Chemical Composition of Wood Pettersen 1984 [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

2 The Chemical Composition of Wood R O G E R C. P E T T E R S E N



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, W I 53705



This chapter includes overall chemical composition of wood, methods of analysis, structure of hemicellulose components and degree of polymerization of carbohydrates. Tables of data are compiled for woods of several countries. Components include: cellulose (Cross and Bevan, holo-, and alpha-), lignin, pentosans, and ash. Solubilities in 1% sodium hydroxide, hot water, e t h a n o l / benzene, and ether are reported. The data were collected at Forest Products Laboratory (Madison, Wisconsin) from 1927-68 and were previously unpublished. These data include both United States and foreign woods. Previously published data include compositions of woods from Borneo, Brazil, Cambodia, Chile, Colombia, Costa Rica, Ghana, Japan, Mexico, Mozambique, Papua New Guinea, the Philippines, Puerto Rico, Taiwan, and the USSR. Data from more detailed analyses are presented for common temperate-zone woods and include the individual sugar composition (as glucan, xylan, galactan, arabinan, and mannan), uronic anhydride, acetyl, lignin, and ash.



THE CHEMICAL COMPOSITION



of w o o d cannot be defined p r e ­ cisely for a g i v e n tree species o r e v e n for a g i v e n tree. C h e m i c a l c o m p o s i t i o n v a r i e s w i t h t r e e p a r t (root, s t e m , o r b r a n c h ) , t y p e o f w o o d (i.e., n o r m a l , tension, or compression) geographic location, c l i ­ mate, a n d soil conditions. Analytical data accumulated from m a n y years of w o r k a n d f r o m m a n y different laboratories have h e l p e d to define average e x p e c t e d values for the c h e m i c a l c o m p o s i t i o n of w o o d . O r d i n a r y c h e m i c a l analysis can d i s t i n g u i s h b e t w e e n h a r d w o o d s (angiosperms) a n d softwoods (gymnosperms). U n f o r t u n a t e l y , such t e c h ­ n i q u e s c a n n o t b e u s e d to i d e n t i f y i n d i v i d u a l tree species b e c a u s e o f the variation w i t h i n each species a n d the similarities a m o n g m a n y s p e c i e s . F u r t h e r i d e n t i f i c a t i o n is p o s s i b l e w i t h d e t a i l e d c h e m i c a l a n a l This chapter not subject to U.S. copyright. Published 1984, of American Chemical Society In The Chemistry Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



58



THE CHEMS ITRY OF SOLID WOOD



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



y s i s o f e x t r a c t i v e s ( c h e m o t a x o n o m y ) . C h e m o t a x o n o m y is d i s c u s s e d f u l l y e l s e w h e r e i n t h e l i t e r a t u r e ( I , 2). T h e r e are two major c h e m i c a l c o m p o n e n t s i n w o o d : lignin ( 1 8 35%) a n d c a r b o h y d r a t e ( 6 5 - 7 5 % ) . B o t h are c o m p l e x , p o l y m e r i c m a ­ terials. M i n o r amounts of extraneous materials, mostly i n the form o f o r g a n i c e x t r a c t i v e s a n d i n o r g a n i c m i n e r a l s (ash), a r e also p r e s e n t i n w o o d ( u s u a l l y 4 - 1 0 % ) . O v e r a l l , w o o d has a n e l e m e n t a l c o m p o s i ­ tion of about 5 0 % c a r b o n , 6% h y d r o g e n , 4 4 % oxygen, a n d trace amounts of several metal ions. A c o m p l e t e c h e m i c a l analysis accounts for a l l t h e c o m p o n e n t s of t h e o r i g i n a l w o o d s a m p l e . T h u s , i f w o o d is d e f i n e d as p a r t l i g n i n , part c a r b o h y d r a t e , a n d p a r t e x t r a n e o u s m a t e r i a l , analyses for e a c h of these c o m p o n e n t s s h o u l d s u m to 1 0 0 % . T h e p r o c e d u r e b e c o m e s m o r e c o m p l e x as t h e c o m p o n e n t p a r t s a r e d e f i n e d w i t h g r e a t e r d e t a i l . S u m m a t i v e d a t a a r e f r e q u e n t l y a d j u s t e d to 1 0 0 % b y i n t r o d u c i n g c o r ­ r e c t i o n f a c t o r s i n t h e a n a l y t i c a l c a l c u l a t i o n s . W i s e a n d c o w o r k e r s (3) presented an i n t e r e s t i n g study o n the s u m m a t i v e analysis of w o o d and analyses of the carbohydrate fractions. T h e c o m p l e t e analytical r e p o r t a l s o i n c l u d e s d e t a i l s o f t h e s a m p l e , s u c h as s p e c i e s , a g e , a n d l o c a t i o n o f t h e t r e e , h o w t h e s a m p l e w a s o b t a i n e d from t h e t r e e , a n d f r o m w h a t p a r t o f t h e t r e e . T h e t y p e o f w o o d a n a l y z e d is a l s o i m p o r ­ tant; i . e . , c o m p r e s s i o n , t e n s i o n , or n o r m a l w o o d . Vast a m o u n t s o f d a t a a r e a v a i l a b l e o n t h e c h e m i c a l c o m p o s i t i o n o f w o o d . F e n g e l a n d G r o s s e r (4) m a d e a c o m p i l a t i o n f o r t e m p e r a t e z o n e w o o d s . T h i s c h a p t e r is a c o m p i l a t i o n o f d a t a f o r m a n y d i f f e r e n t species f r o m a l l parts of the w o r l d , a n d i n c l u d e s m u c h of the data i n R e f e r e n c e 4. T h e t a b l e s at t h e e n d o f t h i s c h a p t e r s u m m a r i z e t h e s e data.



Chemical Components Carbohydrates. T h e carbohydrate portion of wood comprises cellulose a n d the h e m i c e l l u l o s e s . C e l l u l o s e content ranges f r o m 40 to 5 0 % o f t h e d r y w o o d w e i g h t , a n d h e m i c e l l u l o s e s range f r o m 2 5 to 35%.



CELLULOSE.



C e l l u l o s e is a g l u c a n p o l y m e r c o n s i s t i n g o f l i n e a r c h a i n s o f 1 , 4 - p - b o n d e d a n h y d r o g l u c o s e u n i t s . ( T h e n o t a t i o n 1,4-β describes the b o n d linkage a n d the configuration of the oxygen atom b e t w e e n adjacent glucose units.) F i g u r e 1 shows a structural diagram of a portion of a glucan c h a i n . T h e n u m b e r of sugar units i n one m o l e c u l a r c h a i n is r e f e r r e d to as t h e d e g r e e o f p o l y m e r i z a t i o n ( D P ) . E v e n t h e m o s t u n i f o r m s a m p l e has m o l e c u l a r c h a i n s w i t h s l i g h t l y different D P v a l u e s . T h e average D P for t h e m o l e c u l a r chains i n a g i v e n s a m p l e is d e s i g n a t e d b y D P .



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



60



THE CHEMS ITRY OF SOLID WOOD



G o r i n g a n d T i m e l l (5) d e t e r m i n e d t h e D P f o r n a t i v e c e l l u l o s e s from several sources of plant material. T h e y used a nitration isolation p r o c e d u r e that a t t e m p t s to m a x i m i z e the y i e l d w h i l e m i n i m i z i n g the depolymerization of the cellulose. These molecular weight d e t e r m i ­ nations, done b y light-scattering experiments, indicate w o o d c e l l u ­ l o s e h a s a D P o f at l e a s t 9 , 0 0 0 - 1 0 , (XX), a n d p o s s i b l y as h i g h as 1 5 , 0 0 0 . A D P of 10,000 w o u l d m e a n a linear chain length of approximately 5 μπι i n w o o d . T h e D P o b t a i n e d f r o m l i g h t - s c a t t e r i n g e x p e r i m e n t s is b i a s e d u p ­ w a r d because light scattering increases exponentially w i t h molecular s i z e . T h e v a l u e o b t a i n e d is u s u a l l y r e f e r r e d t o as t h e w e i g h t e d D P o r D P . T h e n u m b e r a v e r a g e d e g r e e o f p o l y m e r i z a t i o n ( D P ) is u s u ­ ally obtained from o s m o m e t r y measurements. These measurements are l i n e a r w i t h respect to m o l e c u l a r size a n d , therefore, a m o l e c u l e is c o u n t e d e q u a l l y as o n e m o l e c u l e r e g a r d l e s s o f i t s s i z e . T h e r a t i o o f D P t o D P is a m e a s u r e o f t h e m o l e c u l a r w e i g h t d i s t r i b u t i o n . T h i s r a t i o is n e a r l y o n e f o r n a t i v e c e l l u l o s e i n s e c o n d a r y c e l l w a l l s o f p l a n t s (6). T h e r e f o r e , t h i s c e l l u l o s e is m o n o d i s p e r s e a n d c o n t a i n s m o l ­ ecules o f o n l y o n e size. C e l l u l o s e i n t h e p r i m a r y w a l l has a l o w e r D P a n d is t h o u g h t t o b e p o l y d i s p e r s e . (See R e f e r e n c e 7 f o r a d i s c u s s i o n of molecular w e i g h t d i s t r i b u t i o n i n synthetic polymers.)



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



W



W



n



n



N a t i v e c e l l u l o s e is p a r t i a l l y c r y s t a l l i n e . X - R a y d i f f r a c t i o n e x p e r ­ i m e n t s i n d i c a t e c r y s t a l l i n e c e l l u l o s e (Valonia ventricosa) has space g r o u p s y m m e t r y P 2 ! w i t h a = 16.34, b = 15.72, c = 10.38 Â, a n d 7 = 9 7 . 0 ° (8). T h e u n i t c e l l c o n t a i n s e i g h t c e l l o b i o s e m o i e t i e s . T h e m o l e c u l a r chains pack i n layers that are h e l d together b y w e a k v a n d e r W a a l s ' f o r c e s ( F i g u r e 2a). T h e l a y e r s c o n s i s t o f p a r a l l e l c h a i n s o f anhydroglucose units, a n d the chains are h e l d together b y i n t e r m o l e c u l a r h y d r o g e n b o n d s . T h e r e are also i n t r a m o l e c u l a r h y d r o g e n b o n d s b e t w e e n t h e a t o m s o f a d j a c e n t g l u c o s e r e s i d u e s ( F i g u r e 2b). T h i s s t r u c t u r e is c a l l e d c e l l u l o s e I . T h e r e a r e at l e a s t t h r e e o t h e r s t r u c t u r e s r e p o r t e d f o r m o d i f i e d c r y s t a l l i n e c e l l u l o s e . T h e m o s t i m p o r t a n t is c e l l u l o s e I I , o b t a i n e d b y m e r c e r i z a t i o n o r r e g e n e r a t i o n o f n a t i v e c e l l u l o s e . Mercerization is t r e a t m e n t o f c e l l u l o s e w i t h s t r o n g a l k a l i . Regeneration is t r e a t m e n t o f c e l l u l o s e w i t h s t r o n g a l k a l i a n d c a r b o n d i s u l f i d e to f o r m a s o l u b l e x a n t h a t e d e r i v a t i v e . T h e d e r i v a t i v e is c o n v e r t e d b a c k t o c e l l u l o s e a n d r e p r e c i p i t a t e d as r e g e n e r a t e d c e l l u l o s e . T h e s t r u c t u r e o f c e l l u l o s e I I ( r e g e n e r a t e d ) h a s s p a c e g r o u p s y m m e t r y Ρ2χ w i t h a = 8 . 0 1 , b = 9.04, c = 10.36 Â, a n d 7 = 117.1°, a n d t w o c e l l o b i o s e m o i e t i e s p e r u n i t c e l l (9). T h e p a c k i n g a r r a n g e m e n t is m o d i f i e d i n c e l l u l o s e I I , a n d p e r m i t s a m o r e intricate h y d r o g e n - b o n d e d n e t w o r k that extends b e t w e e n l a y e r s as w e l l as w i t h i n l a y e r s ( F i g u r e 3). T h e r e s u l t is a



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



PETTERSEN



The Chemical Composition of Wood



61



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2.



