Lampiran Perhitungan [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

URAIAN PERHITUNGAN



Berdasarkan Log Sheet tanggal 21 Agustus 2017, didapatkan data sebagai berikut: 



Flow Gas Alam Masuk



= 5369 Nm3







Temperatur Gas Alam



= 50oC







Temperatur Exhaust



= 450oC = 723,15 K







Energi Listrik yang Dihasilkan



= 10,5 MW







% O2 dalam Flue Gas



= 14,2 %



Fraksi Komponen



BM



Heating Value



HV x Fraksi



(BTU/scf)



(BTU/scf)



BM . Fraksi (%)



N2



34.08



0.40



0.14



0.00



0



CO2



44.01



5.52



2.43



0.00



0



CH4



16.04



85.90



13.78



1010.00



867.59



C2H6



30.07



5.85



1.76



1769.80



103.5333



C3H8



44.10



1.32



0.58



2516.20



33.21384



I-C4H10



58.12



0.25



0.15



3252.10



8.13025



N-C4H10



58.12



0.30



0.17



3262.40



9.7872



I-C5H12



72.15



0.12



0.09



4000.90



4.80108



N-C5H10



72.15



0.08



0.06



4008.80



3.20704



C6H14



86.17



0.26



0.22



5065.80



13.17108



100.00



19.37



TOTAL



Nilai GHV =



Sumber: Data Departemen Laboratorium (Tanggal: 21 Agustus 2017)



1043.43379







Perhitungan Laju Alir Gas Alam Laju Alir Gas Alam



= 5369 Nm3/jam : 22,414 Nm3/kmol = 239,537789 kmol x 19,37 kg/kmol = 4639,84697 kg/jam = 189604,6233 scf/jam







Perhitungan Neraca Massa (Material Balance) Diagram Alir Neraca Massa GTG



Gas Turbine Generator



GAS ALAM



CO2 N2



(GTG) 3006-J



H2O O2



UDARA



1. Reaksi yang Terjadi CH4



+



2 O2







CO2



+



2 H2O



C2H6



+



7/2 O2







2 CO2



+



3 H2O



C3H8



+



5 O2







3 CO2



+



4 H2O



I-C4H10



+



13/2 O2







4 CO2



+



5 H2O



N-C4H10



+



13/2 O2







4 CO2



+



5 H2O



I-C5H12



+



8 O2







5 CO2



+



6 H2O



N-C5H10



+



8 O2







5 CO2



+



6 H2O



C6H14



+



19/2 O2







6 CO2



+



7 H2O



2. Perhitungan Teoritis Basis = 100 kmol Gas Alam Reaksi Pembakaran



O2 Teoritis



CO2 Teoritis



H2O Terbentuk



(Kmol)



(Kmol)



(Kmol)



Kmol Komponen







CH4



85.9



171.8



85.9



171.8



C2H6



5.85



20.475



11.7



17.55



C3H8



1.32



6.6



3.96



5.28



I-C4H10



0.25



1.625



1



1.25



N-C4H10



0.3



1.95



1.2



1.5



I-C5H12



0.12



0.96



0.6



0.72



N-C5H10



0.08



0.64



0.4



0.48



C6H14



0.26



2.47



1.56



1.82



CO2



5.52



-



5.52



-



TOTAL



99.6



206.52



111.84



200.4



Perhitungan Komposisi Udara Masuk Teoritis (100 kmol Gas Alam) a. O2 Teoritis



= 206,52 kmol



b. N2 dalam O2 Teoritis



= (Perbandingan N2 / O2 Udara) x O2



Teoritis = (79/21) x 206,52 kmol = 776,9086 kmol c. Udara Teoritis



= (O2 Teoritis + N2 dalam O2 Teoritis)



= (206,52 + 776,9086) kmol = 983,42856 kmol







Perhitungan Komposisi Udara Masuk Teoritis (239,537789 kmol) a.



N2



=



776,9086 𝑘𝑚𝑜𝑙 100 𝑘𝑚𝑜𝑙



𝑥 230,537789 𝑘𝑚𝑜𝑙



= 1860,9904 kmol b.



O2



= (Perbandingan O2 / N2 Udara) x N2 = (21/79) x 1860,9904 kmol = 494,6937 kmol



c.



N2 in



= 100 % x Fraksi N2 dalam Udara = 100 % x 0,79 = 79 %



d.



O2 in



= 100% x Fraksi O2 dalam Udara = 100 % x 0,21 = 21 %



e.



Analisa Komposisi Flue Gas, O2 = 14,2%



f.



O2 tereaksi



= 21 % – 14,2 % = 6,8 %



g.



