Calculation Procedure Double Pipe and Multitube Hairpin Heat Exchangers [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Section



Page



IX-H



1 of 28



December, 2001 Changes shown by ➧



CONTENTS Section



Page



SCOPE ............................................................................................................................................................3 REFERENCES.................................................................................................................................................3 EQUIPMENT TYPES AND APPLICATIONS...................................................................................................3 DOUBLE PIPE UNITS.............................................................................................................................3 MULTITUBE UNITS ................................................................................................................................4 DESIGN CONSIDERATIONS..................................................................................................................4 CALCULATION PROCEDURE................................................................................................................4 VENDORS...............................................................................................................................................4 NOMENCLATURE...........................................................................................................................................5 SINGLE PHASE CALCULATION PROCEDURE..........................................................................................14 A.



PROCESS DATA...........................................................................................................................14



B.



PHYSICAL PROPERTIES .............................................................................................................14



C.



EXCHANGER GEOMETRY...........................................................................................................15



D.



TUBESIDE HEAT TRANSFER ......................................................................................................16



E.



ANNULUS HEAT TRANSFER .......................................................................................................16



F.



FIN EFFICIENCY...........................................................................................................................17



G.



OVERALL HEAT TRANSFER COEFFICIENT...............................................................................17



H.



ITERATE FOR WALL TEMPERATURE.........................................................................................18



I.



REQUIRED SURFACE ..................................................................................................................18



J.



TUBESIDE PRESSURE DROP .....................................................................................................19



K.



ANNULUS PRESSURE DROP......................................................................................................20



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION).............................................21 A.



PROCESS DATA...........................................................................................................................21



B.



PHYSICAL PROPERTIES .............................................................................................................21



C.



EXCHANGER GEOMETRY...........................................................................................................22



D.



TUBESIDE HEAT TRANSFER ......................................................................................................23



E.



ANNULUS HEAT TRANSFER .......................................................................................................23



F.



FIN EFFICIENCY...........................................................................................................................24



G.



OVERALL HEAT TRANSFER COEFFICIENT...............................................................................24



H.



ITERATE FOR WALL TEMPERATURE.........................................................................................24



I.



REQUIRED SURFACE ..................................................................................................................25



J.



TUBESIDE PRESSURE DROP .....................................................................................................25



K.



ANNULUS PRESSURE DROP......................................................................................................26



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 2 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



CONTENTS (Cont) Section



Page



TABLES Table 1A Table 1B Table 2A Table 2B Table 3A Table 3B Table 4



Data for Bare and Finned Double Pipe Sections (Customary).......................................7 Data for Bare and Finned Double Pipe Sections (Metric) ..............................................8 Data for Bare Multitube Sections (3 - 16 in.), Customary...............................................9 Data for Bare Multitube Sections (76 - 406 mm), Metric ..............................................10 Data for Bare Multitube Sections (18 - 30 in.), Customary...........................................11 Data for Bare Multitube Sections (457 - 762 mm), Metric ............................................12 Geometric Constants For Double Pipe And Multitube Sections...................................13



FIGURES Figure 1 Figure 2



Typical Hairpin Section ................................................................................................27 Fin Efficiency For Longitudinally Finned Tubes ...........................................................28



Revision Memo 12/01



Reaffirmation of previous revision of DP IX-H, December, 1995, with minor editorial changes.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Section IX-H



Page 3 of 28



December, 2001



SCOPE This section presents a brief description and a single phase calculation procedure for double pipe and multitube hairpin heat exchangers.



REFERENCES GLOBAL PRACTICE GP 6-2-1



Double Pipe and Multitube Hairpin Heat Exchangers



OTHER LITERATURE Hagner, R. C., Petro/Chem Engineer, 27, August 1968 Kern, D. Q., Process Heat Transfer, McGraw Hill, New York 1950 McDonough, M. J., Chemical Engineering, July 20, 1987



EQUIPMENT TYPES AND APPLICATIONS Double pipe and multitube heat exchangers consist of one or more pipes or tubes inside a pipe shell. The units usually consist of two straight tube lengths connected at one end to form a U or “hairpin". A sketch of a typical hairpin section is shown in Figure 1. The two straight shell lengths are connected by a return bend cover referred to as the “bonnet". These exchangers are also available without the hairpin - i.e., a straight section. The use of the hairpin construction rather than a straight length allows the ability to handle differential thermal expansion. One advantage of Hairpins is that the tube bundle is removed from the bonnet end which does not require the disassembly of the piping connections on the other end. Another advantage is that because of the large U-bend diameters even on the smallest U's, it is possible to use a flexible cleaning tool to clean the inside of the tubes. This is difficult to do in the inner tubes of a TEMA type shell-and-tube exchanger. Although some double pipe sections have bare tubes, the majority have longitudinal fins on the outside of the inner tubes. The fins are sometimes slotted to provide enhancement to the outside heat transfer coefficient. Hairpins are available in all the common materials of construction and can be built to the most severe design temperature and pressure requirements expected in petroleum refining. Also, the tubes, fins, and shell can be of different materials. However, since the fins are normally welded to the tubes, the fin and tube materials must be compatible. The use of fin tubes in hairpin sections is normally economical if the annular (shell side) heat transfer coefficient is less than 75% of the tube side coefficient. This is not a hard and fast rule because the break even point is a strong function of the annular heat transfer coefficient and fin material, both of which affect the fin efficiency. The fin efficiency increases with decreasing annular coefficient and increasing fin thermal conductivity. In addition, shorter fins have higher fin efficiencies. Hairpin sections can be combined in a variety of series or parallel arrangements to provide the required surface area while maintaining pressure drop limitations. Sections installed in series are normally mounted one on top of the other. Sections can also be connected in series/parallel (unbalanced) arrangements which are obtained using a combination of side-by-side and stacked mountings.



DOUBLE PIPE UNITS Double pipe sections contain a single inner pipe or tube inside a pipe shell. Commercially available single tube sections have shells ranging from 2 through 6 in. pipe sizes (50 to 150 mm). The inner tube, which may be bare or longitudinally finned, is available with outside diameters of 1/2 to 4-1/2 in. (12 to 114 mm). The fins, 12 to 72 per tube, are 1/2 to 1 in. high (12 to 25 mm), and 35 to 50 mils thick (0.9 to 1.3 mm). For change of phase services, the fins frequently contain holes to allow for fluid redistribution along the length of the tube. Double Pipe sections can be economically justified if the equivalent shell and tube surface area required is less than approximately 400 ft2 (40 m2). However, this criteria is not firm since the relative economics are a function of the service, materials, and installation costs.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 4 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



EQUIPMENT TYPES AND APPLICATIONS (Cont) MULTITUBE UNITS Multitube hairpin sections contain from 7 to 750 tubes, bare or longitudinally finned. Section shells range from 4 through 30 in. (200 to 760 mm) pipe or shell sizes. The inner tubes are available with outside diameters of 5/8 in. to 1-1/4 in. (16 to 37 mm). The fins, 12 to 20 per tube, are nominally 1/4 in. high (6 mm) and 35 mils thick (0.9 mm). The surface area available in multitubes varies from approximately 40 ft2 (3.75 m2) to 7000 ft2 (650 m2). The larger hairpins can economically compete with TEMA type shell-and-tube heat exchangers when multiple shells in series are required due to a temperature cross.