Figure 2. Axial projection (top) and planar projection (bottom) of the crystal structure of ceUuhse I. The planar projection shows the hydrogenbonding network within the layers. (Reproduced with permission from Ref. 8. Copyright 1974, Elsevier Scientific Publishing Company, Amsterdam.)



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



62



THE CHEMS ITRY OF SOLID WOOD



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



Figure 3. Axial projection of the crystal structure of cellulose II. (Repro­ duced with permission from Ref 10. Copyright 19/8, Butterworth ir Co. (Publishers) LtdT) m o r e t h e r m o d y n a m i c a l l y stable substance. E v i d e n t l y , all native c e l ­ luloses have t h e s t r u c t u r e o f cellulose I. C e l l u l o s e is i n s o l u b l e i n m o s t s o l v e n t s i n c l u d i n g s t r o n g a l k a l i . I t is d i f f i c u l t t o i s o l a t e f r o m w o o d i n p u r e f o r m b e c a u s e i t is i n t i m a t e l y associated w i t h the l i g n i n a n d hemicelluloses. A n a l y t i c a l methods of cellulose preparation are discussed i n the section on " A n a l y t i c a l P r o ­ cedures."



HEMICELLULOSES.



H e m i c e l l u l o s e s are m i x t u r e s of polysaccha­ rides s y n t h e s i z e d i n w o o d a l m o s t e n t i r e l y f r o m g l u c o s e , m a n n o s e , galactose, xylose, arabinose, 4 - O - m e t h y l g l u c u r o n i c a c i d , a n d galacturonic acid residues. S o m e h a r d w o o d s c o n t a i n trace amounts of rhamnose. G e n e r a l l y , hemicelluloses are of m u c h l o w e r m o l e c u l a r w e i g h t than cellulose a n d s o m e are b r a n c h e d . T h e y are i n t i m a t e l y a s s o c i a t e d w i t h c e l l u l o s e a n d a p p e a r t o c o n t r i b u t e as a s t r u c t u r a l c o m p o n e n t i n the plant. S o m e hemicelluloses are present i n abnor­ m a l l y l a r g e a m o u n t s w h e n t h e p l a n t is u n d e r s t r e s s ; e . g . , c o m p r e s s i o n w o o d h a s a h i g h e r t h a n n o r m a l g a l a c t o s e c o n t e n t as w e l l as a h i g h e r lignin content (II). H e m i c e l l u l o s e s are soluble i n alkali a n d easily h y d r o l y z e d b y acids. T h e s t r u c t u r e o f h e m i c e l l u l o s e s c a n b e u n d e r s t o o d b y first c o n ­ s i d e r i n g t h e c o n f o r m a t i o n o f t h e m o n o m e r u n i t s ( F i g u r e 4). T h e r e a r e t h r e e e n t r i e s u n d e r e a c h m o n o m e r i n F i g u r e 4. I n e a c h e n t r y , the l e t t e r d e s i g n a t i o n s D a n d L refer to a s t a n d a r d c o n f i g u r a t i o n for the two optical isomers of glyceraldehyde, the simplest carbohydrate. T h e G r e e k l e t t e r s α a n d β r e f e r to t h e c o n f i g u r a t i o n of the h y d r o x y l g r o u p at c a r b o n a t o m 1. T h e t w o c o n f i g u r a t i o n s a r e c a l l e d anomers. T h e first e n t r y is a s h o r t e n e d f o r m o f t h e s u g a r n a m e . T h e s e c o n d e n t r y i n d i c a t e s t h e r i n g s t r u c t u r e . P y r a n o s e refers to a s i x - m e m b e r e d ring i n t h e c h a i r o r b o a t f o r m a n d f u r a n o s e r e f e r s to a five-membered r i n g . T h e t h i r d e n t r y is a n a b b r e v i a t i o n c o m m o n l y u s e d for t h e s u g a r residue in polysaccharides.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2.



PETTERSEN



The Chemical Composition of Wood



/3-D-Glucose 0-D-Glucopyranose £-D-Glup



/3-D-Mannose /3-D-Mannopyranose 0-D-Manp



/3-D-Qalactose /3-D-Galactopyranose 0-D-Galp



£-D-XyIose /3-D-Xylopyranose 0-D-Xylp



H



OH



Η



63



μ



.Ο. CH,0 OH



ΗΟΗΧ Η α-L-Arab i nose of-L- Arabinof uranose a-L-Araf



OH 4-0- MethyIgucuronic acid 4-O-Methylglucopyranosyluronic acid 4-O-Me-a-D-GlupA



Figure 4. Monomer components of wood hemicelluloses.



F i g u r e 5 shows a partial structure of a c o m m o n h a r d w o o d h e m i cellulose, O-acetyl-4-O-methylglucuronoxylan. T h e entire molecule c o n s i s t s o f a b o u t 2 0 0 β-D-xylopyranose r e s i d u e s l i n k e d i n a l i n e a r c h a i n b y (1 —> 4) g l y c o s i d i c b o n d s . A p p r o x i m a t e l y 1 o f 10 o f t h e x y l o s e residues hasa 4 - O - m e t h y l g l u c u r o n i c acid residue b o n d e d to it t h r o u g h t h e h y d r o x y l a t t h e 2 ring p o s i t i o n . A p p r o x i m a t e l y 7 o f 1 0 of the xylose residues have acetate groups b o n d e d to e i t h e r t h e 2 o r 3 r i n g p o s i t i o n . T h i s c o m p o s i t i o n is s u m m a r i z e d i n F i g u r e 5 i n a n abbreviated structure diagram. H a r d w o o d xylans contain a n average of two xylan b r a n c h i n g chains p e r macromolecule. T h e branches are p r o b a b l y q u i t e s h o r t (12). Table I lists t h e m o s t a b u n d a n t o f t h e w o o d h e m i c e l l u l o s e s . T h e



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Softwood



Larch wood



Hardwood



Hardwood



Arabinoglucuronoxylan



Arabinogalactan



Glucuronoxylan



Glucomannan 2--5



1 5 -- 3 0



5- -35



7- -10



10-- 1 5



5--8



β-D-Manp β-D-Glup



Acetyl



β-D-GlupA β-D-Xylp 4-O-Me-a-DGlupA



a-L-Ara/ β-L-Arap



β-D-Galp



a-L-Ara/



β-D-Xylp 4-O-Me-a-DGlupA



β-D-Manp β-D-Glup a-D-Galp Acetyl



/\ceiyi



aβ-D-Glup -D-Galp



β-D-Manp



Units



1-2



2/3 1/3 Little 10 1 7



1.3 6



4 1 0.1 1 10 2



3 1 1



Molar Ratios



Composition



b



0



n



1 -> 4



1 —• 4



H ->



1 —> 3 1 3, 1 -> 6 1 6 1 —> 3 1 —» 6 4 1 —» 2 1



1 —» 4 1 -» 2



4 1 4 1 -> 6



1



4 1 -> 4 1 -» 6



1



Linkage



Components



T h e asterisk represents a partial soluhility. D P is the n u m b e r average d e g r e e o f p o l y m e r i z a t i o n , usually obtained b y osmometry. ( R e p r o d u c e d with p e r m i s s i o n from Ref. 6. C o p y r i g h t 1981, A c a d e m i c Press.)



Softwood



(Galacto)Glucomannan



Occurrence



Softwood



Type



Galactoglucomannan



Hemicellulose



Amount (% of wood)



Table I. T h e M a j o r Hemicellulose



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



0



borate



Alkaline



borate



Alkali, dimethyl sulfoxide*



Alkali, dimethyl sulfoxide, * water* Water



Alkaline



Alkali, water*



Solubility



200



200



200



100



100



100



66



THE CHEMS ITRY OF SOLID WOOD



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



m e t h o d s u s e d for the isolation a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f each of these materials are b e y o n d the scope of this chapter (13-15). Lignin. L i g n i n is a p h e n o l i c s u b s t a n c e c o n s i s t i n g o f a n i r r e g u l a r array of variously b o n d e d h y d r o x y - a n d methoxy-substituted p h e n y l p r o p a n e units. T h e precursors of l i g n i n biosynthesis are p-eoum a r y l a l c o h o l (I), c o n i f e r y l a l c o h o l (II), a n d s i n a p y l a l c o h o l (III). I is



OCH.



0CH



CH o 3



o



OH I



II



III



a m i n o r p r e c u r s o r o f s o f t w o o d a n d h a r d w o o d l i g n i n s ; I I is t h e p r e ­ d o m i n a n t p r e c u r s o r of softwood l i g n i n ; a n d II a n d III are b o t h p r e ­ c u r s o r s o f h a r d w o o d l i g n i n (15). T h e s e a l c o h o l s a r e l i n k e d i n l i g n i n b y e t h e r a n d c a r b o n - c a r b o n b o n d s . F i g u r e 6 (15) is a s c h e m a t i c s t r u c t u r e o f a s o f t w o o d l i g n i n m e a n t to i l l u s t r a t e t h e v a r i e t y o f s t r u c ­ tural components. The 3,5-dimethoxy-substituted aromatic ring n u m b e r 13 o r i g i n a t e s f r o m s i n a p y l a l c o h o l , I I I , a n d is p r e s e n t o n l y i n t r a c e a m o u n t s ( < 1 % ) (16). F i g u r e 6 d o e s n o t s h o w a l i g n i n - c a r ­ b o h y d r a t e c o v a l e n t b o n d . T h e r e has b e e n m u c h c o n t r o v e r s y c o n ­ c e r n i n g t h e e x i s t e n c e o f this b o n d , b u t e v i d e n c e has b e e n a c c u m u ­ l a t i n g i n i t s s u p p o r t (15, 17). A s t r u c t u r e p r o p o s e d f o r h a r d w o o d l i g n i n (Fagus silvatica L . ) is s i m i l a r t o t h a t o f F i g u r e 6, e x c e p t t h a t t h e r e a r e t h r e e t i m e s as m a n y s y r i n g y l p r o p a n e u n i t s as g u a i a c y l p r o p a n e u n i t s (18). T h e s e m o i e t i e s are d e r i v e d f r o m I I I a n d I I , r e s p e c t i v e l y . T h e ratio of s y r i n g y l to g u a i a c y l m o i e t i e s is o f t e n o b t a i n e d b y m e a s u r i n g t h e r e l a t i v e a m o u n t s of syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) and va­ n i l l i n ( 4 - h y d r o x y - 3 - m e t h o x y b e n z a l d e h y d e ) g e n e r a t e d as p r o d u c t s o f n i t r o b e n z e n e o x i d a t i o n o f l i g n i n (19). A b e t t e r m e t h o d is t o d e t e r m i n e the products f o r m e d from the two types of moieties on permanganate o x i d a t i o n o f m e t h y l a t e d l i g n i n s (20). L i g n i n can be isolated b y one of several methods. A c i d h y d r o ­ l y s i s o f w o o d i s o l a t e s K l a s o n l i g n i n , w h i c h c a n b e q u a n t i f i e d (see " A n a l y t i c a l P r o c e d u r e s " ) , b u t is t o o s e v e r e l y d e g r a d e d f o r u s e i n s t r u c t u r a l s t u d i e s . B j o r k m a n ' s (21) m i l l e d w o o d l i g n i n p r o c e d u r e y i e l d s a l i g n i n t h a t is m u c h l e s s d e g r a d e d a n d i s , t h u s , m o r e u s e f u l



