Teknik Reservoir - Material Balance [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Mata Kuliah



Teknik Reservoir I Dr. Ir. Wahju Wibowo



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Daftar Pustaka • Craft, B. C. and Hawkins, M. F.: Applied Petroleum Reservoir Engineering, Revised edition by R. E. Terry, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991. • Dake, L. P.: Fundamentals of Reservoir Engineering, Elsevier Science Publisher B. V., Amsterdam, the Netherlands, 1978. • Dake, L. P.: The Practice of Reservoir Engineering, Revised Edition, Elsevier Science Publisher B. V., Amsterdam, the Netherlands, 2001. • Ahmed, T.: Reservoir Engineering Handbook, Fourth Edition, Gulf Professional Publishing, United States of America, 2010.



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Ekspektasi • • • • • •



Hadir disetiap jam perkuliahan Menyimak dan memahami materi perkuliahan Bertanya jika tidak mengerti Mengerjakan tugas atau pekerjaan rumah Mengerjakan ujian yang dilaksanakan (Quiz, UTS, UAS) Komunikasi dilakukan melalui Ketua Kelas



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Topik Bahasan • Pendahuluan • Review Sifat Fisik Fluida • Review Sifat Fisik Batuan • Cadangan Migas • Mekanisme Pendorong Reservoir • Persamaan Aliran dan Aplikasinya • Konsep Produktivitas • Analisis Decline Curve • Persamaan Kesetimbangan Materi



Mata Kuliah Teknik Reservoir I



Analisis Kesetimbangan Materi (Material Balance Analysis) Dr. Ir. Wahju Wibowo



• Salah satu cara atau alat yang digunakan oleh seorang reservoir engineer untuk melakukan interpretasi dan prediksi perilaku suatu reservoir hidrokarbon. • Konsep material balance pertama kali dikembangkan oleh Schilthuis di tahun 1941 berdasarkan konsep kesetimbangan materi dalam suatu volume tertentu. Volume awal = Volume tersisa + Volume terproduksi Volume Terproduksi Volume Awal



Volume Tersisa



Kondisi Awal Pi



Kondisi saat pengamatan P(t)



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pendahuluan



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Definitions of Variables Production data Gp Wp



= cumulative gas produced (scf) = Cumulative water produced (stb)



Reservoir Data pi p Swc cr



= Initial mean pressure in the reservoir (psi) = current mean pressure in the reservoir, (psi) = connate water saturation, (fraction) = Compressibility of reservoir rock (psi-1)



Fluid PVT Data Bgi Bg cw Bw Z Zi



= Initial gas volume factor at pi (ft3/scf) = Gas volume factor at current pressure p (ft3/scf) = Compressibility of water (psi-1) = Formation volume factor of water at current pressure p (rb/stb) = compressibility factor, fraction = initial compressibility factor, fraction



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Gas Reservoir •



Aplikasi MB pada reservoir gas biasanya digunakan untuk memperkirakan atau menghitung: – Volume gas in place – Gas reserves – Gas recovery factor – Identifikasi adanya mekanisme pendorong lain selain ekspansi gas itu sendiri







Data yang diperlukan: – Data produksi dan tekanan reservoir – Data sifat fisik batuan dan fluida reservoir







Akurasi perhitungan tergantung kualitas data dan waktu saat evaluasi dilakukan (sebaiknya setelah tekanan reservoir turun > 10% dari tekanan awal atau telah berproduksi > 20% dari volume awal)



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Gas Reservoir Pada kuliah ini, akan dibahas secara mendalam perhitungan MB untuk sistem reservoir: 1.



Volumetric dry gas reservoir: berlaku pada reservoir gas yang tertutup tanpa adanya energi/influx dari luar reservoir. Mekanisme pendorong reservoir adalah ekspansi dari fluida (gas dan connate water) dan batuan yg ada didalam reservoir tersebut.Karena ekspansi connate water dan batuan relatif sangat kecil dibanding gas, maka biasanya hal ini diabaikan.



