06 Persamaan Euler Dan Bernoulli PDF [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

PERSAMAAN BERNOULLI Ir. Suroso Dipl.HE, M.Eng



Pendahuluan Pada zat cair diam, gaya hidrostatis mudah dihitung karena hanya bekerja gaya tekanan. Pada zat cair mengalir, diperhitungkan kecepatan, arah partikel, kekentalan yang menyebabkan gesekan antar partikel maupun dinding batas. Persamaan energi gerak partikel diturunkan dari persamaan gerak. Persamaan energi → persamaan Euler untuk 3-D, persamaan Bernoulli untuk 1-D. Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Persamaan Bernoulli adalah hubungan pendekatan antara tekanan, kecepatan dan elevasi dan berlaku dalam aliran mantap, tak termampatkan dimana gaya geseran netto diabaikan. Persamaan berguna dalam daerah aliran di luar lapis batas (boundary layers), dimana gerak fluida ditentukan efek gabungan gaya tekanan dan gaya berat. Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Anggapan: Zat cair ideal, tidak mempunyai kekentalan Zat cair homogen, tidak termampatkan Aliran kontinu dan sepanjang garis arus (irrotational flow) Kecepatan merata Gaya yang bekerja hanya gaya berat dan tekanan. Chapter 6: Persamaan Bernoulli



Garis aliran



Chapter 6: Persamaan Bernoulli



Gaya-gaya yang Bekerja Ditinjau elemen zat cair pada garis arus,



Chapter 6: Persamaan Bernoulli



Penurunan Persamaan Bernoulli



Go to Hydrodynamic Analysis



Chapter 6: Persamaan Bernoulli



Gaya-gaya yang Bekerja



Gaya tekan dari up stream: p.dA dari down stream: ⎛⎜ p + ∂∂ps ds ⎞⎟ dA ⎝ ⎠ Berat zat cair: W = ρ.g.dA.ds Komponen berat arah s : ρ.g.dA.ds.cosθ :ρ.g.dAds.∂z/∂s Resultan gaya: ∂p ∂z F = − dA.ds − ρg.dA.ds. ∂s ∂s Chapter 6: Persamaan Bernoulli



Keseimbangan Gaya Menurut hukum Newton II: F = M.a



∂z ∂p − dA.ds − ρg.dA.ds. = ρdA.ds.a ∂ ∂s s ∂ −



∂s



(p + γz ) = ρ a



Bila v = f(s,t) → a = dv = ∂v + ∂v ∂s = ∂v + v ∂v dt



∂t



∂s ∂t



∂t



∂s



Sehingga pers menjadi:



⎛ ∂v ∂v ⎞ ∂ ρ⎜ + v ⎟ + ( p + γ .z ) = 0 ∂s ⎠ ∂s ⎝ ∂t



→ pers. Euler Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Dari pers. Euler



∂v ⎞ ∂ ⎛ ∂v + v ⎟ + ( p + γ .z ) = 0 ∂s ⎠ ∂s ⎝ ∂t



ρ⎜



Untuk aliran tetap 1-D, dv/dt =0 maka



ρvdv + d ( p + γ .z ) = 0 1 ρ v 2 + p + γz = C 2



atau



v2 z+ + = H = const γ 2g p



→ pers. Bernoulli



dimana : H = total head (tinggi tekan total) z = potential head (tinggi tempat) p = pressure head (tinggi tekan) 2 v /2g = velocity head (tinggi kecepatan)



Chapter 6: Persamaan Bernoulli



Garis Energi Zat Cair Ideal



p



2



v Persamaan energi: H = z + + γ 2g Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Tanpa memperhitungkan kehilangan energi, dua titik pada garis arus yang sama memenuhi



P1 V12 P2 V22 + + z1 = + + z2 ρ1 g 2 g ρ2 g 2 g dimana P/ρ : energi aliran, V2/2 : energi kinetis, dan gz : energi potensial, semua per unit mass. Persamaan Bernoulli dapat dilihat sebagai pernyataan keseimbangan energi mekanis (mechanical energy balance) Dinyatakan dalam kata-kata oleh ahli matematik Swiss Daniel Bernoulli (1700–1782) dalam teks ditulis pada tahun 1738. Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Keseimbangan gaya tegak lurus garis arus Keseimbangan gaya dalam arah-n tegak lurus garis arus untuk aliran mantap, tak termampatkan:



untuk aliran sepanjang garis lurus, R → ∞, maka persamaan menjadi: adalah pernyataan untuk variasi tekanan hidrostatis sebagaimana sama dengan dalam fluida diam Chapter 6: Persamaan Bernoulli



