Nickel Electroplating [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

RANDHIR KUMAR SINGH ASST PROFESSOR OPJIT











Nickel is chosen as the material to make the valve because of several reasons. Electrodeposited nickel can be strong, tough and resistant to corrosion, erosion and wear. Its mechanical properties can be varied at will between wide limits by changing plating conditions, by alloying with other elements, and by incorporating particles and fibers within the electrodeposited nickel matrix. The scheme of nickel-electroplating cell is shown in Fig.1 where the cathode is the wafer to plate with a conducting layer and the photo resist structure on it. When the power supply is turned on, the positive ions in the solution are attracted to the negatively biased cathode. The nickel ions that reach the cathode, gain electrons and are deposited on the surface of the cathode forming a layer. Simultaneously, another reaction that depends on the nickel solution used to plate, occurs at the anode, to produce ions and electrons for the power supply.



Fig 1: Scheme of the electrochemical plating of Ni



 Properties of nickel coatings  Basics of nickel electroplating  Nickel coating thickness  Problems and troubleshooting



 Watts nickel plating solutions  Nickel sulfamate solutions  All-Chloride solutions  Sulfate-Chloride solutions  Fluoborate solutions



 Hard nickel solutions







 



 







Decorative appearance. Lustrous bright, satin semibright or black nickel coatings may be obtained by different plating methods. Corrosion protection. Wear resistance. Nickel deposited on a part made of a softer metal protects the part from wear. Hardness of nickel plating may be controlled by the plating process parameters. Low coefficient of friction. Ferromagnetism. Ferromagnetic parts (steel) may be plated by nickel without changing their magnetic properties. Controllable internal mechanical stresses. Low stress coatings are important in electroforming and applications, in which Fatigue strength is critical.



Electroplating is the most widely used method of nickel plating (the alternative method is electroless nickel plating). The following solutions are used for nickel electroplating:      



Watts nickel plating solutions Nickel sulfamate solutions All-Chloride solutions Sulfate-Chloride solutions All-Sulfate solutions Hard nickel solutions



Nickel electroplating is a process of nickel deposition over a part immersed into an electrolyte solution and used as a cathode, when the nickel anode is being dissolved into the electrolyte in form of the nickel ions traveling through the solution and depositing on the cathode surface



Prior to plating operation the cathode (work piece) surface should be cleaned from mineral oils, Rust protection oils, Cutting fluids (coolants), greases, paints, animal lubricants and vegetable lubricants, fingerprints, miscellaneous solid particles, oxides, scale, smut, rust. 



Anodes  Small parts of high purity primary nickel (nickel rounds or nickel squares) loaded into titanium baskets are used as anodes for nickel electroplating.  Dimensions of nickel rounds: 1” (25 mm) diameter and up to 0.5” (12 mm) thick.  Dimensions of nickel squares: 1”x1” (25×25 mm) and up to 0.5” (12 mm) thick.  Sometimes nickel bars and rods are used as anodes.



Current efficiency  Current efficiency is a ratio of the current producing nickel deposit to the total passing current.  Anode current efficiency in nickel electroplating is about 100%.  It may decrease at high PH when nickel dissolution is accompanied by discharging hydroxyl ions (OH-).  Cathode efficiency of nickel electroplating is 90-97%.  3-10% of the electric current is consumed by discharging hydrogen ions (H+), which form bubbles of gaseous Hydrogen (H2) on the cathode surface. Anti-pitting additives  Hydrogen bubbles formed on the cathode surface and adhered to it may cause pitting of the deposit.  In order to enhance removal of the bubbles wetting agents are added to the electrolyte.  Wetting (anti-pitting) agents (e.g. sodium lauryl sulphate) decrease the surface tension of the cathode and force the hydrogen bubbles out of the surface.















Filtration Continuous filtration of nickel plating baths with active carbon filters permits to control both presence of foreign particles and organic contaminations (products of brightener decomposition etc). The filtration pumps should turn over the solution a minimum 1-2 times tank volume per hour. Air agitation Air agitation by low pressure blowers is used in nickel electroplating to enhance removal of the hydrogen bubbles discharged at the cathode. Temperature Nickel electroplating processes are conducted at increased temperature, which results in lower electrolyte resistance and therefore permits to decrease the voltage. Additionally higher temperatures aid dissolution and prevent precipitation of boric acid and other components.