2.



Dry gas reservoir dengan water influx: terjadi jika ada sumber energi lain masuk ke dalam reservoir gas (air dari akuifer). Volume reservoir gas berubah sebagai akibat adanya sebagian volume reservoir gas ditempati air akuifer yang bergerak masuk ke dalam reservoir. Selain itu, adanya air akuifer yang masuk ke reservoir akan memberikan tambahan energi dan harus diperhitungkan dalam perhitungan material balance.



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir G p Volume Terproduksi



G ⋅ Bgi = (G − G p )⋅ Bg



G ⋅ Bgi



(G − G )⋅ B



Volume Awal



Volume Tersisa



Kondisi Awal Pi



Kondisi setelah berproduksi P(t)



T ⋅ Zi   0.0282 ⋅ Pi G p = G ⋅ 1 −  T ⋅Z  0.0282 ⋅ P 



Gp G



G p ⋅ Bg = G ⋅ Bg − G ⋅ Bgi



= 1−



p



     = G ⋅ 1 −      



g



Zi Pi Z P



 Bgi   Gp = G − G ⋅  B   g  Bgi   G p = G ⋅ 1 −  B  g      = G ⋅ 1 − P Z i   Z P  i    



Gp P Zi P Zi P Pi Pi G p = 1 − = −    Z Pi Z Pi G Z Zi Zi G



RF =



ft 3 T ⋅Z , Bg = 0.0282 ⋅ scf P



 P Zi   = 1 − G  Z Pi 



Gp



P Pi Pi G p = − Z Zi Zi G



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Persamaan MB untuk volumetric dry gas reservoir P Pi Pi G p = − Z Zi Zi G P G p Pi P =− i + Z Zi G Zi



Y = −m ⋅ X + C P Y= Z P m= i Zi ⋅ G



Pi Zi



 slope = −m = −



P Z



Pi Zi ⋅ G



X = Gp C=



Pi Zi



G Gp



= Gas In Place



Persamaan MB untuk volumetric dry gas reservoir P G p Pi P =− i + Z Zi G Zi



Pi Zi slope = −m = −



Pi Zi ⋅ G



• Kondisi awal, Gp = 0, memberikan



ITSB



Pi Zi



• Gas in place dapat dihitung dengan mengetahui: • Perpotongan pada sumbu Gp pada saat



P Z



P =0 Z



• Slope atau garis miring - m



G = Gas In Place



Gp Note….



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir



Gas In Place = G = 43560 ⋅



A ⋅ h ⋅ φ ⋅ (1 − S wi ) Bgi



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Step by step 1.



Pengumpulan data yang diperlukan: –



Data tekanan reservoir







Data produksi sumur / reservoir







Data sifat fisik dan batuan reservoir



2.



Hitung z-factor sebagai fungsi dari tekanan



3.



Hitung P/z dan plot vs. Gp



4.



Tarik garis lurus melalui data point yang diplot



5.



Ekstrapolasi garis lurus tersebut sampai pada P/z = 0 (memotong sumbu x)



6.



Tentukan harga G atau gas in place, yaitu harga Gp @ P/z=0



7.



Perkirakan harga ultimate recovery @ tekanan abandonment



8.



Hitung parameter lain yang diinginkan



P Z



Pi Zi slope = −m = −



Pi Zi ⋅ G



G = Gas In Place



Pa Za remaining reserves cum. prod. gas



ultimate recovery



Note: Pa = Tekanan abandonment Za = z-factor pada tekanan abandonment



Gp



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Contoh Soal – 1 Dari peta isopach suatu lapangan gas A, secara volumetrik memberikan volume gas in place sebesar 44 mmscf. Berikut adalah data produksi dan tekanan yang diambil dari sumur yang berproduksi dari lapangan gas A. Reservoir Pressure (Pr), psi



Cum. Gas Prod. (Gp), mmscf



Z



4000



0.00



0.80



3480



2.46



0.73



2970



4.92



0.66



2500



7.88



0.60



2100



11.20



0.55







Dengan menggunakan metode P/Z, hitung besarnya gas in place lapangan gas A. (bandingkan dengan hasil volumetrik… Mana yang lebih valid?....)







