BAB III Teori Khusus Plat Datar [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

BAB III TEORI KHUSUS PERFORMANSI KOLEKTOR SURYA PELAT DATAR



3.1



Sekilas tentang Kolektor Surya Plat Datar Kolektor plat datar adalah kolektor surya yang paling umum untuk sistem



pemanas air di rumah dan pemanas ruangan. Ciri khas kolektor plat datar adalah kotak logam berinsulasi dengan gelas atau plastik penutup (disebut kaca) dan plat penyerap berwarna gelap. cairan atau udara panas kolektor ini tidak kurang dari temperatur 80°C. Keuntungan dari kolektor surya plat datar yaitu memanfaatkan kedua komponen radiasi matahari yaitu melalui sorotan langsung dan sebaran, perawatan dan biaya pembuatan murah, serta desain yang sederhana. Kolektor surya plat datar memiliki beberapa komponen utama seperti cover (Glazing), insulation, absorber, flow tube, dan header. Cover berfungsi mengurangi rugi panas secara konveksi menuju lingkungan. Insulation berfungsi sebagai saluran transmisi fluida kerja. Absorber berfungsi sebagai penyerap panas dari radiasi cahaya matahari. Komponen dari kolektor surya plat datar dapat dilihat pada gambar 1.



Gambar 3.1. Komponen kolektor surya plat datar



3.2



Pengujian Performansi Kolektor



3.2.1



Radiasi Surya yang diterima kolektor Radiasi surya merupakan pancaran energi yang berasal dari proses



thermonuklir yang terjadi di matahari. Energi radiasi surya berbentuk sinar dan gelombang elektromagnetik. Pada pengujian performansi kolektor surya plat datar, radiasi surya akan datang pada kolektor dan terjadi aliran panas. Skema aliran panas dapat dilihat pada gambar 2.



Gambar 3.2. Skema aliran panas melalui kolektor



Sebagian dari radiasi surya ini dipantulkan kembali ke langit, sebagian lain diserap oleh kaca dan sisanya ditularkan melalui kaca dan mencapai pelat absorber sebagai radiasi gelombang pendek. Oleh karena itu, faktor konversi menunjukkan persentase sinar matahari menembus penutup transparan kolektor (transmisi) dan persentase yang diserap. Sehingga panas radiasi suryanya adalah



Dimana:



Qi = Panas radiasi surya (J) I = Intensitas radiasi surya (W/m2) A = Luas permukaan kolektor (m2)



τα = Produk dari laju transmisi penutup dan tingkat penyerapan absorber



13



Ketika kolektor menyerap panas, temperaturnya akan semakin tinggi dibandingkan dengan sekitarnya dan panas akan hilang ke atmosfir oleh konveksi dan radiasi. Sehingga nilai panas yang hilang dapat dirumuskan sebagai berikut:



Dimana:



Qo = Panas yang hilang (J) UL = Koefisien perpindahan panas (W/m2 C) A = Luas permukaan kolektor (m2) Tc = Temperatur kolektor (oC) Ta = Temperatur udara (oC)



Dengan demikian, tingkat energi guna diekstraksi oleh kolektor (Qu), dinyatakan sebagai tingkat ekstraksi dalam kondisi steady state, sebanding dengan tingkat energi yang berguna diserap oleh kolektor, kurang jumlah hilang oleh kolektor dengan lingkungannya. Skema sistem pengumpulan energi surya dapat dilihat pada gambar 3.



Gambar 3.3 Skema sistem pengumpulan energi surya



Tingkat energi guna yang diekstraksi oleh kolektor dapat dirumuskan sebagai berikut:



Dimana:



Qu = Panas yang diekstraksi (J)



14



Qi = Panas yang diserap kolektor (J) Qo = Panas yang hilang (J) Hal ini juga diketahui bahwa laju ekstraksi panas dari kolektor dapat diukur melalui jumlah panas terbawa dalam cairan melewatinya, yaitu:



Dimana:



Qu = Laju ekstraksi panas dari kolektor (J) m = Nilai aliran massa yang melalui kolektor (kg/m2s) Cp = Kalor spesifik (J/kg C) To = Temperatur bagian luar kolektor (oC) Ti = Temperatur bagian dalam kolektor (oC)