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



68



THE CHEMS ITRY OF SOLID WOOD



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



for s t r u c t u r a l s t u d i e s . T h e f o l l o w i n g are e x a m p l e s o f t h e w e i g h t av­ erage m o l e c u l a r w e i g h t of l i g n i n s isolated b y u s i n g the m i l l e d w o o d l i g n i n p r o c e s s : s p r u c e [Picea abies ( L . ) K a r s t ] , 1 5 , 0 0 0 ; a n d s w e e t g u m (Liquidambar styraciflua L . ) , 1 6 , 0 0 0 (22). T h e s e v a l u e s a r e l o w e r than the molecular weight of the original lignin because fragmenta­ tion of the lignin molecules results from the ball m i l l i n g procedure. L i g n i n for s t r u c t u r a l s t u d i e s c a n also b e o b t a i n e d b y e n z y m a t i c h y ­ d r o l y s i s o f t h e c a r b o h y d r a t e (23). W o o d is g r o u n d i n a v i b r a t o r y b a l l m i l l and then treated w i t h cellulytic enzymes. T h e isolated lignin contains 1 2 - 1 4 % carbohydrate. M e t h o x y l c o n t e n t is u s e d t o c h a r a c t e r i z e l i g n i n s . E l e m e n t a l a n d m e t h o x y l a n a l y s i s o f s p r u c e (Picea abies ( L . ) K a r s t . ) m i l l e d w o o d l i g n i n i n d i c a t e s a c o m p o s i t i o n C H . 9 2 0 . 4 o ( O C H ) . 9 2 (15, 24). B e e c h (Fagus silvatica L . ) m i l l e d w o o d l i g n i n has a c o m p o s i t i o n C H 7 . 4 9 0 2 . 5 3 ( O C H 3 ) 9 (24). T h i s i n f o r m a t i o n h e l p s l i g n i n c h e m i s t s u n d e r s t a n d w h a t p r e c u r s o r s w e r e u s e d for the biosynthesis of l i g n i n . A n e x c e l l e n t , c o m p r e h e n s i v e b o o k o n l i g n i n is e d i t e d b y S a r k a n e n a n d L u d w i g (25). Extraneous C o m p o n e n t s . T h e extraneous c o m p o n e n t s (extrac­ t i v e s a n d ash) i n w o o d a r e t h e s u b s t a n c e s o t h e r t h a n c e l l u l o s e , h e m i ­ c e l l u l o s e s , a n d l i g n i n . T h e y d o n o t c o n t r i b u t e to t h e c e l l w a l l s t r u c ­ ture, a n d most are soluble i n neutral solvents. T h e detailed c h e m i s t r y o f w o o d e x t r a c t i v e s c a n b e f o u n d e l s e w h e r e (26). A r e v i e w o f e x t r a c ­ t i v e s i n e a s t e r n U . S . h a r d w o o d s is a v a i l a b l e (27). 9



9



7



2



3



0



h3



Extractives — the extraneous material soluble i n neutral sol­ v e n t s — c o n s t i t u t e 4 - 1 0 % of the d r y w e i g h t of n o r m a l w o o d of species t h a t g r o w i n t e m p e r a t e c l i m a t e s . T h e y m a y b e as m u c h as 2 0 % o f the w o o d of t r o p i c a l species. E x t r a c t i v e s are a variety of organic c o m ­ p o u n d s i n c l u d i n g fats, w a x e s , a l k a l o i d s , p r o t e i n s , s i m p l e a n d c o m p l e x phenolics, s i m p l e sugars, pectins, mucilages, gums, resins, terpenes, starches, glycosides, saponins, a n d essential oils. M a n y of these func­ t i o n as i n t e r m e d i a t e s i n t r e e m e t a b o l i s m , as e n e r g y r e s e r v e s , o r as part of the tree's defense m e c h a n i s m against m i c r o b i a l attack. T h e y c o n t r i b u t e to w o o d p r o p e r t i e s s u c h as c o l o r , o d o r , a n d d e c a y r e s i s ­ tance. Ash is t h e i n o r g a n i c r e s i d u e r e m a i n i n g a f t e r i g n i t i o n at a h i g h t e m p e r a t u r e . I t is u s u a l l y l e s s t h a n 1 % o f w o o d f r o m t e m p e r a t e z o n e s . It is s l i g h t l y h i g h e r i n w o o d f r o m t r o p i c a l c l i m a t e s .



Carbohydrate and Lignin Distribution Carbohydrates. T h e m o r p h o l o g i c a l parts of the cell w a l l of a c o n i f e r a r e s h o w n i n C h a p t e r 1, F i g u r e l b . M o s t o f w o o d c a r b o h y ­ d r a t e is i n t h e m a s s i v e s e c o n d a r y w a l l , p a r t i c u l a r l y i n S . Y o u n g t r a c h e i d s h a v e b e e n i s o l a t e d (28) at v a r i o u s stages o f c e l l w a l l d e v e l o p 2



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



2.



PETTERSEN



69



The Chemical Composition of Wood



m e n t , a n d t h e n the s e p a r a t e d fractions w e r e a n a l y z e d for the five w o o d sugars. Table II lists t h e results o b t a i n e d b y u s i n g this m e t h o d o n b i r c h (Betula verrucosa E h r h . ) a n d S c o t s p i n e (Pinus sylvestris L . ) (29) f i b e r s . T h e v a l u e s a r e r e l a t i v e a n d s u m to 1 0 0 % f o r a g i v e n m o r p h o l o g i c a l p a r t . T h i s m e t h o d has d i f f i c u l t y i n d i s t i n g u i s h i n g t h e presence of the v e r y t h i n S . A tentative v o l u m e ratio was d e t e r m i n e d 3



for t h e l i g n i n - f r e e l a y e r s o f t h e p i n e a n d b i r c h f i b e r s b y u s i n g p h o ­ t o m i c r o g r a p h s of transverse sections. T a k i n g the p r o p o r t i o n to b e m i d d l e l a m e l l a + p r i m a r y c e l l w a l l ( M L + P ) : S : S : S , the values are 2 : 1 0 : 7 8 : 1 0 f o r p i n e fibers (28) a n d 3 : 1 5 : 7 6 : 6 f o r b i r c h (29). A s s u m i n g the d e n s i t y of t h e c e l l w a l l to b e constant, t h e v o l u m e ratios b e c o m e a comparison of amounts of polysaccharide i n each layer. Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



1



2



3



Lignin. T h e d i s t r i b u t i o n of lignin i n the different m o r p h o l o g ­ ical regions of w o o d m i c r o s t r u c t u r e has b e e n s t u d i e d u s i n g U V m i ­ c r o s c o p y (30). I n s p r u c e (Picea mariana M i l l . ) t r a c h e i d s , i t w a s d e ­ t e r m i n e d that 7 2 % a n d 8 2 % of the l i g n i n was i n the secondary c e l l w a l l s o f e a r l y w o o d a n d l a t e w o o d , r e s p e c t i v e l y (31). T h e r e m a i n d e r was located i n the m i d d l e l a m e l l a a n d c e l l corners. I n b i r c h w o o d (Betula papyrifera M a r s h . ) , 7 1 . 3 % of the l i g n i n was of the s y r i n g y l t y p e a n d w a s f o u n d i n t h e s e c o n d a r y w a l l s o f t h e fibers ( 5 9 . 9 % ) a n d ray cells (11.4%). A n a d d i t i o n a l 1 0 . 9 % of the l i g n i n was of the guaiacyl type a n d was f o u n d i n the secondary walls of the vessels (9.4%) a n d t h e v e s s e l m i d d l e l a m e l l a (1.5%). T h e r e m a i n d e r (17.7%) w a s m i x e d s y r i n g y l - a n d g u a i a c y l - t y p e a n d w a s i n t h e fiber m i d d l e l a m e l l a (32). C a u t i o n is n e e d e d i n i n t e r p r e t i n g t h e s y r i n g y l / g u a i a c y l distribution i n h a r d w o o d lignins; m e t h o x y l analyses of isolated m o r ­ p h o l o g i c a l p a r t s o f o a k fibers a n d v e s s e l s i n d i c a t e s a r a t h e r u n i f o r m s y r i n g y l / g u a i a c y l c o n t e n t (33).



Analytical Procedures Carbohydrates. T h e r e are a n u m b e r of analytical d e t e r m i n a ­ tions associated w i t h the carbohydrate p o r t i o n of w o o d .



HOLOCELLULOSE.