Jika diasumsikan sumur tidak mampu lagi mengalir pada tekanan abandonment (di reservoir) sebesar 1000 psi (Z = 0.52), hitung kumulatif produksi gas dan faktor perolehan maksimum lapangan A



Hitung P/Z berdasarkan data produksi yang diketahui dan plot P/Z vs. Gp



ITSB



6000



Z



P/Z, psi



4000



0.00



0.80 5000.0



3480



2.46



0.73 4767.1



2970



4.92



0.66 4500.0



2500



7.88



0.60 4166.7



2100



11.20



0.55 3818.2







Dari plot P/Z, didapat gas in place sebesar 47 mmscf.







Pada Pr = 1000 psi, maka P/Z = 1000/0.52 = 1923 psi. dari plot P/Z perkiraan kumulatif produksi gas adalah sebesar = 29 mmscf.







RF = 29 / 47 = 0.617 atau 61.7%



5000



4000



P/Z, psi



Reservoir Cum. Gas Pressure (Pr), Prod. (Gp), psi mmscf



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Contoh Soal – 1



3000



2000



P/Z = 1923 psi



1000



Gp = 29 mmscf



0 0



10



20



30



40



50



Cum. Gas Production (Gp), mmscf G = 47 mmscf



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Contoh Soal – 2 A volumetric gas reservoir has the following production history.



The following data are also available: φ = 13%



Swi = 0.52



h = 54 ft



T = 164oF







A = 1060 Acres



Calculate the gas initially in place volumetrically and from the MBE



ITSB



-



Step – 1. Calculate



Bgi



(164 + 460) ⋅ 0.869 = 0.00853 = 0.02827 ⋅



ft 3



1798



scf



Step – 2. Calculate the gas initially in place volumetrically A ⋅ h ⋅ φ ⋅ (1 − S wi ) 1060 ⋅ 54 ⋅ 0.13 ⋅ (1 − 0.52 ) G = 43560 ⋅ = 43560 ⋅ Bgi 0.00853



G = 18239925270.8 scf = 18.24 bcf Step – 3. Plot P/z vs. Gp



2500



2000



Reservoir Cum. Gas Time, Pressure (Pr), Prod. (Gp), years psi bscf



Z



P/Z, psi



0.00



1798



0.00



0.87 2069.0



0.50



1680



0.96



0.87 1931.0



1.00



1540



2.12



0.88 1750.0



1.50



1428



3.21



0.89 1604.5



2.00



1335



3.92



0.90 1483.3



1500



P/Z, psi



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Volumetric Dry Gas Reservoir Contoh Soal – 2



1000



G = 14.2 bscf



500



0 0



10



Cum. Gas Production (Gp), bscf



20



Material Balance: Volumetric Dry Gas Reservoir dengan Water Influx



ITSB



-



(G − G )⋅ B



G ⋅ Bgi



p



Volume Awal Kondisi Awal Pi



∆V p



We



Kondisi setelah berproduksi P(t)



G ⋅ Bgi = (G − G p )⋅ Bg + ∆V p



G ⋅ Bgi + W p ⋅ Bw = G ⋅ Bg − G p ⋅ Bg + We G p ⋅ Bg + W p ⋅ Bw = G ⋅ Bg − G ⋅ Bgi + We G p ⋅ Bg + W p ⋅ Bw = G ⋅ (Bg − Bgi ) + We



(B



g



− Bgi )



=G+



(B



We g



G = Gas In Place



→ ∆V p = We − W p ⋅ Bw



G ⋅ Bgi = (G − G p )⋅ Bg + We − W p ⋅ Bw



G p ⋅ Bg + W p ⋅ Bw



g



p



Volume gas Tersisa



⋅ Bg + W p ⋅ Bw ) (Bg − Bgi )