Persamaan di atas sedikit merepotkan karena sulit dalam mendefinisikan temperatur kolektor rata-rata. Sekarang mudah untuk menentukan kuantitas yang menghubungkan manfaat yang sebenarnya mendapatkan energi dari kolektor untuk keuntungan guna jika seluruh permukaan kolektor berada pada temperatur inlet fluida. Kuantitas ini dikenal sebagai "The collector heat removal factor (FR)" dan dinyatakan sebagai:



Dimana:



FR = Collector heat removal factor m = Nilai aliran massa melalui kolektor (kg/m2s) Cp = Kalor spesifik (J/kg C) A = Luas permukaan kolektor (m2) τα = Produk dari laju transmisi penutup dan



tingkat



penyerapan absorber I



= Intensitas radiasi surya (W/m2)



To = Temperatur outlet (oC) 15



Ti = Temperatur inner (oC) Ta = Temperatur udara (oC) Setelah didapatkan nilai the collector heat removal factor, maka dapat diketahuilah besar energi guna actual (Qu) yang dirumuskan sebagai berikut:



Dimana:



Qu = Panas yang diekstraksi dari kolektor (J) FR = Collector heat removal factor A = Luas permukaan kolektor (m2) UL = Koefisien perpindahan panas (W/m2 C)



Hubungan yang digunakan untuk mengukur besar energi yang diperoleh dari kolektor dan dikenal sebagai "persamaan Whillier-Bliss hottel“. 3.2.2



Efisiensi kolektor (η) Ukuran dari performa kolektor plat datar adalah efisiensi kolektor (η) yang



didefinisikan sebagai rasio energi guna yang diperoleh (Qu) dengan energi surya selama periode waktu tertentu. Efisiensi kolektor (η) dapat dirumuskan sebagai berikut:



Efisiensi termal sesaat pada kolektor yang menjadi metode pengujian standar:



Dimana:



η = Efisiensi kolektor FR = Collector heat removal factor



16



A = Luas permukaan kolektor (m2) UL = Koefisien perpindahan panas (W/m2 C) τα = Produk dari laju transmisi penutup dan



tingkat



penyerapan absorber I



= Intensitas radiasi surya (W/m2)



To = Temperatur outlet (oC) Ti = Temperatur inner (oC) Ta = Temperatur udara (oC) Contoh skema pengujian dari kolektor surya pelat datar dapat dilihat pada gambar 3.5. jenis dari pengujiannya yaitu pengujian closed-loop pada kolektor surya pelat datar.



Fluida mengalir menuju filter dan di dalam filter fluida disaring,



kemudian dialirkan menuju pompa. Fluida dari pompa dialirkan ke electric heater dan masuk ke sight glass, kemudian menuju flow meter untuk diukur kecepatan alirannya. Setelah itu fluida masuk ke mixing device dan aliran fluida diikur temperaturnya pada sensor temperatur. Sebelum fluida masuk ke kolektor surya, tekanan fluida diukur terlebih dahulu kemudian baru masuk ke kolektor surya.



Gambar 3.4 Pengujian Closed-loop pada Kolektor Pelat Datar Pemanas Air



17



Dari pengujian kolektor surya pelat datar pemanas air dapat diperoleh efisiensi kolektor seperti yang terlihat pada gambar 3.6.



Gambar 3.5 Data perhitungan pengujian efisiensi kolektor untuk kolektor plat datar pemanas air dengan satu cover dan selective absorber



Dari gambar 3.6 terdapat beberapa parameter yaitu efisiensi kolektor (Ƞi), temperatur inlet (Ti), temperatur outlet (To) dan intensitas radiasi (GT). Gambar di atas menunjukkan perbandingan antara Ƞi dengan



, yang mana semakin besar nilai



maka semakin rendah nilai efisiensi kolektornya (Ƞi), dan begitu sebaliknya. Contoh pada nilai



= 0.04 m2C/W maka diperoleh efisiensi kolektor Ƞi = 40%.