H o l o c e l l u l o s e is t h e t o t a l p o l y s a c c h a r i d e ( c e l ­ l u l o s e a n d h e m i c e l l u l o s e s ) c o n t e n t o f w o o d , a n d m e t h o d s f o r its d e ­ t e r m i n a t i o n seek to r e m o v e a l l o f the l i g n i n f r o m w o o d w i t h o u t d i s ­ t u r b i n g t h e c a r b o h y d r a t e s . T h e p r o c e d u r e g e n e r a l l y u s e d (34) w a s a d o p t e d as T a p p i S t a n d a r d T 9 m ( n o w u s e f u l m e t h o d 2 4 9 ) , a n d as A S T M S t a n d a r d D 1 1 0 4 . E x t r a c t e d w o o d m e a l is t r e a t e d a l t e r n a t e l y w i t h c h l o r i n e gas a n d 2 - a m i n o e t h a n o l u n t i l a w h i t e r e s i d u e ( h o l o c e l ­ l u l o s e ) r e m a i n s . T h e a c i d c h l o r i t e m e t h o d is a l s o u s e d (3). T h e J



2



T a p p i standards are m a i n t a i n e d b y the T e c h n i c a l Association o f P u l p a n d Paper Industry, Atlanta, G a . A S T M standards are m a i n t a i n e d b y the A m e r i c a n Society for Testing Materials, P h i l a d e l p h i a , Pa. 1



2



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Also contains a h i g h p e r c e n t a g e of pectic a c i d . ( R e p r o d u c e d w i t h p e r m i s s i o n from Ref. 29. C o p y r i g h t 1961,



a



20.1 35.5 7.7 29.4 7.3



Galactan Cellulose Glucomannan Arabinan Glucuronoarabinoxylan



1



S Ehrh.) 0.7 48.0 2.1 1.5 47.7 L.) 1.6 66.5 24.6 0.0 7.4



2



S (outer



J o h n W i l e y & Sons.)



verrucosa 1.2 49.8 2.8 1.9 44.1 P i n e (Pinus sylvestris 5.2 61.5 16.9 0.6 15.7



B i r c h (Betula



a



+ P



part) 2



S (inner



3.2 47.5 27.2 2.4 19.4



0.0 60.0 5.1 0.0 35.1



part)



of Polysaccharides i n the Different L a y e r s of the F i b e r W a l l



16.9 41.4 3.1 13.4 25.2



Ml



Percentages



Galactan Cellulose Glucomannan Arabinan Glucuronoxylan



Polysaccharide



T a b l e Π.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2.



FETTERSΕΝ



The Chemical Composition of Wood



71



p r o d u c t , c a l l e d c h l o r i t e h o l o c e l l u l o s e , is s i m i l a r t o c h l o r i n e h o l o c e l ­ lulose. T h e chlorite m e t h o d removes a fraction more of the h e m i ­ celluloses than the chlorine m e t h o d . A l p h a c e l l u l o s e is o b t a i n e d a f t e r t r e a t m e n t o f t h e h o l o c e l l u l o s e w i t h 1 7 . 5 % N a O H (see A S T M S t a n d a r d D 1103). This procedure removes most, but not all, of the hemicelluloses. BE Cross and B e v a n cellulose con­ sists l a r g e l y o f p u r e c e l l u l o s e , b u t a l s o c o n t a i n s s o m e h e m i c e l l u l o s e s . It is o b t a i n e d b y c h l o r i n a t i o n o f w o o d m e a l , f o l l o w e d b y w a s h i n g w i t h 3 % S 0 a n d 2 % s o d i u m s u l f i t e ( N a S 0 ) w a t e r s o l u t i o n s . T h e final s t e p is t r e a t m e n t i n b o i l i n g N a S 0 s o l u t i o n . T h e a b s e n c e o f a c h a r ­ acteristic r e d (angiosperm) or b r o w n (gymnosperm) color d e v e l o p e d in the presence of c h l o r i n a t e d l i g n i n signals c o m p l e t e l i g n i n r e m o v a l . F o r a d i s c u s s i o n o f t h e m e t h o d a n d its m o d i f i c a t i o n s , see R e f e r e n c e 35. K u r s c h n e r c e l l u l o s e is o b t a i n e d b y r e f l u x i n g t h e w o o d s a m p l e t h r e e t i m e s f o r 1 h w i t h a 1:4 v o l u m e m i x ­ t u r e o f c o n c e n t r a t e d n i t r i c a c i d a n d e t h y l a l c o h o l (37). T h e w a s h e d a n d d r i e d r e s i d u e is w e i g h e d as K u r s c h n e r c e l l u l o s e . T h e p r o d u c t contains a small amount of hemicelluloses. [The cellulose d e t e r m i n e d f o r t h e G h a n a n a n d R u s s i a n w o o d s (see i n T a b l e s V I a n d X I ) is K u r s c h ­ n e r c e l l u l o s e ] . T h e m e t h o d is n o t w i d e l y u s e d b e c a u s e i t d e s t r o y s s o m e o f t h e c e l l u l o s e a n d t h e n i t r i c a c i d / a l c o h o l m i x t u r e is p o t e n t i a l l y explosive.



ALPHA CELLULOSE. CROSS AND



VAN CELLULOSE.



2



2



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2



3



3



KURSCHNER CELLULOSE.



PENTOSAN.



Pentosan analysis measures the amount of fivec a r b o n sugars p r e s e n t i n w o o d (xylose a n d arabinose residues). A l ­ t h o u g h t h e h e m i c e l l u l o s e s c o n s i s t o f a m i x t u r e o f five- a n d s i x - c a r b o n s u g a r s (see d i s c u s s i o n o f h e m i c e l l u l o s e s ) , t h e p e n t o s a n a n a l y s i s r e ­ p o r t s t h e x y l a n a n d a r a b i n a n c o n t e n t as i f t h e five-carbon s u g a r s w e r e p r e s e n t as p u r e p e n t a n s . P e n t o s e s a r e m o r e a b u n d a n t i n h a r d w o o d s t h a n s o f t w o o d s ; t h e d i f f e r e n c e is d u e t o a h i g h e r x y l o s e c o n t e n t i n h a r d w o o d s (see T a b l e X I I I f o r e x a m p l e s ) . T a p p i s t a n d a r d Τ 223 o u t l i n e s the p r o c e d u r e for p e n t o s a n a n a l ­ y s i s . B r i e f l y , w o o d m e a l is b o i l e d i n 3 . 8 5 Ν H C l w i t h s o m e N a C l a d d e d . F u r f u r a l is g e n e r a t e d a n d d i s t i l l e d i n t o a c o l l e c t i o n f l a s k . T h e f u r f u r a l is d e t e r m i n e d c o l o r i m e t r i c a l l y w i t h o r c i n o l - i r o n ( I I I ) c h l o r i d e r e a g e n t . A n o t h e r m e t h o d a l s o g e n e r a t e s f u r f u r a l , a n d t h e f u r f u r a l is determined gravimetrically by precipitation with 1,3,5-benzenetriol. These a n d other methods of pentosan analysis are d e s c r i b e d a n d d i s c u s s e d i n B r o w n i n g ' s b o o k (36). T h i s analysis r e ­ q u i r e s a c i d h y d r o l y s i s o f t h e p o l y s a c c h a r i d e to y i e l d a s o l u t i o n m i x ­ t u r e o f t h e five w o o d s u g a r m o n o m e r s , i . e . , g l u c o s e , x y l o s e , g a l a c ­ t o s e , a r a b i n o s e , a n d m a n n o s e . T h e s o l u t i o n is n e u t r a l i z e d , filtered,



CHROMATOGRAPHIC ANALYSIS OF WOOD SUGARS.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



72



THE CHEMS ITRY OF SOLID WOOD



a n d the sugars c h r o m a t o g r a p h i c a l l y separated a n d q u a n t i f i e d . G e n ­ e r a l l y t h i s m e t h o d is a c c e p t e d as t h e s t a n d a r d o f h y d r o l y s i s (37). I n t h i s p r o c e d u r e , w o o d m e a l is t r e a t e d w i t h 7 2 % H S 0 at 3 0 ° C f o r 1 h to d e p o l y m e r i z e the c a r b o h y d r a t e s . R e v e r s i o n p r o d u c t s ( r e c o m b i n e d s u g a r m o n o m e r s ) a r e f u r t h e r h y d r o l y z e d i n 3 % H S 0 at 1 2 0 ° C f o r 1 h . T h e s o l u t i o n is t h e n filtered, a n d t h e s o l i d r e s i d u e is w a s h e d , d r i e d , a n d w e i g h e d as K l a s o n l i g n i n (see " L i g n i n " l a t e r ) . T h e f i l t r a t e is n e u t r a l i z e d w i t h b a r i u m ( I I ) h y d r o x i d e o r i o n e x c h a n g e r e s i n . T h e i n d i v i d u a l s u g a r s a r e s e p a r a t e d b y p a p e r , l i q u i d , o r gas c h r o m a t o g r a p h y ( G C ) . P a p e r c h r o m a t o g r a p h y has b e e n t h e s t a n d a r d m e t h o d for m a n y years a n d a l l the i n d i v i d u a l sugar data a n d h e m i ­ cellulose data r e p o r t e d i n the tables of this chapter w e r e o b t a i n e d b y t h i s m e t h o d [ a d o p t e d as T a p p i P r o v i s i o n a l Test M e t h o d Τ 2 5 0 (37)]. T h i s m e t h o d u s e s a m o d i f i e d f o r m o f t h e S o m o g y i c o l o r i m e t r i c assay f o r r e d u c i n g s u g a r s (38). T i m e l l (39) r e p o r t s a c o l o r i m e t r i c m e t h o d i n w h i c h the r e d u c i n g sugars are reacted w i t h 2 - a m i n o b i p h e n y l h y d r o ­ c h l o r i d e . T h e r e a r e m a n y o t h e r assay m e t h o d s f o r r e d u c i n g s u g a r s . 2



4



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2



4



Sugar separation b y G C requires the preparation of volatile de­ rivatives. T a p p i Test M e t h o d Τ 249 p m - 7 5 uses t h e a l d i t o l acetate d e r i v i t i z a t i o n (40). P e r a c e t y l a t e d a l d o n i t r i l e (41) o r t r i m e t h y l s i l a n e (42, 43) d e r i v a t i v e s c a n a l s o b e p r e p a r e d a n d s e p a r a t e d b y G C . W o o d sugar analysis b y G C m a y b e u s e f u l for s p e c i a l i z e d p r o b l e m s , b u t the d e r i v i t i z a t i o n steps m a k e it a t i m e - c o n s u m i n g m e t h o d for r o u t i n e work. H i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y ( H P L C ) is c u r r e n t l y the most efficient m e a n s for r o u t i n e separation a n d quantification of t h e five w o o d s u g a r s (44). I n t h i s c a s e , n o d e r i v i t i z a t i o n is n e c e s s a r y , a n d s e p a r a t i o n is a c h i e v e d u s i n g w a t e r as a n e l u e n t . D e t e c t i o n is b y a differential refractometer.



UROMC ACID.



U r o n i c a c i d is d e t e r m i n e d b y m e a s u r i n g c a r b o n d i o x i d e ( C 0 ) g e n e r a t i o n w h e n w o o d is b o i l e d w i t h 1 2 % H C 1 (45). Results from this m e t h o d m a y be somewhat h i g h because of C 0 evolution from material containing carboxyl groups other than uronic a c i d . A m e t h o d d e v e l o p e d b y S c o t t (46) is r a p i d a n d s e l e c t i v e . T h e s a m p l e is t r e a t e d w i t h 9 6 % H S 0 at 7 0 ° C , a n d a p r o d u c t , 5 - f o r m y l 2 - f u r a n c a r b o x y l i c a c i d , is d e r i v e d f r o m u r o n i c a c i d s . T h i s c o m p o u n d reacts s e l e c t i v e l y w i t h 3 , 5 - d i m e t h y l p h e n o l to y i e l d a c h r o m o p h o r e a b s o r b i n g at 4 5 0 n m . 2



2



2



4



ACETYL CONTENT.