G p & Wp



(G



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Volume Terproduksi



− Bgi )



We (Bg − Bgi )



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Oil Reservoir •



Aplikasi MB pada reservoir oil biasanya digunakan untuk memperkirakan atau menghitung / memperkirakan: – Volume oil in place – Oil reserves & oil recovery factor – Perilaku reservoir dimasa mendatang pada berbagai macam mekanisme pendorong reservoir







Data yang diperlukan: – Data produksi dan tekanan reservoir – Data sifat fisik batuan dan fluida reservoir







Akurasi perhitungan tergantung kualitas dan banyaknya data dan waktu saat evaluasi dilakukan (sebaiknya setelah tekanan reservoir turun > 30% dari tekanan awal atau telah berproduksi > 15% dari volume awal)



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Definitions of Variables Production data Np N Gp Gi Wp Wi We Rp



= Cumulative oil produced (stb) = initial oil in place (stb) = cumulative gas produced (scf) = cumulative gas injected (scf) = Cumulative water produced (stb) = Cumulative water injected (stb) = Cumulative water influx (stb) = Gp/Np = Cumulative produced gas-oil ratio (scf/stb)



Reservoir Data pi p ∆P Swc cr cw Vb Vp So Sg Sw m



φ



= Initial mean pressure in the reservoir (psi) = current mean pressure in the reservoir, (psi) = P2-P1 = connate water saturation, (fraction) = Compressibility of formation (psi-1) = Compressibility of water (psi-1) = bulk volume (bbl) = pore volume (bbl) = oil saturation, fraction = gas saturation, fraction = water saturation, fraction = ratio initial gas cap vol to vol. of oil zone = porosity, fraction



Fluid PVT Data Bgi Bg Boi Bo Bwi Bw



cw cr Rsi Rs Z



= Initial gas volume factor at pi (ft3/scf) = Gas volume factor at current pressure p (ft3/scf) = Initial oil volume factor at pi (rb/stb) = Oil volume factor at current pressure p (rb/stb) = initial formation volume factor of water (rb/stb) = Formation volume factor of water at current pressure p (rb/stb) = Compressibility of water (psi-1) = Compressibility of reservoir rock (psi-1) = solution gas-oil ratio at initial pressure pi (scf/stb) = solution gas-oil ratio at current pressure p (scf/stb) = compressibility factor, fraction



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Sifat Fisik Minyak (Black Oil) Bo Rs



Bw Bg



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Material Balance: Oil Reservoir •



Aplikasi MB pada reservoir oil biasanya digunakan untuk memperkirakan atau menghitung / memperkirakan: – Volume oil in place – Oil reserves & oil recovery factor – Perilaku reservoir dimasa mendatang pada berbagai macam mekanisme pendorong reservoir







Data yang diperlukan: – Data produksi dan tekanan reservoir – Data sifat fisik batuan dan fluida reservoir







Akurasi perhitungan tergantung kualitas dan banyaknya data dan waktu saat evaluasi dilakukan (sebaiknya setelah tekanan reservoir turun > 30% dari tekanan awal atau telah berproduksi > 5% dari volume awal)



@ 2014



(r-bbl)



ITSB



-



Kondisi awal, Pi



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



Gascap Gas



B



mNBoi Oil + Originally dissolved gas



C



NBoi



A



(r-bbl)



Perubahan volume di reservoir akibat penurunan tekanan reservoir, DP



A = ekspansi volume minyak dan gas yang terlarut didalamnya B = ekspansi volume gascap gas C = Perubahan volume pori-pori HC karena ekspansi connate water dan perubahan volume pori karena adanya kompresibilitas formasi Underground withdrawal (r-bbl)



=



ekspansi volume minyak dan gas yang terlarut didalamnya (r-bbl)



+



ekspansi gascap gas (r-bbl)



+



pengurangan volume pori-pori HC karena ekspansi connate water dan penurunan volume pori (r-bbl)