DESIGN CONSIDERATIONS Considerations like fluid placement, fouling factors, minimum velocities are the same as shell-and-tube heat exchangers. Therefore recommendations in Sections IX-B and IX-C should be followed. If the shell-side heat transfer coefficient is small compared to the tubeside, finned tubes should be considered. These exchangers are also available with segmental baffles like a shell-and-tube. To rate exchangers with baffles, refer to Section IX-D.



CALCULATION PROCEDURE The calculation procedure is based on single phase flow in both the tubes and the shell. If the flow on either side is changing phase (vaporization or condensation), follow the tube side calculation procedure in the appropriate subsection (Section IX-E or IX-F) to evaluate the heat transfer coefficient and pressure drop. When the change of phase stream is in the shell, use the hydraulic diameters. The procedure should be used for rating existing equipment and checking vendor calculations. For new designs, it is common practice to supply the process data to the vendor and ask them to provide a design. Geometry parameters of some commonly available sections are given in Tables 1, 2, and 3. This information was provided by Brown Fintube Co. Geometry parameters for sections not listed can be calculated using Table 4, and the vendors listed below may have other standard sizes.



VENDORS The following vendors (all in the USA) may be contacted for additional information and quotations. A Specification Sheet is available in GP 6-2-1. 1.



Brown Fintube Houston, Texas (713) 466-3535



2.



Alco Products Wichita Falls, Texas (940) 723-6366



3.



R. W. Holland Tulsa, Oklahoma (918) 664-7822



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS NOMENCLATURE ft2



(m2)



A Ai Ao Ar As AA AF



= = = = = = =



Total exchanger area, Inside surface area per unit tube length, ft2/ft (m2/m) Outside surface area per unit tube length, ft2/ft (m2/m) Required surface area, ft2 (m2) Surface area of one section, ft2/f (m2/m) Annular flow area, ft2 (m2) Finned surface area per unit tube length, ft2/ft (m2/m)



Cp



=



Fluid specific heat, Btu/lb-°F (kJ/kg-°C)



di do dsni dsno d2 Dhh Dhp



= = = = = = =



Inside diameter of inner tube, in. (mm) Outside diameter of inner tube, in. (mm) Inside diameter of shell inlet nozzle Inside diameter of shell outlet nozzle Inside diameter of shell (or outer pipe), in. (mm) Hydraulic diameter for heat transfer calculations, in. (mm) Hydraulic diameter for pressure drop calculations, in. (mm)



hi



=



Inside film coefficient, based on inside area, Btu/hr-ft2-°F (W/m2-°C)



ho Hf



= =



Annular film coefficient, Btu/hr-ft2-°F (W/m2-°C) Fin height, in.



k



=



Fluid thermal conductivity, Btu/hr-ft-°F (W/m-°C)



kf



=



Thermal conductivity of fin material, Btu/hr-ft-°F (W/m-°C)



kw L



= =



Thermal conductivity of tube wall, Btu/hr-ft-°F (W/m-°C) Straight tube length, ft (m)



LMTD Nf Ns NT



= = = =



Log Mean temperature difference, °F (°C) Number of fins per tube Number of sections in series Number of tubes per section



Pr



=



Prandtl Number, (2.42 µ Cp/k or 1000 µ Cp/k)



∆Pta



=



Total annular pressure drop, psi (kPa)



∆Ptt



=



Total tube side pressure drop, psi (kPa)



∆Pf



=



Pressure drop due to friction, psi (kPa)



∆Pn



=



Pressure drop in the nozzles, psi (kPa)



∆Pe



=



Pressure drop due to expansion, contraction, entrance, psi (kPa)



ExxonMobil Research and Engineering Company – Fairfax, VA



Section IX-H



Page 5 of 28



December, 2001



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT



Page



Section IX-H



6 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS NOMENCLATURE (Cont)



Q



=



Rate of heat transfer (Heat Duty), Btu/hr (W)



rf



=



Inside fouling resistance based on inside surface area, hr-ft2-°F/Btu (m2-°C/W)



rw



=



Tube wall resistance, hr-ft2-°F/Btu (m2-°C/W)



Rf



=



Annular fouling resistance, hr-ft2-°F/Btu (m2-°C/W)



Rio



=



Inside film resistance corrected to outside area, hr-ft2-°F/Btu (m2-°C/W)



Ro



=



Annular film resistance, hr-ft2-°F/Btu (m2-°C/W)



Rt



=



Total resistance to heat transfer, hr-ft2-°F/Btu (m2-°C/W)



Re



=



Reynolds number (dimensionless)



ti



=



Inlet temperature of tubeside fluid, °F (°C)



to



=



Outlet temperature of tubeside fluid, °F (°C)



Tf



=



Fin thickness, in. (mm)



Ti



=



Inlet temperature of annulus fluid, °F (°C)



To



=



Outlet temperature of annulus fluid, °F (°C)



Uo



=



Overall heat transfer coefficient, Btu/hr-ft2-°F (m2-°C/W)



V W X



= = =



Velocity, ft/sec (m/s) Mass flow rate, lb/hr (kg/s) Fin efficiency factor



ρ



=



Fluid density, lb/ft3(kg/m3)



η



=



Fin efficiency



η′



=



Surface efficiency



µ



= Subscripts



Fluid viscosity, cP (Pa•s)



a t w av



annulus tube wall average



= = = =



ExxonMobil Research and Engineering Company – Fairfax, VA



DESIGN PRACTICES



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section IX-H



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Page 7 of 28



December, 2001



TABLE 1A DATA FOR BARE AND FINNED DOUBLE PIPE SECTIONS (CUSTOMARY) SHELL



TUBE



FINS



NOMINAL SIZE



ID d2



NOM. OD



ACTUAL OD, do



THICK.



ID di



(in.)



(in.)



(in.)



(in.)



(in.)



(in.)



1



2.0



2.067



1.0



1.000



0.109



0.782



2



2.0



2.067



1.0



1.000



0.109



3



2.0



2.067



1.0



1.000



4



3.0



3.068



1.5



5



3.0



3.068



1.5



6



3.0



3.068



7



3.0



8



HGT. Hf



ANNULUS AA



FINS AF



TOTAL Ao



(in.)