T h e a c e t y l c o n t e n t o f w o o d is d e t e r m i n e d b y saponification of the sample i n 1 Ν N a O H , followed b y acidification, quantitative distillation of the acetic acid, a n d titration of the distillate w i t h s t a n d a r d N a O H (47). A m o d i f i c a t i o n h e r e ( F o r e s t P r o d u c t s L a b ­ oratory) enables acetic a c i d d e t e r m i n a t i o n b y u s i n g G C w i t h p r o p a ­ n o i c a c i d as a n i n t e r n a l s t a n d a r d . T h i s m o d i f i c a t i o n e l i m i n a t e s t h e tedious, t i m e - c o n s u m i n g distillation step.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



2.



WOOD SOLUBILITY IN 1 % 1% N a O H



73



The Chemical Composition of Wood



PETTERSEN



NAOH.



W o o d extraction procedures i n



( T a p p i S t a n d a r d Τ 212) e x t r a c t m o s t e x t r a n e o u s



compo­



nents, some lignin, and low molecular weight hemicelluloses



and



degraded cellulose. T h e percent of alkali-soluble material increases as t h e w o o d d e c a y s (48). T h e e x t r a c t i o n is d o n e i n a w a t e r b a t h m a i n ­ t a i n e d at 1 0 0 ° C . Lignin.



T h e l i g n i n contents of w o o d s p r e s e n t e d i n the tables



of this c h a p t e r are K l a s o n l i g n i n , t h e r e s i d u e r e m a i n i n g after s o l u bilizing the carbohydrate w i t h strong m i n e r a l acid. T h e usual p r o ­ c e d u r e , as i n T a p p i S t a n d a r d Τ 2 2 2 o r A S T M S t a n d a r d D 1 1 0 6 , is t o treat f i n e l y g r o u n d w o o d w i t h 7 2 % H S 0 2



b y d i l u t i o n to 3 % H S 0



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2



4



4



f o r 2 h at 2 0 ° C , f o l l o w e d



a n d b o i l i n g o r r e f l u x i n g for 4 h . A n e q u i v ­



alent b u t shorter m e t h o d treats the sample w i t h 7 2 % H S 0 2



for



1 h , f o l l o w e d b y 1 h at 1 2 0 ° C i n 3 % H S 0 2



4



at 3 0 ° C



(50). I n b o t h c a s e s



4



t h e d e t e r m i n a t i o n is g r a v i m e t r i c . Softwood l i g n i n s are i n s o l u b l e i n 7 2 % H S 0 2



4



and Klason lignin



provides an accurate measure of total lignin content. H a r d w o o d lig­ nins are s o m e w h a t soluble i n 7 2 % H S 0 , a n d the acid-soluble p o r ­ 2



4



t i o n m a y a m o u n t t o 1 0 - 2 0 % o f t h e t o t a l l i g n i n c o n t e n t (51). T h e soluble (51,



lignin



acid-



c a n b e d e t e r m i n e d s p e c t r o p h o t o m e t r i c a l l y at 2 0 5 n m



(Table X I V c o n t a i n s l i g n i n v a l u e s t h a t a d d t h e a c i d - s o l u b l e



52).



c o m p o n e n t m e a s u r e d at 2 0 5 n m t o t h e K l a s o n l i g n i n . L i g n i n c o n t e n t s of hardwoods in a l l the other tables are low).



METHOXYL.



m e t h o d (53).



M e t h o x y l groups are d e t e r m i n e d b y a m o d i f i e d



M e t h y l i o d i d e is f o r m e d b y h y d r o l y s i s o f t h e m e t h o x y l



g r o u p s o f w o o d l i g n i n i n h y d r i o d i c a c i d a n d is d i s t i l l e d u n d e r



C 0



2



into a solution of b r o m i n e a n d potassium acetate i n glacial acetic acid. B r o m i n e o x i d i z e s i o d i d e to i o d a t e w h i c h is t h e n t i t r a t e d w i t h s t a n d a r d t h i o s u l f a t e . T h e m e t h o d is d i f f i c u l t a n d t i m e - c o n s u m i n g , a n d s o m e e x p e r i e n c e is n e c e s s a r y b e f o r e s a t i s f a c t o r y r e s u l t s c a n b e D e t a i l s are i n A S T M



Standard D



obtained.



1166 a n d T a p p i S t a n d a r d Τ



( w i t h d r a w n i n N o v e m b e r 1979). A d d i t i o n a l d i s c u s s i o n c a n b e in Reference



209



found



54.



Extraneous Components W o o d Solubility.



T h e s o l u b i l i t y o f w o o d i n v a r i o u s s o l v e n t s is



a measure of the extraneous components



content. N o single solvent



is a b l e t o r e m o v e a l l o f t h e e x t r a n e o u s m a t e r i a l s . E t h e r is r e l a t i v e l y n o n p o l a r a n d e x t r a c t s fats, r e s i n s , o i l s , s t e r o l s , a n d t e r p e n e s . E t h a n o l / benzene



is m o r e p o l a r a n d e x t r a c t s m o s t o f t h e e t h e r - s o l u b l e s p l u s



most of the organic materials i n s o l u b l e i n water. H o t w a t e r extracts s o m e i n o r g a n i c salts a n d l o w m o l e c u l a r w e i g h t p o l y s a c c h a r i d e s i n ­ c l u d i n g g u m s a n d starches. W a t e r also r e m o v e s



certain hemicellu­



l o s e s s u c h as t h e a r a b i n o g a l a c t a n g u m p r e s e n t i n l a r c h w o o d (see T a ­ b l e I).



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



74



THE CHEMS ITRY OF SOLID WOOD



ETHANOL/BENZENE.



T h e solubility of w o o d i n E t O H / b e n z e n e ( b e n z e n e is a k n o w n c a r c i n o g e n ; t o l u e n e c a n b e s u b s t i t u t e d ) i n a 1 : 2 v o l u m e ratio w i l l give a measure of the extractives content. T h i s p r o c e d u r e is T a p p i S t a n d a r d Τ 2 0 4 a n d A S T M S t a n d a r d D 1 1 0 7 . T h e w o o d m e a l is r e f l u x e d 6 - 8 h i n a S o x h l e t f l a s k , a n d t h e w e i g h t loss o f t h e e x t r a c t e d , d r i e d w o o d is m e a s u r e d . S o m e t i m e s t h e l i g n i n , c a r b o h y d r a t e , a n d o t h e r c o m p o n e n t s are d e t e r m i n e d o n w o o d that h a s b e e n e x t r a c t e d p r e v i o u s l y w i t h E t O H / b e n z e n e (see T a b l e X I I I ) .



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



DIETHYL ETHER.



T h e s o l u b i l i t y o f w o o d i n d i e t h y l e t h e r is d e ­ t e r m i n e d i n t h e s a m e w a y as E t O H / b e n z e n e s o l u b i l i t y . Ash Analysis. A s h a n a l y s i s is p e r f o r m e d a c c o r d i n g to T a p p i Standard Τ 1 5 a n d A S T M S t a n d a r d D 1 1 0 2 . I n these standards ash is d e f i n e d as t h e r e s i d u e r e m a i n i n g a f t e r d r y i g n i t i o n o f t h e w o o d at 5 7 5 ° C . E l e m e n t a l c o m p o s i t i o n o f t h e a s h is d e t e r m i n e d b y d i s s o l v i n g the residue i n strong H N 0 and analyzing the solution by atomic absorption or atomic emission. T h e inorganic elemental composition of w o o d can be d e t e r m i n e d directly b y n e u t r o n activation analysis. (Table X V c o n t a i n s e l e m e n t a l d a t a u s i n g b o t h m e t h o d s ) . 3



Silica ( S i 0 ) content i n w o o d can be d e t e r m i n e d by treating the a s h w i t h h y d r o f l u o r i c a c i d ( H F ) to f o r m t h e v o l a t i l e c o m p o u n d s i l i c o n t e t r a f l u o r i d e ( S i F ) . T h e w e i g h t loss is t h e a m o u n t o f s i l i c a i n t h e a s h . S i l i c a is r a r e l y p r e s e n t i n m o r e t h a n t r a c e a m o u n t s i n t e m p e r a t e c l i m a t e w o o d s , b u t c a n v a r y i n t r o p i c a l w o o d s f r o m a m e r e t r a c e to as m u c h as 9 % . M o r e t h a n 0 . 5 % s i l i c a i n w o o d is h a r m f u l t o c u t t i n g tools ( 5 5 ) . 2



4



Moisture Content. T h e m o i s t u r e c o n t e n t o f w o o d is d e t e r ­ m i n e d b y m e a s u r i n g t h e w e i g h t loss a f t e r d r y i n g t h e s a m p l e at 1 0 5 °C. U n l e s s specified otherwise, the percent of all other c h e m i c a l c o m p o n e n t s i n w o o d is c a l c u l a t e d o n t h e b a s i s o f m o i s t u r e - f r e e w o o d . M o i s t u r e c o n t e n t is d e t e r m i n e d o n a s e p a r a t e p o r t i o n o f t h e s a m p l e not u s e d for the o t h e r analyses.



Recent Improvements in Techniques T h e data reported i n this chapter w e r e obtained using standard methods. T h e m e t h o d s are r o u t i n e b u t r e q u i r e m u c h care a n d t i m e . S o m e methods have b e e n r e p l a c e d b y better, m o r e efficient methods. F o r e x a m p l e , t h e h o l o c e l l u l o s e , c e l l u l o s e , a n d p e n t o s a n tests h a v e b e e n r e p l a c e d b y t h e s i n g l e five-sugar c h r o m a t o g r a p h i c t e s t . T h e five-sugar test p r o c e d u r e gives m o r e d e t a i l e d i n f o r m a t i o n i n a shorter t i m e . T h e r e c e n t c h a n g e f r o m p a p e r c h r o m a t o g r a p h y t o H P L C has i m p r o v e d t h e efficiency o f this test. T h e test for K l a s o n l i g n i n r e m a i n s i n u s e , as d o t h e a c e t y l , m e t h o x y l , a n d u r o n i c a c i d t e s t s . A n a l y t i c a l i n s t r u m e n t s a n d d a t a p r o c e s s o r s h a v e h e l p e d to r e ­ m o v e s o m e o f t h e t e d i u m a n d to s h o r t e n analysis t i m e . T h e r e s u l t has b e e n a n i n c r e a s e i n t h e n u m b e r o f a n a l y s e s p e r f o r m e d . M o r e



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



2.



PETTERSEN



The Chemical



Composition



of Wood



75



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



s i g n i f i c a n t is t h e d e t a i l p o s s i b l e w i t h a d v a n c e d i n s t r u m e n t s . F o r e x ­ ample, H P L C can separate a n d quantitate i n d i v i d u a l u r o n i c acids. This provides more detail of hemicellulose composition. T h e struc­ ture of l i g n i n can b e p r o b e d f u r t h e r b y mass spectrometry a n d h i g h resolution N M R spectrometry. W o o d extractives can be isolated a n d c h a r a c t e r i z e d b y c a p i l l a r y G C / m a s s spectrometry. A n e w mass spec­ t r o m e t e r has t w o o r m o r e mass analyzers a n d e l i m i n a t e s the often l i m i t i n g chromatographic separation step. M o r e systematic w o o d composition studies are n e e d e d i n the future. It w o u l d b e useful to s t u d y the c o m p o s i t i o n of a select n u m b e r of p r o m i n e n t species a n d note the content variability w i t h tree parts, c l i m a t e , soil c o n d i t i o n s , a n d age.