Kondisi awal, Pi



Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



Gascap Gas



B



mNBoi (r-bbl)



Oil + Originally dissolved gas



C



NBoi



A



(r-bbl)



IOIP = N =



V ⋅ φ ⋅ (1 − S wc )



( stb)



Boi IOIP = N ⋅ Boi (r - bbl)



m=



volume gascap awal (r - bbl)



=



volume minyak awal (r - bbl)



G ⋅ Bgi



, maka



N ⋅ Boi



G ⋅ Bgi = m ⋅ N ⋅ Boi (r - bbl)



A = ekspansi volume minyak dan gas yang terlarut didalamnya •



Ekspansi minyak = N ⋅ (Bo − Boi ) (r - bbl)







Ekspansi gas yang terbebas dari minyak = N ⋅ (Rsi − Rs ) ⋅ Bg (r - bbl) A = N ⋅ (Bo − Boi ) + N ⋅ (Rsi − Rs ) ⋅ Bg (r - bbl)



Bo



Rs



Bo1



Rs1



Bo2



Rs2



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak



P2



P1



P



P2



P1



P



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi awal, Pi



Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



IOIP = N =



Gascap Gas



B



mNBoi (r-bbl)



C



( stb)



Boi



Oil + Originally dissolved gas



NBoi



V ⋅ φ ⋅ (1 − S wc )



IOIP = N ⋅ Boi (r - bbl)



A



(r-bbl)



m=



volume gascap awal (r - bbl)



=



volume minyak awal (r - bbl)



G ⋅ Bgi



, maka



N ⋅ Boi



G ⋅ Bgi = m ⋅ N ⋅ Boi (r - bbl)



B = ekspansi volume gascap gas •



Volume gascap awal = G =



m ⋅ N ⋅ Boi



(scf)



atau



Bgi







G ⋅ Bgi = m ⋅ N ⋅ Boi (r - bbl)



Volume gascap karena penurunan tekanan ∆P = G ⋅ Bg = m ⋅ N ⋅ Boi  B g  B = m ⋅ N ⋅ Boi − m ⋅ N ⋅ Boi = m ⋅ N ⋅ Boi − 1 (r - bbl)   Bgi  Bgi  Bg



Bg



Bg



(r - bbl)



Bgi



Bg2 Bg1 P2



P1



P



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi awal, Pi



Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



IOIP = N ⋅ Boi (r - bbl)



Gascap Gas



B



mNBoi (r-bbl)



IGIP = G ⋅ Bgi = m ⋅ N ⋅ Boi (r - bbl)



Oil + Originally dissolved gas



C



NBoi



HCPV = V ⋅ φ ⋅ (1 − S wc ) = IOIP + IGIP (r - bbl)



A



(r-bbl)



HCPV = N ⋅ Boi + m ⋅ N ⋅ Boi



(r - bbl)



HCPV = N ⋅ Boi ⋅ (1 + m ) (r - bbl)



C = Perubahan/pengurangan volume pori-pori HC •



Ekspansi volume connate water (∆Vw)







Perubahan/penurunan volume pori akibat compressibilitas formasi (∆Vf) C = ∆(HCPV ) = −(∆Vw + ∆V f )



INGAT !!!



C = ∆(HCPV ) = +(cw ⋅Vw ⋅ ∆P + c f ⋅ V f ⋅ ∆P )



c=−



  HCPV HCPV C = ∆(HCPV ) =  cw ⋅ ⋅ S wc ⋅ ∆P + c f ⋅ ⋅ ∆P   (1 − S wc )  (1 − S wc )   cw ⋅ S wc + c f C = N ⋅ Boi ⋅ (1 + m )  (1 − S ) wc 



 ∆P  



HCPV = V ⋅ φ ⋅ (1 − S wc )



(r - bbl)



1 ∂V V ∂P



V f = V ⋅φ =



=−



1 ∆V V ∆P



V ⋅ φ ⋅ (1 − S wc )