(ft2)



(ft2)



(ft2)



0



0.50



0.018



0.000



0.782



16



0.50



0.016



0.109



0.782



24



0.50



0.015



1.900



0.145



1.610



0



0.50



0.032



0.000



0.497



0.00



1.18



1.900



0.145



1.610



16



0.50



0.030



1.333



1.831



0.73



4.35



1.5



1.900



0.145



1.610



28



0.50



0.028



2.333



2.831



0.82



6.72



3.068



1.5



1.900



0.145



1.610



36



0.50



0.027



3.000



3.497



0.86



8.30



4.0



4.026



1.5



1.900



0.145



1.610



0



1.00



0.069



0.000



0.497



0.00



1.18



9



4.0



4.026



1.5



1.900



0.145



1.610



16



1.00



0.065



2.667



3.164



0.84



7.51



10



4.0



4.026



1.5



1.900



0.145



1.610



28



1.00



0.062



4.667



5.164



0.90



12.26



11



4.0



4.026



1.5



1.900



0.145



1.610



36



1.00



0.060



6.000



6.497



0.92



15.42



12



4.0



4.026



2.0



2.375



0.154



2.067



0



0.75



0.058



0.000



0.621



0.00



1.15



13



4.0



4.026



2.0



2.375



0.154



2.067



16



0.75



0.055



2.000



2.621



0.76



4.85



14



4.0



4.026



2.0



2.375



0.154



2.067



28



0.75



0.053



3.500



4.121



0.85



7.62



15



4.0



4.026



2.0



2.375



0.154



2.067



40



0.75



0.050



5.000



5.621



0.89



10.39



16



4.0



4.026



2.5



2.875



0.203



2.469



0



0.50



0.043



0.000



0.752



0.00



1.16



17



4.0



4.026



2.5



2.875



0.203



2.469



16



0.50



0.041



1.333



2.086



0.64



3.23



18



4.0



4.026



2.5



2.875



0.203



2.469



32



0.50



0.039



2.667



3.419



0.78



5.29



19



4.0



4.026



2.5



2.875



0.203



2.469



48



0.50



0.037



4.000



4.752



0.84



7.36



20



5.0



5.047



3.0



3.500



0.216



3.068



0



0.688



0.072



0.000



0.916



0.00



1.14



21



5.0



5.047



3.0



3.500



0.216



3.068



28



0.688



0.067



3.208



4.124



0.78



5.14



22



5.0



5.047



3.0



3.500



0.216



3.068



40



0.688



0.065



4.583



5.499



0.83



6.85



23



5.0



5.047



3.0



3.500



0.216



3.068



56



0.688



0.063



6.417



7.333



0.88



9.13



24



6.0



6.065



4.0



4.500



0.237



4.026



0



0.688



0.090



0.000



1.178



0.00



1.12



25



6.0



6.065



4.0



4.500



0.237



4.026



36



0.688



0.084



4.125



5.303



0.78



5.03



26



6.0



6.065



4.0



4.500



0.237



4.026



56



0.688



0.081



6.417



7.594



0.84



7.21



27



6.0



6.065



4.0



4.500



0.237



4.026



72



0.688



0.078



8.250



9.428



0.88



8.95



NO.



NO. Nf



AREAS RATIO AF/Ao



RATIO Ao/Ai



0.262



0.00



1.28



1.333



1.595



0.84



7.79



2.000



2.262



0.88



11.05



Notes: 1. Total surface area (A) for a straight section: As = Ao (L) 2. Total surface area (A) for a hairpin section: As = Ao (2L) 3. GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT



Page



Section IX-H



8 of 28



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



December, 2001



DESIGN PRACTICES



TABLE 1B DATA FOR BARE AND FINNED DOUBLE PIPE SECTIONS (METRIC) SHELL



TUBE



FINS



NOMINAL SIZE



ID d2



NOM. OD



ACTUAL OD, do



THICK.



ID di



(mm)



(mm)



(mm)



(mm)



(mm)



(mm)



1



50.8



52.5



25.4



25.4



2.769



19.86



2



50.8



52.5



25.4



25.4



2.769



3



50.8



52.5



25.4



25.4



4



76.2



77.9



38.1



5



76.2



77.9



6



76.2



7



HGT. Hf



ANNULUS AA



FINS AF



TOTAL Ao



RATIO AF/Ao



RATIO Ao/Ai



(mm)



(m2)



(m2/m)



(m2/m)