Tables of Composition Data Tables I I I - X I V are o r g a n i z e d geographically a n d list c h e m i c a l c o m p o s i t i o n d a t a f o r w o o d s f r o m v a r i o u s c o u n t r i e s . T h e d a t a as p u b ­ l i s h e d o r i g i n a l l y w e r e o f i n t e r e s t to the l o c a l p u l p a n d p a p e r i n d u s ­ tries. T h i s c o m p i l a t i o n p r o v i d e s a w o r l d w i d e v i e w of w o o d c o m p o ­ sition. M o s t o f t h e d a t a w e r e o b t a i n e d u s i n g s i m i l a r test m e t h o d s ( T a p p i S t a n d a r d s ) . W h e n i t is k n o w n t h a t o t h e r t e s t m e t h o d s w e r e u s e d , t h e m e t h o d is f o o t n o t e d i n t h e t a b l e s . M o s t o f t h e v a l u e s r e ­ p o r t e d f r o m a l l s o u r c e s h a d o n e o r t w o figures b e y o n d t h e d e c i m a l p o i n t . E x c e p t for t h e e t h e r s o l u b i l i t y a n d a s h v a l u e s (usually less t h a n 1%), v a l u e s h a v e b e e n r o u n d e d o f f t o t h e n e a r e s t p e r c e n t b e c a u s e t h i s r e f l e c t s t h e p r e c i s i o n o f t h e s a m p l i n g a n d assay m e t h o d s . T h e data i n Table III have not b e e n p u b l i s h e d previously. T h e same test m e t h o d s w e r e u s e d for a l l tree species i n Table I I I . M o s t o f t h e s e m e t h o d s w e r e d e v e l o p e d at t h e l a b o r a t o r y a n d w e r e l a t e r a d o p t e d as T a p p i s t a n d a r d s . T a b l e s I V - X I I c o n t a i n s i m i l a r d a t a o b ­ t a i n e d i n m a n y test laboratories. T h e t h r e e Taiwanese sources c o n t a i n data for m o r e t h a n 4 0 0 trees. T h e trees s e l e c t e d for i n c l u s i o n i n Table X w e r e those d e s c r i b e d i n a book p u b l i s h e d b y the C h i n e s e F o r e s t r y A s s o c i a t i o n (56). T a b l e X I I c o n t a i n s d a t a o n t r e e s o f u n r e c o r d e d o r ­ i g i n . E x c e p t f o r Tectonia grandia, the species r e p o r t e d do not appear in the other tables. Tables X I I I a n d X I V p r e s e n t m o r e d e t a i l e d analyses of woods: Table X I I I contains data o n 30 N o r t h A m e r i c a n species, a n d Table X I V contains data o n 32 species f r o m the southeastern U n i t e d States. T h e lignin values i n Table X I V are the s u m of K l a s o n a n d acid-soluble l i g n i n s . P e c t i n ( T a b l e X I V ) is m a i n l y g a l a c t u r o n i c a c i d . I t is t h e m e a ­ sured total uronic acid value m i n u s the estimated glucuronic acid value. G l u c u r o n i c acid content can be estimated from the xylan con­ t e n t b y a s s u m i n g a r a t i o o f x y l o s e to 4 - O - m e t h y l g l u c u r o n i c a c i d o f 10:1 (see T a b l e I and F i g u r e 5). T h e r e p o r t e d v a l u e s o f t h e c a r b o -



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



(Wangenh.) K . K o c h / Bitternut h i c k o r y Carya glaubra ( M i l l . ) Sweet/ Pignut h i c k o r y Carya ovata ( M i l l . ) K . K o c h / Shagbark h i c k o r y



Acer macrophyllum Pursh/ Bigleaf m a p l e Acer negundo L . / B o x e l d e r Acer rubrum L . / R e d m a p l e Acer saccharinum L./Silver maple Acer saccharum Marsh./Sugar maple Alnus rubra B o n g . / R e d a l d e r Arbutus menziesii P u r s h / Pacific m a d r o n e Betula alleghaniensis Britton/ Yellow b i r c h Betula nigra L . / R i v e r b i r c h Betula papyrifera Marsh./ Paper b i r c h Carya cordiformus



0



44



— 64 (2) 57 63 (3)







73



78 (2)



44 49 (2) 48



56



— —







71 (2)



71



45(5)



47(2) 41



44(3)



45



60



74 (2)



42



56







47(3)



46 45 61 (2)



b



Alpha Cellulose



77 (3)



0



Holocellulose



Cross and Bevan Cellulose



Carbohydrate



18



17(2)



19



23(5)



23 (2) 23



23



20 (3)



17



19



18(3)



22 20



Hardwoods



1



sans'



Pento-



21



24 (2)



25



18(5)



21(2) 21



21



22 24(3)



21



25 30 21 (3)



Klason Lignin



18



17(2)



16



17(4)



16(2) 21



23



16(3)



15



21



16(3)



10



18



1% NaOH



5



5(2)



5



2(4)



2(2) 4



5



3 3(3)



4



3(3)



2



Hot Water



3



4(2)



4



3(4)



2(2) 2



7



2(3)



3



3



2(3)



3



EtOHl Benzene



Solubility



0.4



0.4 (2)



0.5



1.4 (4)



1.2 (2) 0.5



0.4



0.5 (3)



0.5



0.6



0.7 (3)



0.7 0.4



Ether



0.6



0.8 (2)







0.3 (2)



0.7 (2)



0.7



0.2 0.3 (3)







0.4 (3)



0.5



Ash



T a b l e III. C h e m i c a l C o m p o s i t i o n o f U . S . W o o d s as D e t e r m i n e d at U . S . F o r e s t Products L a b o r a t o r y f r o m 1927 to 1968



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



triacanthos



H o n e y locust Laguncuhria racemosa (L.) Gaertn./White mangrove Liquidambar styraciflua L./ Sweetgum Liriodendron tulipifera L . / Yellow-poplar Lithocarpus densiflorus (Hook. & A m . ) R e h d . / Tanoak Milalenca quinquenervia (Cav.) S. T . B l a k e / C a j e p u t Nyssa aquatica L./Water tupelo Nyssa sylvatica M a r s h . / B l a c k tupelo Populus alba L . / W h i t e p o p l a r Populus deletoides Bartr. ex M a r s h . / E a s t e r n cotton w o o d



Gleditsia



L./



pennsylvanica



M a r s h . / G r e e n ash



Fraxinus



f./— Fagus grandifolia Ehrh./ American beech Fraxinus americana L./White ash



Mockernut hickory Celtis laevigata W i l l d . / Sugarberry Eucalyptus gigantea H o o k .



Carya pallida (Ashe) E n g l . & G r a e b n . / S a n d hickory Carya tomentosa (Poir.) N u t t . /



51







46(3)



45(2) 45(5) 52



60 (3) 62



— 56 59 (2) 57(4) 67 64(3)











71(2)



















72



45



52







47(3)



43



46 (4)



40



— 52



40 (4)



41



49 (2)



49



(2)







53(4)



61(2)



77 (2)











40



48



— 54



50







72



71 (2)



69



18(3)



17(4) 23



16(2)



19



20 (2)



19



20 (4)



19



22



18(4)



15



20 (2)



14



22



18 (2)



17



23 (3)



27(5) 16



24 (2)



27



19 (3)



20



21(4)



23



21



26(4)



26



22 (2)



22



21



21(2)



23



15(3)



15(5) 20



16(2)



21



20 (3)



17



15(4)



29



19



19 (4)



16



14 (2)



16



23



17(2)



18



2(3)



3(5) 4



4(2)



4



5(2)



2



3(3)



15







7(4)



7



2(2)



7



6



5(2)



7



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2(3)



2(5) 5



3(2)



2



3(2)



1



2(4)



6







5(4)



5



2(2)



4



3



4(2)



4



Continued



0.8



0.4 0.9



0.6



0.5



0.4



0.2



0.7



2.1



0.4



0.4



0.5



0.8



0.3



0.3



0.4



0.4



(2)



(5)



(2)



(2)



(3)



(4)



(2)



0.4



0.5



0.6







0.7



1.0



0.3



















0.4



0.2







0.6



(2)



(2)



(3)



(2)



on next page



(2)



1.0



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Michx./



Name



42 37 43



44 47



— — — — 57



— — 55



69



60 70











76



69







Quercus marylandica M u e n c h h . / B l a c k j a c k oak Quercus prinus L . / C h e s t n u t oak



Quercus rubra L . / N o r t h e r n r e d oak



Wangenh./



fobata N e e / V a l l e y oak lyrata W a l t . / O v e r c u p



Quercus stellata Post oak



Quercus Quercus oak



41



46



40



40







46



59



Quercus fahata M i c h x . / Southern r e d oak Quercus kelloggii N e w b . / California black oak



Hook &







47 (2)



63



45



60







(20)



85 67 (2)



49



49







(13)



0







65



Quercus douglasii A r n . / B l u e oak



Ehrh./Black



78 (9)



13



Alpha Cellulose



Quercus alba L . / W h i t e oak Quercus coccinea M u e n c h h . / Scarlet oak



Prunus serotina cherry



Populus trichocarpa Ton*. & Gray/Black cottonwood



Populus tremoides Q u a k i n g aspen



Scientific Name/Common



Holocellufose°



Cross and Bevan Cellulose



Carbohydrate



18



22



19



20



18



23 19



20



22



18



e



e



e



20 (2)



20



19



19 (19)



1



24



24



24



26



28



26 19



25



27



28



27 (2)



21



21



19 (22)



Lignin



Klason



Continued



Pentosans'



T a b l e III.