Persamaan Bernoulli Persamaan Bernoulli untuk aliran tidak mantap, termampatkan adalah:



Chapter 6: Persamaan Bernoulli



Tekanan Statis, Dinamis, dan Stagnasi Persamaan Bernoulli



P adalah tekanan statis; ini merepresentasi tekanan termodinamika aktual dari fluida. ρV2/2 adalah tekanan dinamis; ini merepresentasi kenaikan tekanan bila fluida dalam gerak. ρgz adalah tekanan hidrostatis, tergantung pada bidang referensi yang ditetapkan.



Chapter 6: Persamaan Bernoulli



Tekanan Statis, Dinamis, dan Stagnasi Jumlah tekanan statis, dinamis, dan hidrostatis disebut tekanan total (konstan sepanjang garis arus). Jumlah tekanan statis dan dinamis disebut tekanan stagnasi,



Kecepatan fluida pada titik itu dapat dihitung dari :



Chapter 6: Persamaan Bernoulli



Aplikasi Persamaan Energi



Titik 2 : titik stagnasi Dari pers energi didapat: p2 = p1 + ½ ρv12 Tekanan dinamis = ½ ρv12 Tekanan stagnasi = p2 Chapter 6: Persamaan Bernoulli



Tabung Stagnasi V12 p2 V22 + z1 + = + z2 + γ 2g γ 2g



p1



p1 V12 p2 + = γ 2g γ 2 V12 = ( p2 − p1)



ρ



=



2



ρ



(γ (l + d ) − γd )



V1 = 2gl



Chapter 6: Persamaan Bernoulli



Tabung Stagnasi dalam Pipa



H=



p



γ



+z+



V2 2g



V2 2g



p



γ



Pipe 2



Flow 1



z



z=0



Chapter 6: Persamaan Bernoulli



Pipa Pitot-statis Kecepatan fluida pada titik itu dapat dihitung dari:



Piezometer mengukur tekanan statis.



Chapter 6: Persamaan Bernoulli



Alat Pengukur Kecepatan (Pitot)



Dari pers energi : p2 = p1 + ½ ρv12 ρgh2 = ρgh1 + ½ ρv12



v1 =



2 g (h2 − h1 ) Chapter 6: Persamaan Bernoulli



Venturi meter



Total energi titik 1 = total energi titik 2 Dari persamaan tsb dapat dihitung debit aliran Q act = C d A1 A2



⎞ ⎛ρ 2 gh ⎜⎜ man − 1 ⎟⎟ ⎠ ⎝ ρ 2 2 A1 − A2 Chapter 6: Persamaan Bernoulli



Garis Energi dan Garis Tekanan Sering lebih enak untuk menggambar energi mekanis nenggunakan tinggi.



P/ρg adalah tinggi tekanan; ini merepresentasikan tinggi kolom fluida yang menghasilkan tekanan statis P. V2/2g adalah tinggi kecepatan; ini merepresentasikan elevasi yang diperlukan untuk fluida mencapai kecepatan V selama jatuh bebas tanpa gesekan. z adalah tinggi elevasi; ini merepresentasikan energi potensial dari fluida. H adalah tinggi total.



Chapter 6: Persamaan Bernoulli



Garis Energi dan Garis Tekanan Garis Tekanan (HGL)



P HGL = +z ρg Garis Energy (EGL) (atau tinggi total)



P V2 EGL = + +z ρ g 2g



Chapter 6: Persamaan Bernoulli



Garis Energi Aliran Zat Cair Riil



Chapter 6: Persamaan Bernoulli



HGL dan EGL Untuk benda diam seperti waduk atau danau, EGL dan HGL berimpit dengan permukaan bebas zat cair, sepanjang kecepatannya nol dan tekana statis (gage) = nol. EGL selalu berjarak V2/2g di atas HGL. Dalam idealized Bernoulli-type flow, EGL horisontal dan tingginya tetap konstan. Ini juga untuk HGL bila kecepatan aliran konstan. Untuk aliran saluran terbuka (openchannel flow), HGL berimpit dengan permukaan bebas zat cair, dan EGL berjarak V2/2g di atas permukaan bebas.