0



12.70



0.0017



0.000



0.080



0.00



1.28



19.86



16



12.70



0.0015



0.406



0.486



0.84



7.79



2.769



19.86



24



12.70



0.0014



0.610



0.689



0.88



11.05



48.3



3.683



40.89



0



12.70



0.0029



0.000



0.152



0.00



1.18



38.1



48.3



3.683



40.89



16



12.70



0.0028



0.406



0.558



0.73



4.35



77.9



38.1



48.3



3.683



40.89



28



12.70



0.0026



0.711



0.863



0.82



6.72



76.2



77.9



38.1



48.3



3.683



40.89



36



12.70



0.0025



0.914



1.066



0.86



8.30



8



101.6



102.3



38.1



48.3



3.683



40.89



0



25.40



0.0064



0.000



0.152



0.00



1.18



9



101.6



102.3



38.1



48.3



3.683



40.89



16



25.40



0.0060



0.813



0.964



0.84



7.51



10



101.6



102.3



38.1



48.3



3.683



40.89



28



25.40



0.0057



1.422



1.574



0.90



12.26



11 12



101.6



102.3



38.1



48.3



3.683



40.89



36



25.40



0.0056



1.829



1.980



0.92



15.42



101.6



102.3



50.8



60.3



3.912



52.50



0



19.05



0.0054



0.000



0.189



0.00



1.15



13



101.6



102.3



50.8



60.3



3.912



52.50



16



19.05



0.0051



0.610



0.799



0.76



4.85



14



101.6



102.3



50.8



60.3



3.912



52.50



28



19.05



0.0049



1.067



1.256



0.85



7.62



15



101.6



102.3



50.8



60.3



3.912



52.50



40



19.05



0.0047



1.524



1.713



0.89



10.39



16



101.6



102.3



63.5



73.0



5.156



62.71



0



12.70



0.0040



0.000



0.229



0.00



1.16



17



101.6



102.3



63.5



73.0



5.156



62.71



16



12.70



0.0038



0.406



0.636



0.64



3.23



18



101.6



102.3



63.5



73.0



5.156



62.71



32



12.70



0.0037



0.813



1.042



0.78



5.29



19



101.6



102.3



63.5



73.0



5.156



62.71



48



12.70



0.0035



1.219



1.448



0.84



7.36



20



127.0



128.2



76.2



88.9



5.486



77.93



0



17.46



0.0067



0.000



0.279



0.00



1.14



21



127.0



128.2



76.2



88.9



5.486



77.93



28



17.46



0.0063



0.978



1.257



0.78



5.14



22



127.0



128.2



76.2



88.9



5.486



77.93



40



17.46



0.0061



1.397



1.676



0.83



6.85



23



127.0



128.2



76.2



88.9



5.486



77.93



56



17.46



0.0058



1.956



2.235



0.88



9.13



24



152.4



154.1



101.6



114.3



6.020



102.26



0



17.46



0.0084



0.000



0.359



0.00



1.12



25



152.4



154.1



101.6



114.3



6.020



102.26



36



17.46



0.0078



1.257



1.616



0.78



5.03



26



152.4



154.1



101.6



114.3



6.020



102.26



56



17.46



0.0075



1.956



2.315



0.84



7.21



27



152.4



154.1



101.6



114.3



6.020



102.26



72



17.46



0.0073



2.515



2.874



0.88



8.95



NO.



NO. Nf



AREAS



Notes: 1. 2. 3.



Total surface area (A) for a straight section: As = Ao (L) Total surface area (A) for a hairpin section: As = Ao (2L) GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section IX-H



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Page 9 of 28



December, 2001



TABLE 2A DATA FOR BARE MULTITUBE SECTIONS (3 - 16 IN.), CUSTOMARY SHELL



TUBE



NOMINAL SIZE



ID d2



OD do



THICK.



(in.)



(in.)



(in.)



(in.)



28



3.0



3.068



0.750



0.109



29



4.0



4.026



0.750



30



4.0



4.026



1.000



31



5.0



5.047



32



5.0



33



6.0



34



AREAS ID di



ANNULUS AA



TOTAL AoNT



U BEND



(in.)



(ft2)



(ft2/ft)



(ft2)



7



0.532



4.30



1.37



1.09



1.41



0.109



10



0.532



8.31



1.96



1.93



1.41



0.109



7



0.782



7.23



1.83



1.80



1.28



0.750



0.109



19



0.532



11.61



3.73



4.39



1.41



5.047



1.000



0.109



8



0.782



13.72



2.09



2.47



1.28



6.065



0.750



0.109



24



0.532



18.28



4.71



7.40



1.41



6.0



6.065



1.000



0.109



13



0.782



18.67



3.40



5.35



1.28



35



8.0



7.981



0.750



0.109



48



0.532



28.81



9.42



16.50



1.41



36



8.0



7.981



1.000



0.109



24



0.782



31.16



6.28



11.00



1.28



37



10.0



10.020



0.750



0.109



85



0.532



41.28



16.68



38.22



1.41



38



10.0



10.020



1.000



0.109



42



0.782



45.84



10.99



25.19



1.28



39



12.0



11.938



0.750



0.109



121



0.532



58.45



23.75



62.18



1.41



40



12.0



11.938



1.000



0.109



64



0.782



61.63



16.75



43.87



1.28



41



16.0



15.000



0.750



0.109



199



0.532



88.75



39.05



132.95



1.41



42



16.0



15.000



1.000



0.109



109



0.782



91.06



28.52



97.12



1.28



43



4.0



4.026



0.750



0.109



9



0.532



8.75



1.77



1.11



1.41



44



5.0



5.047



0.750



0.109



12



0.532



14.70



2.36



2.78



1.41



45



5.0



5.047



1.000



0.109



9



0.782



12.93



2.36



2.78



1.28



46



6.0



6.065



0.750



0.109



21



0.532



19.60



4.12



6.48



1.41



47



6.0



6.065



1.000



0.109



12



0.782



19.46



3.14



4.93



1.28



48



8.0



7.981



0.750



0.109



37



0.532



33.66



7.26



12.72



1.41



NO.



NO. NT



RATIO Ao/Ai



49



8.0



7.981



1.000



0.109



24



0.782



31.16



6.28



11.00



1.28



50



10.0



10.020



0.750



0.109



61



0.532



51.88



11.97



27.43



1.41



51



10.0



10.020



1.000



0.109



37



0.782



49.77



9.68



22.19



1.28



52



12.0



11.938



0.750



0.109



89



0.532



72.58



17.47



45.74



1.41



53



12.0



11.938



1.000



0.109



57



0.782



67.13



14.92



39.07



1.28



54



16.0



15.000



0.750



0.109



148



0.532



111.27



29.05



98.88



1.41



55



16.0



15.000



1.000



0.109



97



0.782



100.48



25.38



86.43



1.28



Notes: 1. 2. 3. 4.



Section No. 28-42 are for triangular layout; 43-55 are for rotated square layout. Total surface area (A) for a straight section: As = AoNT (L) Total surface area (A) for a hairpin section: As = AoNT (2L) + U bend area GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT



Page



Section IX-H



10 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



TABLE 2B DATA FOR BARE MULTITUBE SECTIONS (76 - 406 MM), METRIC SHELL



TUBE



NOMINAL SIZE



ID d2



OD do



THICK.



(mm)



(mm)



(mm)



(mm)



28



76.2



77.9



19.1



2.8



29



101.6



102.3



19.1



30



101.6



102.3



25.4



31



127.0



128.2



32



127.0



33



152.4



34



AREAS NO. NT



ID di



ANNULUS AA



TOTAL AoNT



U BEND



(mm)



(m2)



(m2/m)



(m2)