18



Gambar 3.6 Karakteristik dari lima jenis kolektor surya pelat datar pemanas air: (a) satu cover, absorber dengan krom hitam selektif, (b) dua cover, absorber dengan krom hitam selektif, (c) satu cover, absorber hitam datar, (d) dua cover polycarbonate, absorber pelat hitam polymetric dengan ruang tabung tertutup, dan (e) absorber pelat hitam unglazed. Data dari solar products specification guide (1983).



Pada gambar 3.7 dapat dilihat perbandingan antara Ƞi dengan



pada



lima jenis kolektor surya pelat datar pemanas air. Dapat dianalisa kolektor surya jenis a (satu cover, absorber dengan krom hitam selektif) memiliki perbandingan efisiensi paling bagus dibandingkan keempat jenis lainnya. Dan pada gambar 3.8 dapat dilihat perbandingan antara Ƞi dengan



pada



tiga kolektor dengan tiga jenis pengoperasian. Sehingga dapat dianalisa bahwa jenis penyusun kolektor dan jenis pengoperasiannya akan mempengaruhi besar nilai efisiensi kolektor (Ƞi). Semakin besar nilai operasi kolektor maka semakin bagus nilai efisiensi yang diperoleh dari kolektor.



19



Gambar 3.7 Karakteristik kurva untuk dua pemanas udara: (a) satu cover, selective absorber, beroperasi pada 25 1/m2s; (b) kolektor yang sama, beroperasi 10 1/m2s; (c) satu cover, absorber krom hitam selektif, beroperasi pada 20 1/m2s. Data berasal dari Solar Products Specification Guide (1983)



3.2.3



Peubah Sudut Insidensi Peubah sudut insidensi merupakan perubahan sudut sinar datang pada



kolektor yang mana fokus kepada besar produk transmisi dan absorbs (τα). Peubah sudut sinar datang akan mempengaruhi nilai panas yang diekstaksi (Qu). Souka dan Safwat (1966) menyarankan peubah sudut insidensi dituliskan sebagai berikut



Kτα = Kemudian



Qu = Ac FR [GT Kτα (τα)n – UL (Ti – Ta)] Persamaan umum nilai peubah sudut insidensi (Kτα);



Kτα =



= 1 + b o(



- 1)



Dimana:



Kτα = Perubahan sudut insidensi



20



τα = nilai produk transmisi dan absorpsi bo = koefisien peubah sudut insidensi ϴ = sudut insidensi Qu = panas yang diekstraksi (J) Ac = Luas permukaan kolektor (m2) FR= the Collector heat removal factor GT= Intensitas radiasi (W/m2) UL = Koefisien perpindahan panas (W/m2 C) Ti = Temperatur inner (oC) Ta = Temperatur udara (oC)



Gambar 3.8 Data peubah sudut insidensi untuk sebuah double-glazed kolektor pemanas air. Kondisi pengoperasian: kolektor memliki kemiringan 25o ke selatan; temperatur udara lingkungan 34oC; kecepatan angin 4,5 m/s dan insolation 230-830W/m2 yang diperkirakan 20% berdifusi. Dikutip dari Hill et al (1979).



21



3.2.4



Kontanta Waktu Kolektor Konstanta waktu dari kolektor tergantung pada waktu fluida meninggalkan



kolektor hingga mencapai perubahan melalui 0,632 total perubahan dari initial hingga ultimate steady value setelah tahap perubahan pada incident radiation atau temperatur fluida inlet.



Gambar 3.9 Konstanta Waktu Kolektor



Dari gambar 3.4 dapat dianalisa kontanta waktu penurunan temperatur hingga fluida keluar dari kolektor sebesar 12,7 menit. Dapat dilihat juga pada gambar rentang naiknnya temperatur saat fluida masuk diberi kode A dengan rentang 2862oC. kemudian terjadi penurunan temperatur hingga fluida keluar dari kolektor diberi kode B dengan rentang 62-40oC. Dan rentang temperatur saat fluida keluar dan masuk kembali ke kolektor diberi kode C dengan rentang 40-28oC. Plot waktu-temperatur untuk pemanas udara pelat datar menunjukkan penurunan temperatur pada gangguan dadakan dari radiasi matahari pada kolektor. konstanta waktu adalah waktu lamanya temperatur untuk turun ke 1/e dari total potensial penurunan, yaitu, untuk B/A mencapai 0,368.