(1 − S wc )



Vw = V f ⋅ S wc =



HCPV



(1 − S wc )



=



HCPV



(1 − S wc )



⋅ S wc



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi awal, Pi



Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



Gascap Gas



B



mNBoi (r-bbl)



Oil + Originally dissolved gas



C



NBoi



Total produksi minyak = N + G = N + N ⋅ R dimana R = G p p p p p p p dan gas di permukaan Np



free gas production = total gas production - solution gas production



A



free gas production = (N p ⋅ R p ) − (N p ⋅ Rs ) (scf)



(r-bbl)



free gas production = N p (R p − Rs )⋅ Bg (r - bbl)



D = Underground withdrawal (volume pengurasan reservoir) •



Volume karena produksi minyak dan gas terlarut dalam satuan reservoir (r-bbl)







Volume karena produksi gas bebas (free gas) dalam satuan reservoir (r-bbl) Volume karena produksi minyak dan gas terlarut dalam satuan reservoir (r-bbl)



= N p ⋅ Bo (r - bbl)



Volume karena produksi gas bebas (free gas) dalam satuan reservoir (r-bbl)



= N p (R p − Rs )⋅ Bg



D = N p ⋅ Bo + N p (R p − Rs )⋅ Bg



(r - bbl)



(r - bbl)



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi awal, Pi



Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



A = N ⋅ (Bo − Boi ) + N ⋅ (Rsi − Rs ) ⋅ Bg (r - bbl)



Gascap Gas



B



mNBoi (r-bbl)



 B g  B = m ⋅ N ⋅ Boi − m ⋅ N ⋅ Boi = m ⋅ N ⋅ Boi − 1 (r - bbl)   Bgi  Bgi   cw ⋅ S wc + c f  ∆P (r - bbl) C = N ⋅ Boi ⋅ (1 + m )  (1 − S )  wc  



Oil + Originally dissolved gas



C



NBoi



Bg



A



(r-bbl)



D = N p ⋅ Bo + N p (R p − Rs )⋅ Bg



Underground withdrawal (r-bbl)



=



ekspansi volume minyak dan gas yang terlarut didalamnya (r-bbl)



+



ekspansi gascap gas (r-bbl)



+



(r - bbl)



pengurangan volume pori-pori HC karena ekspansi connate water dan penurunan volume pori (r-bbl)



D = A+ B +C  B  cw ⋅ S wc + c f g   N p ⋅ Bo + N p ⋅ (R p − Rs )⋅ Bg = N ⋅ (Bo − Boi ) + N ⋅ (Rsi − Rs ) ⋅ Bg + m ⋅ N ⋅ Boi − 1 + N ⋅ Boi ⋅ (1 + m )  B  (1 − S ) wc   gi 



 (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ Boi   Boi 



     + m ⋅  Bg − 1 + (1 + m ) cw ⋅ S wc + c f  B  (1 − S )  wc    gi 



  ∆P     



 ∆P  



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Bentuk Umum Persamaan Material Balance dari Reservoir Minyak Kondisi setelah terjadi penurunan tekanan, P = Pi – ∆P



Kondisi awal, Pi Gascap Gas



B



mNBoi (r-bbl)



 B g  B = m ⋅ N ⋅ Boi − m ⋅ N ⋅ Boi = m ⋅ N ⋅ Boi − 1 (r - bbl)   Bgi  Bgi   cw ⋅ S wc + c f  ∆P (r - bbl) C = N ⋅ Boi ⋅ (1 + m )  (1 − S )  wc  



Oil + Originally dissolved gas



C



NBoi



A = N ⋅ (Bo − Boi ) + N ⋅ (Rsi − Rs ) ⋅ Bg (r - bbl) Bg



A



(r-bbl)



D = N p ⋅ Bo + N p (R p − Rs )⋅ Bg



(r - bbl)



E = We ⋅ Bw − W p ⋅ Bw = (We − W p ) ⋅ Bw (r - bbl) Underground withdrawal (r-bbl)