7



13.51



0.0028



0.42



0.10



1.41



2.8



10



13.51



0.0054



0.60



0.18



1.41



2.8



7



19.86



0.0047



0.56



0.17



1.28



19.1



2.8



19



13.51



0.0075



1.14



0.41



1.41



128.2



25.4



2.8



8



19.86



0.0088



0.64



0.23



1.28



154.1



19.1



2.8



24



13.51



0.0118



1.44



0.69



1.41



152.4



154.1



25.4



2.8



13



19.86



0.0120



1.04



0.50



1.28



35



203.2



202.7



19.1



2.8



48



13.51



0.0186



2.87



1.53



1.41



36



203.2



202.7



25.4



2.8



24



19.86



0.0201



1.91



1.02



1.28



37



254.0



254.5



19.1



2.8



85



13.51



0.0266



5.08



3.55



1.41



38



254.0



254.5



25.4



2.8



42



19.86



0.0296



3.35



2.34



1.28



39



304.8



303.2



19.1



2.8



121



13.51



0.0377



7.24



5.78



1.41



40



304.8



303.2



25.4



2.8



64



19.86



0.0398



5.10



4.08



1.28



41



406.4



381.0



19.1



2.8



199



13.51



0.0573



11.90



12.35



1.41



42



406.4



381.0



25.4



2.8



109



19.86



0.0587



8.69



9.02



1.28



43



101.6



102.3



19.1



2.8



9



13.51



0.0056



0.54



0.10



1.41



44



127.0



128.2



19.1



2.8



12



13.51



0.0095



0.72



0.26



1.41



45



127.0



128.2



25.4



2.8



9



19.86



0.0083



0.72



0.26



1.28



46



152.4



154.1



19.1



2.8



21



13.51



0.0126



1.26



0.60



1.41



47



152.4



154.1



25.4



2.8



12



19.86



0.0126



0.96



0.46



1.28



48



203.2



202.7



19.1



2.8



37



13.51



0.0217



2.21



1.18



1.41



49



203.2



202.7



25.4



2.8



24



19.86



0.0201



1.91



1.02



1.28



50



254.0



254.5



19.1



2.8



61



13.51



0.0335



3.65



2.55



1.41



51



254.0



254.5



25.4



2.8



37



19.86



0.0321



2.95



2.06



1.28



52



304.8



303.2



19.1



2.8



89



13.51



0.0468



5.32



4.25



1.41



53



304.8



303.2



25.4



2.8



57



19.86



0.0433



4.55



3.63



1.28



54



406.4



381.0



19.1



2.8



148



13.51



0.0718



8.85



9.19



1.41



55



406.4



381.0



25.4



2.8



97



19.86



0.0648



7.74



8.03



1.28



NO.



RATIO Ao/Ai



Notes: 1. 2. 3. 4.



Section No. 28-42 are for triangular layout; 43-55 are for rotated square layout. Total surface area (A) for a straight section: As = AoNT (L) Total surface area (A) for a hairpin section: As = AoNT (2L) + U bend area GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section IX-H



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Page 11 of 28



December, 2001



TABLE 3A DATA FOR BARE MULTITUBE SECTIONS (18 - 30 IN.), CUSTOMARY SHELL



TUBE



NOMINAL SIZE



ID d2



OD do



THICK.



(in.)



(in.)



(in.)



(in.)



56



18.0



17.250



0.750



0.109



57



18.0



17.250



1.000



58



20.0



19.250



59



20.0



60



AREAS NO. NT



ID di



ANNULUS AA



TOTAL AoNT



U BEND



(in.)



(in.2)



(ft2/ft)



(ft2)



241



0.532



127.17



47.30



161.00



1.41



0.109



130



0.782



131.54



34.02



116.00



1.28



0.750



0.109



304



0.532



156.66



59.66



234.40



1.41



19.250



1.000



0.109



163



0.782



162.94



42.65



168.00



1.28



22.0



21.250



0.750



0.109



380



0.532



186.68



74.58



322.30



1.41



61



22.0



21.250



1.000



0.109



208



0.782



191.20



54.43



235.00



1.28



62



24.0



23.250



0.750



0.109



463



0.532



219.90



90.86



428.40



1.41



63



24.0



23.250



1.000



0.109



253



0.782



225.74



66.20



312.00



1.28



64



26.0



25.250



0.750



0.109



559



0.532



253.65



109.70



488.50



1.41



65



26.0



25.250



1.000



0.109



301



0.782



264.20



78.76



351.00



1.28



66



28.0



27.250



0.750



0.109



649



0.532



296.34



127.37



600.50



1.41



67



28.0



27.250



1.000



0.109



361



0.782



299.53



94.46



446.00



1.28



68



30.0



29.125



0.750



0.109



752



0.532



333.83



147.58



879.00



1.41



69



30.0



29.125



1.000



0.109



421



0.782



335.40



110.16



650.00



1.28



NO.



RATIO Ao/Ai



Notes: 1. 2. 3. 4.



Data are for triangular layout. Total surface area (A) for a straight section: As = AoNT (L) Total surface area (A) for a hairpin section: As = AoNT (2L) + U bend area GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT



Page



Section IX-H



12 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



TABLE 3B DATA FOR BARE MULTITUBE SECTIONS (457 - 762 MM), METRIC SHELL



TUBE



NOMINAL SIZE



ID d2



OD do



THICK.



(mm)



(mm)



(mm)



(mm)



56



457.2



438.2



19.05



2.8



57



457.2



438.2



25.40



58



508.0



489.0



59



508.0



60



AREAS NO. NT



ID di



ANNULUS AA



TOTAL AoNT



U BEND



(mm)



(m2)



(m2/m)



(m2)



241



13.51



0.082



14.42



14.96



1.41



2.8



130



19.86



0.085



10.37



10.78



1.28



19.05



2.8



304



13.51



0.101



18.18



21.78



1.41



489.0



25.40



2.8



163



19.86



0.105



13.00



15.61



1.28



558.8



539.8



19.05



2.8



380



13.51



0.120



22.73



29.94



1.41



61



558.8



539.8



25.40



2.8



208



19.86



0.123



16.59



21.83



1.28



62



609.6



590.6



19.05



2.8



463



13.51



0.142



27.70



39.80



1.41



63



609.6



590.6



25.40



2.8



253



19.86



0.146



20.18



28.99



1.28



64



660.4



641.4



19.05



2.8



559



13.51



0.164



33.44



45.38



1.41



65



660.4



641.4



25.40



2.8



301



19.86



0.170



24.01



32.61



1.28



66



711.2



692.2



19.05



2.8



649



13.51



0.191



38.82



55.79



1.41



67



711.2



692.2



25.40



2.8



361



19.86



0.193



28.79



41.43



1.28



68



762.0



739.8



19.05



2.8



752



13.51



0.215



44.98



81.66



1.41



69



762.0



739.8



25.40



2.8



421



19.86



0.216



33.58



60.39



1.28



NO.



RATIO Ao/Ai



Notes: 1. 2. 3. 4.



Data are for triangular layout. Total surface area (A) for a straight section: As = AoNT (L) Total surface area (A) for a hairpin section: As = AoNT (2L) + U bend area GP 6-2-1 requires a minimum Schedule 40 shell for carbon and low alloy steel, and Schedule 10 for high alloy and non-ferrous material.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



IX-H



Page 13 of 28



December, 2001



TABLE 4 GEOMETRIC CONSTANTS FOR DOUBLE PIPE AND MULTITUBE SECTIONS Annular flow area, AA, ft2 (m2)



[



(



C1 π d22 − NT π d 20 + 4 Nf Hf Tf



)]



C1 =



1 (Customary ) or 2.5 × 1 0−7 (Metric ) 576



C2 =



1 (Customary ) or 10 −3 (Metric ) 12



Finned surface area per unit tube length, AF, ft2/ft (m2/m)



[



C2 NF (2Hf + Tf )



]



Inside surface area per unit tube length, Ai, ft2/ft (m2/m) C2 [π d i ]



tside surface area per unit tube length, Ao, ft2/ft (m2/m) C2 [π do + 2 Nf Hf ] Area of one section, As, ft2 (m2) Straight:



Ao NT L



Hairpin:



Ao NT (2L) + U-bend



If U-bend surface is not known, use 5% of AoNT (2L) as an estimate. Hydraulic diameter for heat transfer calculations, Dhh, in. (mm) é AA ù C3 ê ú ë NT A o û



C3 = 48 (Customary ) or 4000 (Metric )



Hydraulic diameter for pressure drop calculations, Dhp, in. (mm) é ù AA C3 ê ú êë NT A o + C2 π d2 úû



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 14 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE Exch No.:



Plant:



Date:



Service:



A.