% Excess Udara



𝑂2 𝑒𝑥𝑐𝑒𝑠𝑠



=𝑂



2



=



𝑡𝑒𝑟𝑒𝑎𝑘𝑠𝑖



14,2 % 6,8 %



𝑥 100 %



𝑥 100 %



= 208,8235 %



h.



O2 Excess



= 208,8235 % x O2 Teoritis = 2,088235 x 206,52 kmol = 431,2623 kmol



3. Neraca Massa (Material Balance) di GTG o Input Laju Alir Mol Fuel (Bahan Bakar) a. O2 =



=



(𝑂2 𝑇𝑒𝑜𝑟𝑖𝑡𝑖𝑠 + 𝑂2 𝐸𝑥𝑐𝑒𝑠𝑠) 100 𝑘𝑚𝑜𝑙



= 239,537789 kmol



x Laju Alir Mol Fuel



(206,52 𝑘𝑚𝑜𝑙/𝑗𝑎𝑚+ 431,2623 𝑘𝑚𝑜𝑙/𝑗𝑎𝑚) 100 𝑘𝑚𝑜𝑙/𝑗𝑎𝑚



. 239,537789 𝑘𝑚𝑜𝑙/



𝑗𝑎𝑚 = 1527,7296 kmol b. N2 = (79/21) x 1527,7296 kmol = 5747,1734 kmol c. Gas Alam = 239,537789 kmol



o Output a.



CO2



= =



CO2 Dihasilkan 100 𝑘𝑚𝑜𝑙 111,84 kmol 100 𝑘𝑚𝑜𝑙



x Laju Alir Mol Fuel



x 239,537789 kmol



= 267,8991 kmol b.



O2



= O2 input – [



O2 Teoritis 100 𝑘𝑚𝑜𝑙



x Laju Alir Mol Fuel ]



= ( 1527,7296 - [



214,505 100



x 239,537789 ] ) kmol



= 1013,9091 kmol c.



N2



= N2 input + N2 dari Gas Alam = (5747,1734 + (0,4% x 239,537789)) kmol = (5747,1734 kmol + 0,9582 kmol) = 5748.1316 kmol



d. H2O



= =



H2 O Terbentuk 100 𝑘𝑚𝑜𝑙 200,4 𝑘𝑚𝑜𝑙 100 𝑘𝑚𝑜𝑙



x [ Laju Alir Mol Fuel ]



x 239,537789 kmol



= 480,0337 kmol KOMPONEN



INPUT (kmol)



OUTPUT (kmol)



Gas Alam



239,537789



-



CO2



-



267,8991



N2



5747,1734



5748.1316



O2



1527,7296



1013,9091



H2O



-



480,0337



TOTAL



7514,440789



7509,9735



4. Perhitungan Neraca Panas di GTG 



Diagram Alir Neraca Panas di GTG



Q4 Flue Gas to WHB Q1 Gas Alam



Gas Turbine Generator



Q5 FDFan FanFan Q2 Udara Q Q



(GTG) 3006-J



Q5 Listrik



Q3 Reaksi



Q Losses







Q1 Gas Alam (Panas dari Gas Alam) T = 50 oC = 323,15 K , Tref = 27 oC = 300,15 K



Cp N2 = (29) + (0,2199 x 10-2) T + (0,5723 x 10-5) T2 – (2,871 x 10-9) T3 T = 323,15 K Maka, Cp N2 = 30,2114 J/mol K



= 28,6351 BTU /kmol K



Q = m . Cp . (T - Tref) Q = (0,4% x 239,537789 kmol) .30,414 BTU/kmol K .(323,15 K – 300,15 K) Q N2 = 631,0444 BTU



Cp CO2 = 36,11 + (4,233 x 10-2) T – (2,887 x 10-5) T2 + (7,464 x 10-9) T3 T = 323,15 K Maka, Cp CO2 = 47,0260 J/mol K = 44,573 BTU/kmol K



Q = m . Cp . (T - Tref) Q = (5,52% x 239,53778 kmol) .44,573 BTU/kmol K .(323,15 K – 300,15 K) Q CO2 = 13555,26802 BTU



Cp CH4 = 4,5980 + (1,245 x 10-2) T + (2,686 x 10-6) T2 - (2,703 x 10-9) T3 T = 323,15 K Maka, Cp CH4 = 8,82866 Cal/mol K = 35,011524 BTU/kmol K Q = m . Cp . (T - Tref) Q = (85,9% x 239,53778 kmol) .35,012 BTU/kmol K .(323,15 K – 300,15 K) Q CH4 = 165694 BTU



Cp C2H6 = 1,2920 + (4,254 x 10-2) T - (1,657 x 10-6) T2 - (2,08 x 10-9) T3 T = 323,15 K Maka, Cp C2H6 = 13,3787 Cal/mol K