=



ekspansi volume minyak dan gas yang terlarut didalamnya (r-bbl)



+



ekspansi gascap gas (r-bbl)



 (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ Boi   Boi 



+



pengurangan volume poripori HC karena ekspansi connate water dan penurunan volume pori (r-bbl)



 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



+



Net water influx(r-bbl)



  ∆P  + (W − W ) ⋅ B e p w    



F = N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw Eo = (Bo − Boi ) + (Rsi − Rs ) ⋅ Bg  B g  E g = Boi − 1  B  gi 



ITSB



 Underground withdrawal



(r - bbl)



 r - bbl     stb 



 ekspansi volume minyak dan gas yang terlarut didalamnya



 r - bbl     stb 



 cw ⋅ S wc + c f E f , w = (1 + m ) ⋅ Boi ⋅   (1 − S ) wc 



 ekspansi gascap gas  ∆P  



 r - bbl     stb 



 pengurangan volume pori-pori HC karena ekspansi connate water dan penurunan volume pori



Bentuk umum persamaan MB:  (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ Boi   Boi 



Menjadi: F = N ⋅ (Eo + m ⋅ E g + E f , w ) + We ⋅ Bw



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Linierisasi Bentuk Persamaan Umum MB



water influx



 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



  ∆P  + (W − W ) ⋅ B e p w     Net water influx



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Solution Gas Drive Reservoir Bentuk umum persamaan MB:  (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw = N ⋅ Boi   Boi  oil + gas production



water production



 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



oil + dissolved gas expansion



gas cap expansion



change of HC pore volume



Eo



Eg



Ef,w



F



  ∆P  + W ⋅ B e w     water influx



Above bubble point (P > Pb) •



Karena P > Pb, maka no gas cap, m = 0







Karena P > Pb, maka no free gas prod., R p − Rs ⋅ Bg = 0







(



)



Karena P > Pb, maka no dissolved gas escape from oil solution, (Rsi − Rs ) = 0



Pers. MB menjadi:



 (B − B )   cw ⋅ S wc + c f oi   N p ⋅ Bo + W p ⋅ Bw = N ⋅ Boi  o +   (1 − S )  Boi wc  



  ∆P  + W ⋅ B e w    



N



For the case no water influx



 (B − B )   cw ⋅ S wc + c f oi   + N p ⋅ Bo = N ⋅ Boi  o   (1 − S )  Boi wc  



F



  ∆P     



F = N ⋅ (Eo + Ew, f )



Eo+Ew,f



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Solution Gas Drive Reservoir Pers. MB menjadi:



 (B − B )   cw ⋅ S wc + c f oi   N p ⋅ Bo + W p ⋅ Bw = N ⋅ Boi  o +     Boi   (1 − S wc )



F



  ∆P  + W ⋅ B e w    



N



For the case no water influx



 (B − B )   cw ⋅ S wc + c f oi   + N p ⋅ Bo = N ⋅ Boi  o   (1 − S )  Boi wc  



  ∆P     



F = N ⋅ (Eo + Ew, f )



Eo+Ew,f



Dalam bentuk lain:



co = −



1 ∂Bo Bo ∂P



=



1 ∆Bo Bo ∆P



=



1 (Bo − Boi ) Boi



∆P



  cw ⋅ S wc + c f  N p ⋅ Bo = N ⋅ Boi Co ⋅ ∆P +   (1 − S )  wc   Co ⋅ S o + cw ⋅ S wc + c f N p ⋅ Bo = N ⋅ Boi   (1 − S wc ) 



N p ⋅ Bo = N ⋅ Boi ⋅ ce ⋅ ∆P



  ∆P     



Karena



S o = 1 − S wc



maka,



  ⋅ ∆P  



dimana,



 co ⋅ S o + cw ⋅ S wc + c f ce =   (1 − S wc ) 



   