Done By:



PROCESS DATA CUSTOMARY UNITS 1.



2.



B.



METRIC UNITS



Tubeside ti, Inlet temperature



°F



to, Outlet temperature



°C



°F



°C



Wt, Flow rate



lb/hr



kg/s



tav, Average bulk temp., (ti + to)/2



°F



°C



rf, fouling factor



hr-ft2-°F/Btu



m2-°C/W



kw, wall thermal conductivity



Btu/hr-ft-°F



W/m-°C



Annulus side Ti, Inlet temperature



°F



°C



To, Outlet temperature



°F



°C



Wa, Flow rate



lb/hr



kg/s



Tav, Average bulk temp., (Ti + To)/2



°F



°C



Rf, fouling factor



hr-ft2-°F/Btu



m2-°C/W



µi, Viscosity @ inlet



cP



Pa•s



µo, Viscosity @ outlet



cP



Pa•s



µav, t Viscosity @ tav



cP



Pa•s



Cpt, Specific heat @ tav



Btu/lb-°F



kJ/kg-°C



kt, Thermal conductivity @ tav



Btu/hr-ft-°F



W/m-°C



ρt, Density @ tav



lb/ft3



kg/m3



µi, Viscosity @ inlet



cP



Pa•s



µo, Viscosity @ outlet



cP



Pa•s



µav, a Viscosity @ Tav



cP



Pa•s



Cpa, Specific heat @ Tav



Btu/lb-°F



kJ/kg-°C



ka, Thermal conductivity @ Tav



Btu/hr-ft-°F



W/m-°C



ρa, Density @ Tav



lb/ft3



kg/m3



PHYSICAL PROPERTIES 1.



2.



Tubeside



Annulus side



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Page



IX-H



15 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (Cont) 3.



Heat duty and heat balance Qt = W t Cpt (to - ti)



Btu/hr



kW



Qa = W a Cpa (To - Ti)



Btu/hr



kW



Btu/hr



kW



Qav =



Q t + Qa 2



If Qt and Qa differ by more than 10%, check the data or recalculate one of the outlet temperatures so that the two duties are equal.



C.



EXCHANGER GEOMETRY Select from Table 1, 2, or 3, or calculate using Table 4. 1.



Number of sections in series, Ns Nominal straight length, L



ft.



m



Height, Hf



in.



mm



Thickness, Tf



in.



mm



Thermal Conductivity, kf



Btu/hr-ft-°F



W/m-°C



Outside Diameter, do



in.



mm



Inside Diameter, di



in.



mm



Surface area, Ai



ft2/ft



m2/m



Inside Diameter, d2



in.



mm



Flow area, AA



ft2



m2



Fin area, AF



ft2/ft



m2/m



Tube Outside area, Ao



ft2/ft



m2/m



Total surface area of one section, As



ft2



m2



Total surface area of all sections, A = AsNs



ft2



m2



Hydraulic diameter for heat transfer, Dhh (use Table 4)



in.



mm



Hydraulic diameter for pressure drop, Dhp (Use Table 4)



in.



mm



Number of tubes per section, NT 2.



Fins Number, Nf



3.



4.



Tubeside



Annulus Side



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 16 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (Cont) D.



TUBESIDE HEAT TRANSFER Follow the procedure for tubeside calculation in Section IX-D, beginning with the step to calculate the velocity Vt. Velocity, Vt



ft/s



m/s



Btu/hr-ft2-°F



W/m2-°C



Reynolds No., Ret For water



Coefficient, hi



Other than water



Prandtl No., Prt



2.42 µ Cp / k



Coefficient, hi (Use di not do) Resistance, Rio =



E.



1 hi



æ Ao ö ç ÷ çA ÷ è i ø



1000 µ Cp / k



Btu/hr-ft2-°F



W/m2-°C



hr-ft2-°F/Btu



m2-°C/W



ANNULUS HEAT TRANSFER Velocity, Va



Wa 3600 ρ A A



Wa ρ AA ft/s



m/s



Now follow the same procedure as for the tubeside except use Dhh instead of di in all equations. Reynolds No., Rea For water



Coefficient, ho



Btu/hr-ft2-°F



W/m2-°C



Btu/hr-ft2-°F



W/m2-°C



hr-ft2-°F/Btu



m2-°C/W



Other than water Prandtl No., Pra Coefficient, ho Resistance, Ro =



1 ho



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



IX-H



FIN EFFICIENCY



ha =



1 Ro + R f



X= Hf



ha 6 k f Tf



Hf



ha 500 k f Tf



η, fin efficiency, read from Figure 2 η′, surface efficiency = η



G.



æ AF A ö + çç1 − F ÷÷ Ao Ao ø è



OVERALL HEAT TRANSFER COEFFICIENT rw, Tubewall resistance



æd ö do In çç o ÷÷ 24 k w è di ø



æd ö do In çç o ÷÷ 2000 k w è di ø hr-ft2-°F/Btu



m2-°C/W



hr-ft2-°F/Btu



m2-°C/W



R1, total resistance = Rio + rf



æ R + Ro ö Ao ÷÷ + rw + çç f Ai η′ è ø



Uo, overall heat transfer coefficient, based on surface area A =



1 Rt



Btu/hr-ft2-°F



ExxonMobil Research and Engineering Company – Fairfax, VA



17 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (Cont) F.



Page



W/m2-°C



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 18 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (Cont) H.



ITERATE FOR WALL TEMPERATURE



tw, average tubeside wall temperature æ A ö = tav + Uo çç Rio + rf o ÷÷ (Tav − tav ) Ai ø è



°F



°C



°F



°C



Tw, average annulus side wall temperature æ R + rf ö ÷÷ (Tav − tav ) = Tav − Uo çç o η è ø



Return to item D to correct the wall viscosity, µw, and repeat if necessary.



I.