= 53,055403 BTU/kmol K



Q = m . Cp . (T - Tref) Q = (5,85% x 239,53778 kmol) .53,055 BTU/kmol K .(323,15 K – 300,15 K) Q C2H6 = 17099,7 BTU



Cp C3H8 = -1,009 + (7,315 x 10-2) T - (3,789 x 10-5) T2 + (7,678 x 10-9) T3 T = 323,15 K Maka, Cp C3H8 = 18,9318Cal/mol K = 75,0773 BTU/kmol K



Q = m . Cp . (T - Tref) Q = (1,32% x 239,53778 kmol) .75,077 BTU/kmol K .(323,15 K – 300,15 K) Q C3H8 = 5459,9 BTU



Cp N-C4H10 = 2,266 + (7,313 x 10-2) T - (2,647 x 10-5) T2 - (6,74 x 10-10) T3 T = 323,15 K Maka, Cp N-C4H10 = 25,05 Cal/mol K = 99,3398 BTU/kmol K Q = m . Cp . (T - Tref) Q = (0,12% x 239,53778 kmol) .99,398 BTU/kmol K .(323,15 K – 300,15 K) Q N-C4H10 = 1368,25 BTU



Cp I-C4H10 = -0,3320 + (9,189 x 10-2) T - (4,409 x 10-5) T2 + (6,92 x 10-9) T3 T = 323,15 K Maka, Cp I-C4H10 = 24,9915 Cal/mol K = 99,1077 BTU/kmol K Q = m . Cp . (T - Tref) Q = (0,3% x 239,53778 kmol) .99,108 BTU/kmol K .(323,15 K – 300,15 K) Q I-C4H10 = 1638,06 BTU



Cp N-C5H12 = -0,866 + (1,164 x 10-1) T - (6,163 x 10-5) T2 + (1,267 x 10-8) T3 T = 323,15 K Maka, Cp N-C5H12 = 30,7404 Cal/mol K = 121,9063 BTU/kmol K Q = m . Cp . (T - Tref) Q = (0,12% x 239,538 kmol) .121,9063 BTU/kmol K .(323,15 K – 300,15 K) Q N-C5H12 = 805,952 BTU



Cp I-C5H12 = -2,2750 + (1,21 x 10-1) T - (6,519 x 10-5) T2 + (1,367 x 10-8) T3 T = 323,15 K Maka, Cp I-C5H12 = 30,4779 Cal/mol K = 120,87318 BTU/kmol K Q = m . Cp . (T - Tref) Q = (0,08% x 239,538 kmol) .120,8732 BTU/kmol K .(323,15 K – 300,15 K) Q I-C5H12 = 532,748 BTU



Cp C6H14 = -1,054 + (1,39 x 10-1) T - (7,449 x 10-5) T2 + (1,551 x 10-8) T3 T = 323,15 K Maka, Cp C6H14 = 36,6086 Cal/mol K = 145,17728 BTU/kmol K Q = m . Cp . (T - Tref) Q = (0,26% x 239,538 kmol) .145,1773 BTU/kmol K .(323,15 K – 300,15 K)



Q C6H14 = 2079,57 BTU



Jadi, Q1 (Panas Fuel Gas)



= Q N2 + Q CO2 + Q CH4 + Q C2H6 + Q C3H8 + Q N-C4H10 + Q I-C4H10 + Q N-C5H12



+ Q I-C5H12 + Q C6H14



= (631,044 + 13555,24 + 165693,7 + 17099,66 + 5459,895 + 1368,249 + 1638,064



+



805,9523



+



532,748



+



2079,572) BTU = 2,0886 x 105 BTU







Q2 Udara (Panas dari Udara) T = 30 oC = 303,15 K , Tref = 27 oC = 300,15 K



Cp O2 = (29,1) + (1,158 x 10-2) T - (0,6076 x 10-5) T2 + (1,311 x 10-9) T3 T = 303,15 K Maka, Cp O2



= 32,088 J/mol K



= 30,414 BTU/kmol K



Q = m . Cp . (T - Tref) Q = 1527,7296 kmol . 30,414 BTU/kmol K . (303,15 K – 300,15 K) Q O2 = 139393,1042 BTU



Cp N2 = (29) + (0,2199 x 10-2) T + (0,5723 x 10-5) T2 – (2,871 x 10-9) T3 T = 303,15 K Maka, Cp N2 = 30,213 J/mol K



= 28,6367 BTU /kmol K



Q = m . Cp . (T - Tref) Q = 5747,1734 kmol . 28,6367 BTU/kmol K . (303,15 K – 300,15 K) Q N2 = 493740,2414 BTU



Jadi, Q2 (Panas dari Udara) = (139393,1042 + 493740,2414 ) BTU = 6,3313 x 105 BTU