21



22



21



15



24



26 23



17



23



20



19 (2)



18



18



18 (15)



1% NaOH Hot



8



6



7



5



9



10 5



6



11



6



6(3)



4



3



3(15)



EtOHl



4



5



5



4



5



5 7



4



5



3



3(2)



5



3



3(14)



Benzene



Solubility



Water



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



0.5



1.2



0.6



0.6



1.2



1.5 1.0



0.3



1.4



0.4



0.9 0.5



0.7



1.2



(2)



(15)



Ether



1.2



0.4



0.4



0.3



0.4 0.9



0.4



1.4



0.4



0.1



0.5



0.4



(11)



Ash



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Nutt./Cedar



L./American



Vent./



Torr./



W h i t e spruce



Picea engelmanni Parry ex E n g e l m . / E n g e l m a n spruce Picea gfauca ( M o e n c h ) Voss/



Incense cedar



W e s t e r n larch Libocedrus decurrens



Chamaecyparis thyoides ( L . ) B . S . P./Atlantic white c e d a r Juniperus deppeana S t e u d . / Alligator j u n i p e r Larix larcina ( D u Roi) Κ. Koch/Tamarack Larix occidentalis Nutt./



fir



(Hook.) Nutt./



S u b a l p i n e fir Abies procera R e h d . / N o b l e



W h i t e fir Abies lasiocarpa



Abies amabilis D o u g l . ex Forbes/Pacific silver fir Abies balsamea (L.) M i l l . / Balsam fir Abies concolor ( G o r d . & G l e n d . ) L i n d l . ex H i l d e b r . /



elm Ulmus crassifolia elm



willow Tilia heterophyUa Bas s w o o d Ulmus americana



Quercus velutina Lam./Black oak Salix nigra M a r s h . / B l a c k







69



(4) 61



60







(8)



(2) 43(8)



45(6)



37



48



56



65



56



44(3)







64(3) (3)



40







57



(3)



41



53



(2)



(16)



46(4) 43



49



42



44(3)



50



50(3)



48



46(2)



48







— —







66



67(4) 61



58



— (16)



61(3)



61(3)







73



65



61(2)







77







71



(16)



13(7)



10(6)



(6)



(3)



(3)



(4)



(16)



(3)



(3)



29(8)



28



34



27



9(3) 12



26



34



33



29 29



28



29



29



27



22



20



21(2)



24



8(3)



5



9



9(4) 9



6



11



10(3)



Softwoods



19



17(3)



17



19(2)



20



(16)



12(8)



11(6)



3(8)



2(6)



3



6(3)



16(3) 9



7



3



3



3(4) 2



5



4(16)



3(3)



3(3)



2



4(2)



6



14(3)



16



16



12(4) 10



13



11



11(3)



14



16(3)



20



19 (2)



18



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2(8)



2(6)



3



2(3)



3(3)



7



6



3(4) 3



2



(3)



0.8



1.1



(2)



0.4



(2) (2)



0.2 0.3



0.3



(2)



(4)



(15)



0.3



0.3







0.5 0.4



0.4



0.4



0.4



0.4



0.7







0.2



on next page



(8)



1.1(6)



0.8



(3)



(4)



(16)



(3)



(3)



(2)



0.9



2.4



2.4



0.6 0.6



0.3



1.0



0.7



0.3



0.5



2.1



0.6



0.2



Continued



3(16)



3(3)



2(3)



4



2(2)



5



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Name/Common



Name



Le mm./



(Bong.) C a r r . /



64(3)



69 (3)







Pinus monticola D o u g l . ex D . Don/Western white pine



Pinus palustris pine



D o u g l . ex



Laws./Ponderosa pine



Pinus ponderosa



Mill./Longleaf



68



69



Engelm./Slash



Pinus elliottii pine



(11)



(13)



58



59 (7)



61(4)



59



60(8)



59 (7)



57(3)







68



58



66 (6)



(25)



(19)







62



60



1















1



Loud./Lodgepole pine Pinus echinata M i l l . / S h o r t l e a f pine



Knobcone pine Pinus banksiana L a m b . / J a c k pine Pinus clausa ( C h a p m . ex E n g e l m . ) Vasey ex S a r g . / Sand p i n e Pinus contorta D o u g l . ex



Picea sitchensis Sitka spruce Pinus attenuata



Picea mariana ( M i l l . ) B . S . P . / Black spruce



Scientific



Holocellulose'



Cross and Bevan Cellulose ' 0



(27)



(20)



(11)



(15)



41



(2)



44(5)



43(7)



46



45(9)



45



44 (4)



43



47



45



43



Alpha Cellulose



Carbohydrate



(27)



(19)



(11)



(15)



9(2)



12 (7)



9(7)



11



12(9)



10



11(4)



13



14



7



12



(27)



(20)



(11)



(15)



26 (2)



30 (6)



25(7)



27



28(9)



26



27(4)



27



27



27



27



Klason Lignin



Continued



Pentosans*



T a b l e III.



(27)



(20)



(11)



(15)



16 (2)



12 (7)



13(6)



13



12(9)



13



12(2)



13



11



12



11



1% NaOH



(26)



(20)



4(2)



3(5)



4(6)



3(15)



2(9)



4(11)



2(2)



3



3



4



3



(20)



5(2)



4(7)



4(6)



4(15)



4(9)



3(11)



3(2)



5(27)



1



4



2



EtOHl Benzene



Solubility Hot Water



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



5.5



1.4



2.3



3.3



2.9



1.6



1.0



3.0







0.7



1.0



(2)



(7)



(6)



(15)



(9)



(11)



(26)



(20)



Ether



0.5







0.2



0.2



0.4



0.3



0.4



0.3



0.2







0.3



Ash



(3)



(3)



(2)



(11)



(7)



(19)



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.











43



7



27







60



(22)



29



(22)



9



(22)



42



58



67 (2)



(22)



33 (7)



9(4)



41 (7)



32



30



55 (7)



e



33



33 33



12



5



5



(22)



4



(22)



4



14



(22)



3(7)



14



6



5



10 —IrHCNI



ι—I CM



oq I I CD



oq



N C O O Î H N M N O O O O I O l > l > l > 00 t> l > CD t> 00 l > 00



O O 00 00



00 Η I i n CD



oq CD



ε



s



1



S



I



ι 00



2



« a i t -i e ^ „ et ^ Q ^ ^ δ



bn



J



N



δ ο ·»5 σ ί>



CD E S



,3



'3D



ι O



| | cq Η



I-H



2:



S -S



i—J CD ^



3



sS **·«» co



in ^



1



ο



-s



Q 3 l



O



CM



I> CD



!>



oo CD



CD



24.2 ± 3.4(46) 8.8 ± 2.5(12)



28.6 ± 3.6(39)>



28.5 ±



31.7 ± 3.8(10)>



9.8 ± 2.2(35)



19.3 ± 2.2(49)



N O T E : Values are m e a n ± standard d e v i a t i o n ( n u m b e r o f data). H o l o c e l l u l o s e is t h e total carbohydrate content o f w o o d . A l p h a cellulose is nearly p u r e cellulose. Pentosans are the total anhydroxylose a n d arabinose residues i n w o o d . Cross a n d B e v a n cellulose is largely p u r e cellulose b u t contains some hemicelluloses. K u r s c h n e r cellulose is nearly p u r e cellulose. f O n e value o f 4 . 6 % not i n c l u d e d . M o d i f i e d K u r s c h n e r cellulose. M o d i f i e d C r o s s a n d B e v a n cellulose. ' P u r e glucan calculated from glucose a n d m a n n o s e content. H e m i c e l l u l o s e s c a l c u l a t e d from five-sugar, acetyl, a n d u r o n i c a c i d content. Klason l i g n i n + a c i d - s o l u b l e l i g n i n . O n e value o f 5 . 4 % not i n c l u d e d .



Hardwoods Softwoods











Softwoods



U . S . A . (Table X I V ) U . S . S . R . (Table XI)







Hardwoods



(Table XIII)



U . S . A . and Canada



71.7 ± 5.7(25)



6 4 . 5 ± 4.6(22)



Hardwoods



Softwoods



U . S . A . (Table III)



Table X V I . Continued



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



23.0 ± 3.0(40)



1.8(11)



21.9 ± 3.2(47) 29.0 ± 1.6(15)



24.5 ± 3.0(39)*



29.2 ± 2.0(19)



22.5 ±



28.8 ± 2.6(35)



0.6 ± 0.4(45)' 0.5 ± 0.4(16)



0.4 ± 0.3(39)



0.3 ± 0.2(19)



0.4 ± 0.2(11)



0.3 ± 0.1(30)



0.5 ± 0.3(34)



X2



m



X



H



to to



2.



PETTERSEN



The Chemical Composition of Wood



123



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



hydrate components i n Table X I V have b e e n adjusted b y a hydrolysisloss factor. T h i s f a c t o r w a s c a l c u l a t e d f o r e a c h s p e c i e s , s u c h t h a t t h e s u m of total extractives, lignin, cellulose, hemicellulose, a n d ash equals 1 0 0 % . T h e hemicellulose components were calculated using t h e a d j u s t e d v a l u e o f t h e five i n d i v i d u a l s u g a r s a n d t h e m e a s u r e d values for acetyl a n d u r o n i c acid. Table V I I reports t h e trace e l e m e n t composition of some woods. C a l c i u m , potassium, magnesium, a n d phosphorus are the principal trace elements i n t e m p e r a t e woods. T h e three tropical w o o d s have a higher potassium a n d magnesium content a n d a lower calcium con­ tent than the temperate woods. Table X V I is a s u m m a r y o f average w o o d c o m p o s i t i o n i n 13 c o u n ­ tries. T h e m e a n , standard deviation, a n d n u m b e r o f data are t a b u ­ lated for carbohydrate, l i g n i n , a n d ash compositions. H a r d w o o d s a n d softwoods are separated w h e n b o t h are available. A l l other values are o n l y for hardwoods. B e careful c o m p a r i n g values b e t w e e n countries because techniques a n d m e t h o d s vary. F o r e x a m p l e , t h e m e a n h o l o c e l l u l o s e c o n t e n t o f C o s t a R i c a n h a r d w o o d s is 7 8 . 1 % , h i g h e r t h a n that o f w o o d s f r o m B r a z i l (71.7%) a n d M e x i c o (67.8%). T h e h o l o c e l lulose d e t e r m i n e d for the C o s t a Rican hardwoods probably contained s o m e l i g n i n . T h e m e a n v a l u e o f Taiwanese h a r d w o o d h o l o c e l l u l o s e is obviously h i g h (83.3%) because t h e means for holocellulose a n d l i g n i n s u m to 1 0 8 % .



Literature Cited 1. Hegnauer, R. "Chemotaxonomie der Pflanzen," Volumes I - V I ; Birkhäuser Verlag: Basel and Stuttgart, 1962-1973. 2. Gibbs, R. Darnley "Chemotaxonomy of Flowering Plants," Volumes 1-4; McGill-Queens University Press: Montreal and London, 1974. 3. Wise, L. E.; Murphy, M.; D'Addieco, A. A. Pap. Trade J. 1946, 122(2), 35-43. 4. Fengel, Dietrich; Grosser, Dietger Holz Roh- Werkst. 1975, 33(1), 32-34. 5. Goring, D. A. I.; Timell, T. E. Tappi 1962, 45(6), 454-60. 6. Sjöström, Eero "Wood Chemistry. Fundamentals and Applications"; Academic Press: New York, 1981; p. 56, 65. 7. Billmeyer, F. W., Jr. J. Polym. Sci., Part C 1965, No. 8, 161-78. 8. Gardner, Κ. H.; Blackwell, J. Biochim. Biophys. Acta 1974, 343, 232-37. 9. Kolpak, F. T.; Blackwell, J. Macromolecules 1976, 9(2), 273-78. 10. Kolpak, F. J.; Weik, M.; Blackwell, J. Polymer 1978, 19, 123-31. 11. Timell, T. E. Wood Sci. Technol. 1982, 16, 83-122. 12. Timell, T. E. Wood Sci. Technol. 1967, 1, 45-70. 13. Timell, T. E. Adv. Carbohydr. Chem. Biochem. 1964, 19, 247-302. 14. Timell, T. E. Adv. Carbohydr. Chem. Biochem. 1965, 20, 409-83. 15. Adler, Erich Wood Sci. Technol. 1977, 11, 169-218. 16. Leopold, B.; Malmström, I. L. Acta Chem. Scand. 1952, 6, 49-54. 17. Obst, John R. Tappi 1982, 65(4), 109-12. 18. Nimz, H. Angew. Chem., Int. Ed. Engl. 1974, 13, 313-21. 19. Creighton, R. N. J.; Hibbert, H. J. Am. Chem. Soc. 1944, 66, 37-38. 20. Larsson, Sam; Miksche, Gerhard E. Acta Chem. Scand. 1967, 21(7), 1970-71.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



124



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



Κ.