REQUIRED SURFACE LMTD if countercurrent flow =



(Ti



− t o ) − (To − ti ) é T − to ù ln ê i ú ë To − ti û



°F



°C



°F



°C



ft2



m2



LMTD if cocurrent flow =



(Ti



− ti ) − (To − to ) é T − ti ù ln ê i ú ë To − t o û



Ar, required surface area Qav = Uo (LMTD )



Compare Ar to A. If Ar > A, then sufficient surface is available to perform the heat duty Qav. If Ar < A, then the surface is not sufficient, and either the area (A) or the coefficient (Uo) should be increased. A can be increased by selecting a larger shell size or by using finned tubes. Uo can be increased by using the heat transfer enhancement techniques described in Section IX-A.



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



IX-H



Page 19 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (Cont) J.



TUBESIDE PRESSURE DROP Follow the procedure for tubeside calculation in Section IX-D, except Pe. ∆Pe, entrance, expansion, and turnaround pressure drop per section



æ 3 ρ Vt2 ö ç ÷ ç 9270 ÷ è ø



æ 3 ρ Vt2 ö ç ÷ ç 2000 ÷ è ø



psi



kPa



psi



kPa



psi



kPa



∆Pf, tube friction pressure drop per section (Use total hairpin length including U-bend and Number of tube passes, NTP = 1). ∆Ptt, total tubeside pressure drop = (∆Pe + ∆Pf) Ns



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 20 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (Cont) K.



ANNULUS PRESSURE DROP Follow the procedure for tubeside calculation in Section IX-D, beginning with step 13, except Pe. Use Dhp instead of di in all equations. Inlet nozzle size, dsni



in.



mm



Outlet nozzle size, dsno



in.



mm



Vn, nozzle velocity



ft/s



m/s



∆Pn, nozzle pressure drop per section



psi



kPa



∆Pe, entrance, expansion, and turnaround pressure drop per section



æ 3 ρ Va2 ö ç ÷ ç 9270 ÷ è ø



æ 3 ρ Va2 ö ç ÷ ç 2000 ÷ è ø



psi



Reynolds number for pressure drop, Reap



kPa



124 ρ Va Dhp



ρ Va Dhp



µav,a



1000 µav,a



∆Pf, annulus friction pressure drop per section (Use total hairpin length including U-bend and NTP =1)



psi



kPa



psi



kPa



∆Pta, total annulus pressure drop = (∆Pn + ∆Pe + ∆Pf) Ns



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section IX-H



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Page 21 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) Exch No.:



Plant:



Date:



Service:



A.



Done By:



PROCESS DATA CUSTOMARY



1.



Tubeside



ti, Inlet temperature



86



°F



30



°C



to, Outlet temperature



120



°F



49



°C



Wt, Flow rate



30,650



tav, Average bulk temp., (ti + to)/2 rf, fouling factor kw, wall thermal conductivity 2.



B.



METRIC



103 0.002



lb/hr



3.86



kg/s



°F



39.5



°C



hr-ft2-°F/Btu



0.00035



m2-°C/W



26



Btu/hr-ft-°F



45



W/m-°C



Ti, Inlet temperature



181



°F



83



°C



To, Outlet temperature



104



°F



40



°C



Annulus side



Wa, Flow rate



20,000



lb/hr



2.52



kg/s



Tav, Average bulk temp., (Ti + To)/2



142.5



°F



61.5



°C



Rf, fouling factor



0.001



hr-ft2-°F/Btu



0.834



cP



8.34 x 10-4



Pa•s



10-4



Pa•s Pa•s



0.00018



m2-°C/W



PHYSICAL PROPERTIES 1.



Tubeside



µi, Viscosity @ inlet



2.



µo, Viscosity @ outlet



0.575



cP



5.75 x



µav, t Viscosity @ tav



0.678



cP



6.78 x 10-4



Cpt, Specific heat @ tav



1.00



Btu/lb-°F



4.19



kJ/kg-°C



kt, Thermal conductivity @ tav



0.364



0.63



W/m-°C



ρt, Density @ tav



61.8



Btu/hr-ft-°F lb/ft3



989.9



kg/m3



0.070



cP



7.0 x 10-5



Pa•s



10-4



Pa•s Pa•s



Annulus side



µi, Viscosity @ inlet µo, Viscosity @ outlet



0.116



cP



1.16 x



µav, a Viscosity @ Tav



0.098



cP



9.8 x 10-5



Cpa, Specific heat @ Tav



0.691



Btu/lb-°F



2.89



ka, Thermal conductivity @ Tav



0.079



Btu/hr-ft-°F



0.137



W/m-°C



ρa, Density @ Tav



29.9



lb/ft3



478.9



kg/m3



ExxonMobil Research and Engineering Company – Fairfax, VA



kJ/kg-°C



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 22 of 28



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



December, 2001



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) (Cont) 3.



Heat duty and heat balance Qt = W t Cpt (to - ti) Qa = W a Cpa (To - Ti) Qav =



1,042,100



Btu/hr



307.3



kW



1,064,140



Btu/hr



313.2



kW



1,053,120



Btu/hr



310.3



kW



Qt + Qa 2



If Qt and Qa differ by more than 10%, check the data or recalculate one of the outlet temperatures so that the two duties are equal. C.



EXCHANGER GEOMETRY Select from Table 1, 2, or 3, or calculate using Table 4. 1.



2.



Number of sections in series, Ns



3



Nominal straight length, L



20



Number of tubes, NT



7



7



20



20



6.1



m



Height, Hf



0.210



in.



5.334



mm



Thickness, Tf



0.035



in.



0.889



mm



Btu/hr-ft-°F



216.4



W/m-°C



Thermal Conductivity, kf



125



Tubeside



Outside Diameter, do



0.875



in.



22.225



mm



Inside Diameter, di



0.709



in.



18.009



mm



0.186



ft2/ft



0.0566



m2/m



Inside Diameter, d2



4.026



in.



102.26



mm



Flow area, AA



0.052



ft2



0.00483



m2



Fin area, AF



0.758



ft2/ft



0.231



m2/m



Tube Outside area, Ao



0.929



ft2/ft



0.283



m2/m



Total surface area of one section, As



273.1



ft2



25.38



m2



Total surface area of all sections, A = As Ns



819.4



ft2



76.14



m2



Hydraulic diameter for heat transfer, Dhh (use Table 4)



0.384



in.



9.75



mm



Hydraulic diameter for pressure drop, Dhp (Use Table 4)



0.330



in.



8.39



mm



Surface area, Ai 4.



ft.



Fins



Number, Nf



3.



3



Annulus Side



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



IX-H



Page 23 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) (Cont) D.