Q3 Reaksi (Panas Pembakaran Gas Alam) Q3



= m . GHV = 189604,6233 scf/jam x 1043,43379 BTU/scf = 19,7840 x 107 BTU







Q4 Flue Gas (Panas sisa menuju WHB) T = 400 oC = 723,15 K , Tref = 27 oC = 300,15 K



Cp O2 = (29,1) + (1,158 x 10-2) T - (0,6076 x 10-5) T2 + (1,311 x 10-9) T3 T = 723,15 K Maka, Cp O2 = 34,7924 J/mol K



= 32,9772 BTU/kmol K



Q = m . Cp . (T - Tref) Q = 1013,9091kmol . 32,9772 BTU/kmol K . (723,15 K – 300,15 K) Q O2 = 12,472 x 106 BTU



Cp N2 = (29) + (0,2199 x 10-2) T + (0,5723 x 10-5) T2 – (2,871 x 10-9) T3 T = 723,15 K Maka, Cp N2 = 30,213 J/mol K



= 28,6367 BTU /kmol K



Q = m . Cp . (T - Tref) Q = 5748,1316 kmol /jam . 28,6367 BTU/kmol K . (723,15 K – 300,15 K) Q N2 = 61,340 x 106 BTU



Cp CO2 = 36,11 + (4,233 x 10-2) T – (2,887 x 10-5) T2 + (7,464 x 10-9) T3 T = 723,15 K Maka, Cp CO2 = 54,53504 J/mol K = 51,670 BTU/kmol K Q = m . Cp . (T - Tref) Q = 267,8991 kmol . 51,670 BTU/kmol K . (723,15 K – 300,15 K) Q CO2 = 5,8553 x 106 BTU



Cp H2O = 7,701 + (4,59 x 10-4) T + (2,521 x 10-6) T2 – (8,59 x 10-10) T3 T = 723,15 K Maka, Cp H2O = 9,026 kCal/kmol K = 35,7941 BTU/kmol K Q = m . Cp . (T - Tref) Q = 480,03337 kmol . 35,7941 BTU/kmol K . (723,15 K – 300,15 K) Q H2O = 7,2681 x 106 BTU



Jadi, Q4 (Panas Flue Gas) BTU



= (12,472+61,34+5,8553 +7,2681) x 106



= 8,69354 x 107 BTU







Q5 Listrik (Listrik yang Diproduksi) Q5



= 10,5 MW



1 MW = 106 Watt 103 W = 0,947832 BTU / s 1h



= 3600 s



Maka, Q5



= (10,5 x 106 W) x



𝟎,𝟗𝟒𝟕𝟖𝟑𝟐 𝑩𝑻𝑼/𝒔 𝟏𝟎𝟑



𝑾



x



𝟑𝟔𝟎𝟎 𝒔 𝟏𝒉



= 3,5828 x 107 BTU / jam







Q6 Force Draft Fan Dari neraca massa, diketahui bahwa V udara masuk = 7274,903 kmol/jam Maka, V



= 7274,903 kmol / jam x 22,414 Nm3 / kmol = 163059,6758 Nm3 / jam = 45,2944 Nm3 / s



Jika diketahui , (Dari data pada tanggal 21 Agustus 2017) P Udara yang dialirkan (P2) = 3 atm = 303975 Pa P Udara lingkungan (P1)



= 1 atm = 101325 Pa



Efisiensi Alat (Design)



= 80 %



n Udara



= 1,4



Maka, P



=



=



𝑃1 . 𝑉 60000



.



𝑛 𝑛−1



𝑃2



. {[ ]



𝑛−1 𝑛



𝑃1



101325 . 45,2944 60000



.



− 1} (KW)



1,4 1,4 − 1



. {[



303975 101325



]



1,4−1 1,4



− 1} (KW)



= 98,7161 KW = 93,5648 BTU / s . 3600 s / jam = 3,3683328 x 105 BTU



5. Menghitung Q Loss Q Loss = (Q1 + Q2 + Q3) – (Q4 + Q5 + Q6) = (2,0886 x 105 + 6,3313 x 105 + 19,7840 x 107) BTU – (8,69354 x 107 + 3,5828 x 107 + 3,3683328 x 105 ) BTU = 19,8682 x 107 BTU – 12,3100 x 107 BTU = 7,5582 x 107 BTU 6. Menghitung Efisiensi Alat GTG Efisiensi



= =



𝑄 𝐼𝑛𝑝𝑢𝑡 – 𝑄 𝐿𝑜𝑠𝑠 𝑄 𝐼𝑛𝑝𝑢𝑡



x 100 %



19,8682 𝑥 107 𝐵𝑇𝑈 – 7,5582 𝑥 107 𝐵𝑇𝑈



= 62 %



19,8682 x 107 BTU



x 100 %