T H E CHEMISTRY O F SOLID W O O D



21. Björkman, Anders Sven. Papperstidn. 1956, 59(13), 477-85. 22. Chang, H.-M.; Cowling, E. B.; Brown, W.; Adler, E.; Miksche, G. Holzforschung 1975, 29(5), 153-59. 23. Pew, John C. Tappi 1957, 40(7), 553-58. 24. Freudenberg, K.; Neish, A. C. "Constitution and Biosynthesis of Lignins"; Springer-Verlag: Berlin and New York, 1968; p. 113. 25. "Lignins: Occurrence, Formation, Structure and Reactions"; Sarkanen, V.; Ludwig, C. H., Eds.; Wiley-Interscience: New York, 1971. 26. "Wood Extractives"; Hillis, W. E., E d . ; Academic Press: New York, 1962. 27. Rowe, John W.; Conner, Anthony H. "Extractives in Eastern Hardwoods­ A Review"; General Technical Report FPL 18, Forest Products Labora­ tory, Madison, WI, 1979. 28. Meier, H.; Wilkie, K. C. B. Holzforschung 1959, 13(6), 177-82. 29. Meier, Hans J. Polym. Sci. 1961, 51, 11-18. 30. Scott, J. A. N.; Procter, A. R.; Fergus, B. J.; Goring, D. A. I. Wood Sci. Technol. 1969, 3, 73-92. 31. Fergus, B. J.; Procter, A. R.; Scott, J. A. N.; Goring, D. A. I. Wood Sci. Technol. 1969, 3, 117-38. 32. Fergus, B. J.; Goring, D. A. I. Holzforschung 1970, 24(4), 118-24. 33. Obst, John R. Holzforschung 1982, 36(3), 143-53. 34. Van Beckum, W. G.; Ritter, G. J. Pap. Trade J. 1937, 105(18), 127-30. 35. Wise, L. E.; Jahn, E. C. "Wood Chemistry," 2d ed.; Reinhold: New York, 1952; pp. 1148-52. 36. Browning, B. L. "Methods of Wood Chemistry," Volume II; Interscience: New York, 1967; pp. 406, 615-24. 37. Saeman, J. F.; Moore, W. E.; Mitchell, R. L.; Millett, M. A. Tappi 1954, 37(8), 336-43. 38. Nelson, N. J. Biol. Chem. 1944, 153, 375-80. 39. Simson, B. W.; Timell, T. E. Tappi 1967, 50(10), 473-77. 40. Borchardt, L. G.; Piper, C. V. Tappi 1970, 53(2), 257-60. 41. Seymour, F. R.; Chen, E. C. M.; Bishop, S. H. Carbohydr. Res. 1979, 73, 19-45. 42. Sweeley, C. C.; Bentley, Ronald; Makita, M.; Wells, W. W. J. Am. Chem. Soc. 1963, 85, 2497-507. 43. Brower, H. E.; Jeffery, J. E.; Folsom, M. W. Anal. Chem. 1966, 38(2), 36264. 44. Wentz, F. Ε.; Marcy, A. D.; Gray, M. J. J. Chromatogr. Sci. 1982, 20, 349-52. 45. Bylund, M.; Donetzhuber, A. Sven. Papperstidn. 1968, 71(15), 505-8. 46. Scott, R. W. Anal. Chem. 1979, 51(7), 936-41. 47. Wisenberger, E. Makrochem. 1947, 33, 51-69. 48. Procter, A. R.; Chow, W. M. Pulp Pap. Mag. Can. 1973, 74(7), 97-100. 49. Effland, Marilyn J. Tappi 1977, 60(10), 143-44. 50. Musha, Y.; Goring, D. A. I. Wood Sci. 1974, 7(2), 133-34. 51. Schöning, Arnt G.; Johansson, Gösta Sven. Papperstidn. 1965, 68(18), 60713. 52. Swan, Brita Sven. Papperstidn. 1965, 68(22), 791-95. 53. Zeisel, S. Monatsh. Chem. 1885, 6, 989-96. 54. Steyermark, A. "Quantitative Organic Microanalysis"; 2d ed.; Academic Press: New York, 1961; p. 422-43. 55. Koeppen, Robert C. in "Papers for Conference on Improved Utilization of Tropical Woods"; Forest Products Laboratory: Madison, WI, 1978; p. 33. 56. Chinese Forestry Association "Important Wood Species of Taiwan"; Taipei, Taiwan, 1967. 57. Corrêa, Α. Α.; Ribeiro, E. B. P.; Lobato, R. de F. Assoc. Téc. Bras. Cellul. Pap. Bol. 1970, 31, 95-138. 58. Lauer, Karl Tappi, 1958, 41(7), 334-35. 59. Barrichelo, L. E. G.; Brito, J. O. IPEF 1976, 13, 9-38.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



2.



PETTERSEN



The Chemical Composition of Wood



125



60. U.S. Forest Products Laboratory, unpublished data for 1948-1957 on file at Madison, WI. 61. Inoue, Hideo; Masao, Moriya; Akiyama, Takeshi J. Jpn. Tappi 1972, 26(6), 256-62. 62. Wise, Louis E.; Rittenhouse, Ruth C.; Dickey, Edgar E.; Olson, Harry O.; Garcia, Consuelo J. For. Prod. Res. Soc. 1952, 2(5), 237-49. 63. Wise, Louis E.; Rittenhouse, Ruth C.; Garcia, Consuelo Tappi 1951, 34(4), 185-88. 64. Smith, J. B.; Primakov, S. F. Appita 1977, 30(5), 405-6. 65. Oliveira, J. Santos Rev. Cien. Agron. 1971, Ser. B4, No. 3, 3-32. 66. Satonaka, Seiichi J. Jpn. Wood Res. Soc. 1963, 9, 26-34. 67. Yonezawa, Yasumasa; Kayama, Tsutomu; Kikuchi, Fumihiko; Usami, Ku­ ninori; Takano, Isao; Ogino, Takeniko; Honda, Osamu Bull. Gov. For. Exp. Stn. (Jpn.) 1973, 253, 55-99. 68. Kayama, Tsutomu; Kikuchi, Fumihiko; Takano, Isao; Usami, Kuninori Bull. Gov. For. Exp. Stn. (Jpn.) 1967, 197, 155-62. 69. Kayama, Tsutomu J. Jpn. Tappi 1968, 22(11), 581-90. 70. Working Group on Utilization of Tropical Woods Bull. Gov. For. Exp. Stn. (Jpn.) 1977, 294, 1-49. 71. Working Group on Utilization of Tropical Woods Bull. Gov. For. Exp. Stn. (Jpn.) 1978, 299, 85-104. 72. Εddowes, Peter J. "Commercial Timbers of Papua New Guinea"; Hebamo Press: Port Moresby, Papua New Guinea, 1977. 73. Reyes, Luis J. "Philippine Woods"; Bureau of Printing: Manila, 1938; p. 479-82. 74. Francia, P. C.; Escolano, E. U.; Bautista, C. S.; Semana, J. A. Philippine Lumberman 1971, 17(5), 21-24. 75. Escolano, Eugenia U . ; Semana, Jose A. Philippine Lumberman 1978, 24(12), 16-20. 76. Escolano, E. U.; Francia, P. C.; Semana, J. Α.; Bawagan, B. O. Philippine Lumberman 1970, 16(12), 26-28. 77. U.S. Forest Products Laboratory, unpublished data on file at Madison, WI. 78. Semana, J. Α.; Escolano, E.; Francia, P. C.; Bautista, C. S. Philippine Lum­ berman 1968, 14(2), 20-25. 79. Francia, P. C.; Escolano, E. U.; Semana, J. Α.; Bawagan, B. O. Philippine Lumberman 1970, 16(11), 26-30. 80. Chao, S. C.; K u , Y. C.; L i n , S. J.; Pan, T. T. Bull. Taiwan For. Res. Inst. (Co-Op. Taiwan For. Bur.) No. 14, 1971, Taipei, Taiwan. 81. Ku, Y. C. Bull. Taiwan For. Res. Inst. (Co-Op. Taiwan For. Bur.) No. 142, 1966, Taipei, Taiwan. 82. K u , Y. C.; Haung, L. Y.; L i n , T. N.; Pan, T. T. Co-Op. Bull. Taiwan For. Res. Inst. Co-Op. Natl. Sci. Counc., Jt. Comm. Rural Reconstr., Taiwan For. Bur. No. 8, 1965, Taipei, Taiwan. 83. Sieber, R.; Walter, L. E. Papier-Falst. 1913, 11, 1179-83. 84. Nikitin, Ν. I. "The Chemistry of Cellulose and Wood"; trans. from Russian by J. Schmorak. Israel Program for Scientific Translations, Jerusalem, 1966. First published in Russian in 1962. 85. Campbell, W. G.; Bamford, K. F. J. Soc. Chem. Ind., London, Trans. Commun. 1939, 58, 180-85. 86. Timell, T. E. Pulp Pap. Mag. Can. 1958, 59(8), 139-40. 87. "The Chemistry of Wood"; Browning, B. L., E d . ; Krieger: Huntington, NY, 1975; p. 70-71. 88. Moore, W. E.; Effland, M. J. Tappi 1974, 57(8), 96-98. 89. Côté, W. Α., Jr.; Simon, B. W.; Timell, T. E. Sven. Papperstidn. 1966, 69(17), 547-58. 90. Timell, T. E. Tappi 1957, 40(7), 568-72. 91. Smelstorius, J. A. Holzforschung 1971, 25(2), 33-39. 92. Smelstorius, J. A. Holzforschung 1974, 28(2), 67-73.



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.



126



T H E CHEMISTRY O F SOLID W O O D



93. Young, H. E.; Guinn, V. P. Tappi 1966, 49(5), 190-97. 94. Osterhaus, C. Α.; Langwig, J. E.; Meyer, J. A. Wood Sci. 1975, 8(1), 37074. 95. Choong, Elvin T.; Chang, Bao-Yih; Kowalczuk, Joseph "LSU Wood Utili­ zation Notes"; No. 27, December 1974. for review May 6 , 1 9 8 3 . ACCEPTED July 22, 1 9 8 3 .



Downloaded by MONASH UNIV on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1984 | doi: 10.1021/ba-1984-0207.ch002



RECEIVED



In The Chemistry of Solid Wood; Rowell, R.; Advances in Chemistry; American Chemical Society: Washington, DC, 1984.