Effective saturation weighted compressibility of the system



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Solution Gas Drive Reservoir Bentuk umum persamaan MB:  (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw = N ⋅ Boi   Boi  oil + gas production



water production



F



 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



oil + dissolved gas expansion



gas cap expansion



change of HC pore volume



Eo



Eg



Ef,w



  ∆P  + W ⋅ B e w    



Below bubble point (P < Pb) •



Karena P < Pb, maka gas escapes from solution and free gas saturation formed in the reservoir







Free gas compressibility is way higher than formation or water (50-100X), so that cw,f usually neglected



Pers. MB menjadi:



 (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw = N ⋅ Boi   Boi 



    + m ⋅  B g − 1  + W ⋅ B e w  B  gi   



water influx



For the case no water influx and no initial gas cap gas: Pers. MB menjadi:



N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ ((Bo − Boi ) + (Rsi − Rs ) ⋅ Bg ) Np



=



N Jadi



(Bo − Boi ) + (Rsi − Rs ) ⋅ Bg Bo + (R p − Rs )⋅ Bg



Np N



= RF ≈



1 Rp



ITSB



Np



dimana



= RF = Recovery Factor



N dimana



RF



Rp =



Gp



= cumulative prod. gas oil ratio



Np



Recovery factor (RF) berbanding terbalik terhadap cumulative production gas oil ratio. Ini berarti bahwa semakin banyak gas yang terproduksi akan memperkecil RF. Oleh karena itu, unruk mendapatkan RF yang optimum sebaiknya menjaga gas sebanyak mungkin tetap berada di reservoir.



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Solution Gas Drive Reservoir



Rp



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Gas Cap Drive Reservoir Bentuk umum persamaan MB:  (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw = N ⋅ Boi   Boi  oil + gas production



water production



F



 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



oil + dissolved gas expansion



gas cap expansion



change of HC pore volume



Eo



Eg



Ef,w



  ∆P  + W ⋅ B e w    



Assumptions •



Gas cap gas compressibility is way higher than formation or water (50-100X), so that cw,f usually neglected



For the case no water influx : Pers. MB menjadi:



 (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ Boi   Boi  oil + gas production (withdrawal rate)



Oil & dissolved gas expansion



 B  g   + m⋅ − 1   B    gi  Gascap gas expansion



water influx



ITSB



-



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Gas Cap Drive Reservoir For the case no water influx : Pers. MB menjadi:



 (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) = N ⋅ Boi   Boi  Pers. di atas dalam bentuk lain:



F = N ⋅ (Eo + m ⋅ E g )



    + m ⋅  B g − 1   B    gi 



F



N Eo+m.Eg



Bentuk umum persamaan MB:  (B − B ) + (R − R ) ⋅ B o oi si s g N p ⋅ (Bo + (R p − Rs )⋅ Bg ) + W p ⋅ Bw = N ⋅ Boi   Boi  Assumptions •



We = (cw + c f )⋅ Wi ⋅ ∆P







  ∆P  + W ⋅ B e w    



dimana Wi = Volume air akuifer



Karena adanya water influx, tekanan reservoir biasanya terjaga dengan baik, sehingga ∆P akan menjadi kecil. Oleh karena itu biasanya Ew,f diabaikan. Maka persamaan MB Menjadi:



F = N ⋅ (Eo + m ⋅ E g ) + We



assume Bw = 1



Untuk case no initial gas cap gas, m = 0, dan pers MB menjadi



F = N ⋅ Eo + We



-







 B c S  c  + m ⋅  g − 1 + (1 + m ) w ⋅ wc + f  B  (1 − S )  wc    gi 



Pergerakan air akuifer ke dalam zona minyak diakibatkan oleh adanya sifat kompresibilitas air dan formasi batuan akuifer



F



ITSB



INSTITUT TEKNOLOGI DAN SAINS BANDUNG



@ 2014



Pers. MB untuk Natural Water Drive Reservoir



Eo



=N+



We Eo



F Eo



45o N



We Eo