22



Dari data pengujian beberapa kolektor diperoleh karakteristik dan konstanta waktu dari kolektor. Karakteristik dan konstanta waktu dari kolektor dapat dilihat pada tabel 3.1 Tabel 3.1 Karakteristik dan konstanta waktu dari kolektor Areas, m2



No. Kolektor (Type)



1 (Liquid)



2 (Liquid)



Aperture



1.61



1.40



Gross



1.68



1.66



Plate



Alumunium rollbond, black paint



Glazing



Back Insulation



Time Constant, min



7.6-cm Double-glass



glass



1.7



fiber



Steel plate with



Double glass,



8.5-cm



copper tubbing, black



antireflective



semirigid



chrome selective



coating on three



fiber



surface



glass surface



board



1.6



7.0-cm 3 (Liquid)



1.79



1.96



Steel, black-chrome



Single glass



glass



1.8



fiber Steel, black paint, air 4 (Air)



7.25



6.25



flow is in 1.6-cm-deep



9-cm Double-glass



channel behind plate



3.2.5



glass



12.7



fiber



Performansi Kolektor In Situ Beberapa pertimbangan praktis yang dapat mempengaruhi performa yang



diukur. Perbedaan antara performa yang diprediksi dan yang diukur disebabkan dari beberapa sumber, yaitu: 1. Aliran fluida melalui kolektor yang tidak seragam melalui semua bagian dari susunan kolektor 2. Laju aliran tidak sesuai dengan kolektor yang diuji 3. Kebocoran pada kolektor udara dapat menyebabkan perbedaan antara performa yang diprediksi dan yang diukur 4. Kerugian tepi dan belakang yang berbeda pada pengujian dan aplikasi



23



3.2.6



Distribusi Aliran pada Kolektor Perhitungan performansi dari kolektor didasarkan pada asumsi implisit dari



distribusi aliran yang seragam pada kolektor tunggal atau ganda. Jika alirannya tidak seragam, komponen dari kolektor dengan aliran rendah melalui riser akan memiliki nilai FR lebih rendah dari komponen dengan tingkat aliran yang tinggi. Jadi, desain dari headers dan manifolds sangat penting sifatnya dalam menentukan performansi kolektor yang bagus. Masalah ini telah dipelajari secara analitikal dan eksperimental oleh Dunkle dan Davey (1970).



Gambar 3.10 Distribusi tekanan pada headers dari sebuah isothermal absorber bank. Dikutip dari Dunkle dan Davey (1970). Berdasarkan analisis bahwa aliran turbulen pada headers dan laminar pada risers, analisis oleh Dunkle dan Davey menunjukka adanya tekanan di sepanjang headers untuk situasi air memasuki bagian bawah headers pada satu sisi dari kolektor dan meningggalkan bagian atas headers pada sisi lainnya. Pada keadaan ini, perhitungan distribusi tekanan pada bagian atas dan bawah headers ditunjukkan pada gambar 3.11. Temperatur dari pelat absorber dihitung dari bagaimana energi dengan efektif dikeluarkan, dan demikian perbedaan selama temperatur dihitung pada kondisi relatif yang sama pada kolektor individu di banks dihitung dari kekurangan ketidakseragaman dari aliran pada risers. Gambar 3.12 dari dunkle dan Davey, menunjukkan perhitungan temperatur untuk banks dua belas kolektor dihubungkan secara paralel. Data tersebut menunjukkan perubahan temperatur 22oC dari pusat menuju ujung yang mana perbedaannya berarti. Penghubungan



24



unit pada sebuah perencanaan paralel seri atau paralel ganda seperti ditunjukkan pada gambar 3.13 hasilnya distribusi aliran dan temperatur yang lebih seragam.



Gambar 3.11 Perhitungan temperatur eksperimental pada pelat di sebuah banks kolektor dihubungkan secara paralel. Dikutip dari Dunkle dan Davey (1970).



Gambar 3.12 Contoh metode alternatif dari susunan kolektor penghubung pada (a) seri-paralel (b) perencanaan paralel-seri, sesuai dengan yang disarankan oleh Dunkle dan Davey (1970).



25