Thickness of electroplated nickel coating may be calculated from the Faraday’s law. Nickel coating thickness in US units: h = 0.000869(c.J.t)



where: h - coating thickness, μ inch; c - coefficient of cathode efficiency (about 0.95); J - electric current density, A/ft²; t - time, min. Nickel coating thickness in metric units: h = 0.205(c.J.t) where: h - coating thickness, μm; c - coefficient of cathode efficiency (about 0.95); J - electric current density, A/dm²; t - time, min.











Roughness Roughness of nickel coating is generally caused by foreign particles suspended in the electrolyte solution: air dust, torn anode bags, dropped parts, precipitates of boric acid, metallic impurities or dragin of incompatible solutions, particles of filter carbon powder, parts of filter paper. Roughness may be also a result of deposition in low brightener solutions at high current density. Corrective actions: proper filtering, preventing drag-in, temperature control. Pitting Pitting is a result of hydrogen bubbles adhered to the cathode surface. It usually occurs at low concentrations of wetting agent, low air agitation, high current densities, low boric acid concentrations. Corrective actions: check the concentrations of ant-pitting (wetting) agent and boric acid, increase air agitation, decrease the current density.















Poor adhesion Poor adhesion (peeling, blisters, low adhesion strength) of nickel coatings may be generally caused either by poor pretreatment cleaning or poor acid activation of the part surface. Activation acid contaminated with copper or chromium or improper activation acid cause adhesion problems. For example: lead containing alloys are activated by methane sulfonic acid or fluorides. Corrective actions: check cleaning operations, check the activation acid. High stress and low ductility Different nickel electroplating solutions produce coatings with different levels of internal mechanical stress and ductility. The lowest stress and maximum ductility are provided by nickel sulfamate solutions. Brittle coatings are caused by excessive concentrations of organic agents (levelers, brighteners), decomposition products of brighteners, nickel chloride and metallic contaminants. Corrective actions: active carbon treatment, control of nickel chloride. Brighteners In order to achieve bright and lustrous appearance of nickel plating organic and inorganic agents (brighteners) are added to the electrolyte.



Watts solution was developed by Oliver P. Watts in 1916. Now it is most popular nickel electroplating solution. Plating operation in Watts solutions is low cost and simple. Bath composition: Nickel sulphate, NiSO46H2O Nickel chloride, NiCl26H2O Boric acid, H3BO3



: 32-40 oz/gal (240-300 g/l) : 4-12 oz/gal (30-90 g/l) : 4-6 oz/gal (30-45 g/l)







Operating conditions:



Temperature Cathode current density pH 



: 105-150°F (40-65°C) : 20-100 A/ft² (2-10 A/dm²) : 3.0-4.5



Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 50000-70000 psi (345-485 MPa) : 10-30% : 130-200 HV : 18000-27000 psi (125-185 MPa)



Brighteners:  Carrier brighteners (e.g. paratoluene sulfonamide, benzene sulphonic acid) in concentration 0.1-3 oz/gal (0.75-23 g/l). Carrier brighteners contain sulfur providing uniform fine Grain structure of the nickel plating.  Levelers, second class brighteners (e.g. allyl sulfonic acid, formaldehyde chloral hydrate) in concentration 0.0006-0.02 oz/gal (0.0045-0.15 g/l) produce (in combination with carrier brighteners) brilliant deposit.  Auxiliary brighteners (e.g. sodium allyl sulfonate, pyridinum propyl sulfonate)in concentration 0.01-0.5 oz/gal (0.075-3.8 g/l).  Inorganic brighteners (e.g. cobalt, zinc) in concentration 0.01-0.5 oz/gal (0.075-3.8 g/l). Inorganic brighteners impart additional luster to the coating. Type of the added brighteners and their concentrations determine the deposit appearance: brilliant, bright, semi-bright, satin.