TUBESIDE HEAT TRANSFER Follow the procedure for tubeside calculation in Section IX-D, beginning with the step to calculate the velocity Vt. Velocity, Vt Reynolds No., Ret For water



7.18



ft/s



57553



2.19 57583



Btu/hr-ft2-°F



Coefficient, hi



m/s



W/m2-°C



Other than water



Prandtl No., Prt Coefficient, hi (Use di not do) Resistance, Rio =



E.



1 hi



æ Ao ö ç ÷ çA ÷ è i ø



4.51



4.51



1636



Btu/hr-ft2-°F



9040



W/m2-°C



0.00305



hr-ft2-°F/Btu



0.000553



m2-°C/W



ANNULUS HEAT TRANSFER Velocity, Va



Wa 3600 ρ A A 3.57



Wa ρ AA ft/s



1.09



m/s



Now follow the same procedure as for the tubeside except use Dhh instead of di in all equations. Reynolds No., Rea For water



51864



51934 Btu/hr-ft2-°F



Coefficient, ho



W/m2-°C



Other than water



Resistance, Ro =



1 ho



Prandtl No., Pra



2.07



Coefficient, ho



428



0.00234



2.07 Btu/hr-ft2-°F



2448



W/m2-°C



hr-ft2-°F/Btu



0.00041



m2-°C/W



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 24 of 28



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



December, 2001



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) (Cont) F.



FIN EFFICIENCY



ha =



1 Ro + R f



299.4



X=



Hf



η, fin efficiency, read from Figure 2



1695



ha 6 k f Tf



Hf



ha 500 k f Tf



0.709



0.709



0.86



0.86



0.89



0.89



η′, surface efficiency = η



G.



æ A ö AF + çç1 − F ÷÷ Ao Ao ø è



OVERALL HEAT TRANSFER COEFFICIENT rw, Tubewall resistance



æd ö do In çç o ÷÷ 24 k w è di ø



æd ö do In çç o ÷÷ 2000 k w è di ø



0.0003



hr-ft2-°F/Btu



0.000052



m2-°C/W



0.0171



hr-ft2-°F/Btu



0.00302



m2-°C/W



331.4



W/m2-°C



Rt, total resistance = Rio + rf



æ R + Ro ö Ao ÷÷ + rw + çç f Ai η′ è ø



Uo, overall heat transfer coefficient, based on surface area A =



H.



1 Rt



58.5



Btu/hr-ft2-°F



ITERATE FOR WALL TEMPERATURE



tw, average tubeside wall temperature æ A ö = t av + Uo çç Rio + rf o ÷÷ (Tav − t av ) Ai ø è



133



°F



56



°C



Tw, average annulus side wall temperature æR +r = Tav − Uo çç o f è η



ö ÷÷ (Tav − tav ) ø



134



°F



Return to item D to correct the wall viscosity, µw, and repeat if necessary. ExxonMobil Research and Engineering Company – Fairfax, VA



56



°C



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



Section



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



IX-H



Page 25 of 28



December, 2001



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) (Cont) I.



REQUIRED SURFACE LMTD if countercurrent flow



=



(Ti − to ) − (To − ti ) éT − t ù ln ê i o ú ë To − ti û



35.2



°F



19.6



°C



LMTD if cocurrent flow



=



(Ti − ti ) − (To − to ) é T −t ù ln ê i i ú ë To − t o û



°F



Ar, required surface area



X



Qav × 1000 Uo (LMTD )



Qav Uo (LMTD )



511.4



°C



ft2



47.8



m2



Compare Ar to A. If Ar > A, then sufficient surface is available to perform the heat duty Qav. If Ar < A, then the surface is not sufficient, and either the area (A) or the coefficient (Uo) should be increased. A can be increased by selecting a larger shell size or by using finned tubes. Uo can be increased by using the heat transfer enhancement techniques described in Section IX-A.



J.



TUBESIDE PRESSURE DROP Follow the procedure for tubeside calculation in Section IX-D, except Pe. ∆Pe, entrance, expansion, and turnaround pressure drop per section



æ 3 ρ Vt2 ö ç ÷ ç 9270 ÷ è ø



æ 3 ρ Vt2 ö ç ÷ ç 2000 ÷ è ø



1.03



psi



7.12



kPa



5.97



psi



41.2



kPa



21.0



psi



145



kPa



∆Pf, tube friction pressure drop per section (Use total hairpin length including U-bend and Number of tube passes, NTP = 1). ∆Ptt, total tubeside pressure drop = (∆Pe + ∆Pf) Ns



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 26 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



SINGLE PHASE CALCULATION PROCEDURE (SAMPLE CALCULATION) (Cont) K.



ANNULUS PRESSURE DROP Follow the procedure for tubeside calculation in Section IX-D, beginning with step 13, except Pe. Use. Dhp instead of di in all equations. Inlet nozzle size, dsni



3.0



in.



76.2



mm



Outlet nozzle size, dsno



3.0



in.



76.2



mm



Vn, nozzle velocity



3.8



ft/s



1.15



m/s



0.083



psi



0.57



kPa



∆Pn, nozzle pressure drop per section ∆Pe, entrance, expansion, and turnaround pressure drop per section



æ 3 ρ Va2 ö ç ÷ ç 9270 ÷ è ø



0.123



Reynolds number for pressure drop, Reap



æ 3 ρ Va2 ö ç ÷ ç 2000 ÷ è ø



psi



0.85



124 ρ Va Dhp



ρ Va Dhp



µav,a



1000 µav,a



44570



kPa



44690



∆Pf, annulus friction pressure drop per section (Use total hairpin length including U-bend and NTP =1)



1.61



psi



11.12



kPa



5.4



psi



37.62



kPa



∆Ptt, total tubeside pressure drop = (∆Pn + ∆Pe + ∆Pf) Ns



ExxonMobil Research and Engineering Company – Fairfax, VA



ExxonMobil Proprietary HEAT EXCHANGE EQUIPMENT DESIGN PRACTICES



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



Section IX-H



Tube Bundle Front End Closure



Shell



Movable Support



DP9HF01



ExxonMobil Research and Engineering Company – Fairfax, VA



27 of 28



December, 2001



FIGURE 1 TYPICAL HAIRPIN SECTION



Bonnet



Page



ExxonMobil Proprietary Section IX-H



HEAT EXCHANGE EQUIPMENT



Page 28 of 28



December, 2001



CALCULATION PROCEDURE DOUBLE PIPE AND MULTITUBE HAIRPIN HEAT EXCHANGERS



DESIGN PRACTICES



FIGURE 2 FIN EFFICIENCY FOR LONGITUDINALLY FINNED TUBES 1.0



0.9



0.8



0.7



Fin Efficiency, Ef



0.6



0.5



0.4



0.3



0.2



0.1



0 0



1



2



3



X



ExxonMobil Research and Engineering Company – Fairfax, VA



4



5 DP9HF02