m Dimana :



fu = koefisien reduksi untuk jenis tanah keras (50 %)



61



PERANCANGAN IRIGASI BANGUNAN AIR Tabel 3.11 Akumulasi Beban – Beban Pada Bendung Gaya (ton) Momen (ton.meter) Keterangan Vertikal Horizontal Mr Mo 2 3 4 5 6



No. 1



Tekanan Air a Air Normal b Air Banjir c Tekanan Lumpur Berat Sendiri d Bendung Gaya Gempa e Gempa Horisontal f Gempa Vertikal Gaya Angkat g Air Normal h Air Banjir 3.6.



0.000 3.469 0.000



7.411 11.354 0.888



0.000 3.094 0.000



43.763 72.202 5.031



71.160



-



257.174



-



3.558



7.116 -



27.259 12.859



27.259 12.859



-14.177 -16.027



2.800 3.935



15.053 21.824



56.746 62.626



Kontrol Stabilitas Bendung Ketentuan : 1. Tegangan tanah dasar yang diijinkan (σ’)



= 2,0 kg/cm2 = 20 t/m2



2. Over Turning safety factor (guling)



= 1,5 kg/cm2



3. Sliding safety factor (geser)



= 1,2 kg/cm2



Kombinasi gaya – gaya yang bekerja pada bendung : 3.6.1 Tanpa Pengaruh Gempa 1. Keadaan Normal dengan Uplift Pressure 



ΣH = a(4) + c(4) + g(4) = 7,411 + 0,888 + 2,800 = 11,100 t







ΣV = a(3) + c(3) + d(3) + g(3) = 0,000 + 0,000 + 71,160 – 14,177 = 56,983 t







ΣMr = a(5) + c(5) + d(5) + g(5) = 0,000 + 0,000 + 257,174 + 15,053 = 272,226 tm







ΣM0 = a(6) + c(6) + g(6) = 43,763 + 5,031 + 56,746 = 105,540 tm



Kontrol: a. Terhadap Guling (Over Turning) 𝑆𝐹 =



Σ𝑀𝑟 272,226 = = 2,579 ≥ 1,5 (𝑂𝐾) Σ𝑀𝑜 105,540



62



PERANCANGAN IRIGASI BANGUNAN AIR b. Terhadap Geser (Sliding) 𝑆𝐹 =



f . Σ𝑉 0,7 . 56,983 = = 3,594 ≥ 1,2 (𝑂𝐾) Σ𝐻 11,100



Dimana, f = koefisien geser (diambil f= 0,7) c. Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O 𝑎=



Σ𝑀𝑟 − Σ𝑀𝑜 272,226 − 105,540 = = 2,925 𝑚 Σ𝑉 56,983



Resultante beban vertikal bekerja sejarak e dari pusat berat bendung 𝑒=



𝐵 7 − 𝑎 = − 2,925 = 0,575 𝑚 2 2



Jarak e masih terletak didalam “Bidang Kern” 𝑒
0



56,983  6 . 0,575   1   = 12,151 t/m2 < σ’= 20 t/m2 7,0. 1  7,0 



(OK!)



(OK!)



2. Keadaan Banjir dengan Uplift Pressure 



ΣH = b(4) + c(4) + h(4) = 11,354 + 0,888 + 3,935 = 16,177 t







ΣV = b(3) + c(3) + d(3) + h(3) = 0,000 + 0,000 + 71,160 – 16,027 = 58,602 t







ΣMr = b(5) + c(5) + d(5) + h(5) = 0,000 + 0,000 + 257,174 + 21,824 = 282,091 tm







ΣM0 = b(6) + c(6) + h(6) = 72,202 + 5,031 + 62,626 = 139,858 tm



Kontrol: a. Terhadap Guling (Over Turning) 𝑆𝐹 =



Σ𝑀𝑟 282,091 = = 2,017 ≥ 1,5 (𝑂𝐾) Σ𝑀𝑜 139,858



b. Terhadap Geser (Sliding) 𝑆𝐹 = f



f . Σ𝑉 0,7 . 58,602 = = 2,536 ≥ 1,2 (𝑂𝐾) Σ𝐻 16,177 = koefisien geser (diambil f= 0,7)



c. Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O



𝑎=



Σ𝑀𝑟−Σ𝑀𝑜 Σ𝑉



=



282,091−139,858 58,602



= 2,427 m



64



PERANCANGAN IRIGASI BANGUNAN AIR Resultante beban vertikal bekerja sejarak e dari pusat berat bendung 𝐵



7



2



2



𝑒 = − 𝑎 = − 2,427 = 1,073 𝑒
0



Guling ≥1,50



Geser ≥1,20



2,579 2,017



3,594 2,536



12,151 16,071



4,130 0,673



-



-



2,050 3,381 1,688 2,752



2,190 3,231 1,761 2,699



-



-



15,489 18,485 19,408 20,233



0,792 1,846 -2,665 1,090



2,408 5,534 1,847 3,536



3,818 6,302 2,690 4,471



-



-



14,184 15,606 19,678



3,113 5,742 -1,918 20,691



1,648



72