Nickel sulfamate solution is used for electroforming and for producing functional nickel coating. Nickel coatings deposited in nickel sulfamate baths possess lowest internal stress. High nickel concentrations of sulfamate electrolytes permit to conduct electroplating at high current densities (high rates of deposition). Bath composition: Nickel sulphamate, Ni(SO3N2)2 : 40-60 oz/gal (300-450 g/l) Nickel chloride, NiCl26H2O : 0-4 oz/gal (0-30 g/l) Boric acid, H3BO3 : 4-6 oz/gal (30-45 g/l)







Operating conditions: Temperature Cathode current density pH







: 105-140°F (40-60°C) : 20-250 A/ft² (2-25 A/dm²) : 3.5-4.5



Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 60000-88500 psi (415-610 MPa) : 5-30% : 170-230 HV : 0-8000 psi (0-55 MPa)







All-Chloride solutions operate at low voltage and permit deposition of thick coatings. The main disadvantage of all-chloride baths is high internal stress of the coatings.







Bath composition: Nickel chloride, NiCl26H2O : 30-40 oz/gal (225-300 g/l) Boric acid, H3BO3 : 4-4.7 oz/gal (30-35 g/l)







Operating conditions: Temperature : 110-150°F (43-65°C) Cathode current density : 25-100 A/ft² (2.5-10 A/dm²) pH : 1-3







Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 90000-14000 psi (620-930 MPa) : 4-20% : 230-260 HV : 40000-50000 psi (275-340 MPa)







Sulphate-Chloride solutions produce depositions with internal stress lower than that in All-Chloride solutions. SulphateChloride bath operate at voltages lower than Watts baths. This type of electrolyte permit deposition at high rates (high electric current) as compared to Watts bath.







Bath composition: Nickel sulphate, NiSO46H2O Nickel chloride, NiCl26H2O Boric acid, H3BO3



: 20-30 oz/gal (150-225 g/l) : 20-30 oz/gal (150-225 g/l) : 4-6 oz/gal (30-45 g/l)







Operating conditions:



Temperature : 110-125°F (43-52°C) Cathode current density : 25-150 A/ft² (2.5-15 A/dm²) pH : 1.5-2.5 



Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 70000-105000 psi (480-725 MPa) : 5-25% : 130-200 HV : 30000-40000 psi (200-275 MPa)







Fluoborate solutions permit high rate depositions due to higher (than in Watts solution) nickel concentration. Fluoborate solutions are mainly used for electroforming and for deposition of thick coatings.







Bath composition: Nickel fluoborate, Ni(BF4)2 : 30-40 oz/gal (225-300 g/l) Nickel chloride, NiCl26H2O : 0-2 oz/gal (0-15 g/l) Boric acid, H3BO3 : 2-4 oz/gal (15-30 g/l)







Operating conditions: Temperature : 100-160°F (38-70°C) Cathode current density : 30-250 A/ft² (3-25 A/dm²) pH : 2.5-4.0







Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 55000-87000 psi (380-600 MPa) : 5-30% : 125-300 HV : 13000-29000 psi (90-200 MPa)







All-Sulfate solution are used mainly in applications where insoluble anodes are required (plating tubes and small fittings).







Bath composition: Nickel sulphate, NiSO46H2O Boric acid, H3BO3



: 30-53 oz/gal (225-400 g/l) : 4-6 oz/gal (30-45 g/l)







Operating conditions: Temperature : 100-160°F (38-70°C) Cathode current density: 10-100 A/ft² (1-10 A/dm²) pH : 1.5-4.0







Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 60000-70000 psi (415-485 MPa) : 10-30% : 200-390 HV : 30000-45000 psi (200-300 MPa)







Hard nickel solution are used in applications where high tensile strength and hardness are required.







Bath composition: Nickel sulphate, NiSO46H2O Ammonium chloride, NH4Cl3 Boric acid, H3BO3



: 24 oz/gal (180 g/l) : 3.3 oz/gal (25 g/l) : 4 oz/gal (30 g/l)







Operating conditions:



Temperature Cathode current density A/dm²) pH 



: 110-140°F (43-60°C) : 25-50 A/ft² (2.5-5 : 5.6-5.9



Mechanical properties: Tensile strength Elongation Hardness Internal stress



: 60000-88500 psi (415-610 MPa) : 5-30% : 170-230 HV : 0-8000 psi (0-55 MPa)