Chapter 6: Persamaan Bernoulli



HGL dan EGL „ Tekanan fluida (gage) adalah nol pada titik dimana HGL memotong fluida.Tekanan dalam bagian aliran yang terletak di atas HGL negatif, dan tekanan bagian yang terletak di bawah HGL positif.



Chapter 6: Persamaan Bernoulli



Garis Energi Aliran Pipa-Waduk



Kecepatan aliran dalam pipa = 0 Chapter 6: Persamaan Bernoulli



Garis Energi Aliran Pipa-Waduk



Aliran zat cair ideal Chapter 6: Persamaan Bernoulli



Garis Energi Aliran Pipa-Waduk



Aliran zat cair riil Chapter 6: Persamaan Bernoulli



Contoh Diketahui: kecepaian dalam outlet pipa dari reservoir adalah 6 m/s dan h = 15 m. Hitung : Tekanan di A. Penyelesaian : persamaan Bernoulli



titik 1



V12 p A V A2 + z1 + = + zA + 2g 2g γ γ



p1



0 pA V A2 +h+ = +0+ 2g γ 2g γ 0



pA pA



Titik A



V A2 18 = γ ( h − ) = 9810(15 − ) 2g 9.81 = 129.2 kPa



Chapter 6: Persamaan Bernoulli



Contoh Diketahui: D=30 in, d=1 in, h=4 ft Hitung: VA



Point 1



Penyelesaian: persamaan Bernoulli



V12 p A V A2 + z1 + = + zA + γ γ 2g 2g



p1



Point A



V A2 0 0 +h+ = +0+ γ 2g 2g γ 0



V A = 2 gh = 16 ft / s



Chapter 6: Persamaan Bernoulli



Contoh – Tabung Venturi Diketahui: air 20oC, V1=2 m/s, p1=50 kPa, D=6 cm, d=3 cm Hitung : p2 dan p3 Penyelesaian : persamaan kontinuitas.



D



V1 A1 = V2 A2 A D V2 = V1 1 = V1 ⎛⎜ ⎞⎟ A2 ⎝d ⎠



2



2



Persamaan Bernoulli



V2 p V2 + z1 + 1 = 2 + z 2 + 2 γ γ 2g 2g



p1



p 2 = p1 + = p1 +



ρ 2



ρ 2



(V12



− V 22 )



[1 − (D / d )4 ]V12



1000 [1 − (6 / 3 )4 ]2 2 Pa 2 p 2 = 120 kPa



= 150 ,000 +



D



d



1



3



Nozzle: kecepatan meningkat, tekanan turun



Diffuser: kecepatan turun, tekanan meningkat



Sama halnya untuk 2 Æ 3, atau 1 Æ 3



p3 = 150 kPa Penurunan tekanan terjadi, selama dianggap tidak ada kehilangan karena gesekan



Tahu penurunan tekanan 1 Æ 2 dan d/D, dapat dihitung kecepatan dan debit



V2 =



2( p1 − p2 ) ρ [1 − (d / D )4 ]



Chapter 6: Persamaan Bernoulli



Analisis Energi Aliran Mantap Jika tidak ada kehilangan energi mekanis dan tidak ada peralatan kerja mekanis, maka persamaan Bernoulli menjadi: P1 V12 P2 V22 + + z1 = + + z2 ρ1 g 2 g ρ2 g 2 g Faktor koreksi energi kinetis, α Menggunakan kecepatan aliran rata-rata dalam persamaan dapat menyebabkan kesalahan dalam perhitungan energi kinetis; oleh karenanya, α, faktor koreksi energi kinetis, digunakan untuk mengkoreksi kesalahan dengan mengganti term energi kinetis V2/2 dalam persamaan energi dengan αVavg2 /2. α = 2.0 untuk aliran laminer dalam pipa, dan antara 1.04 dan 1.11 untuk aliran turbulen dalam pipe bulat. Chapter 6: Persamaan Bernoulli



Faktor Koreksi Energi Kinetik



Kecepatan rata-rata pada penampang v, energi kinetik v2/2g Kenyataan kecepatan tidak merata, sehingga energi kinetik rata-rata α.v2/2g Dimana α = koefisien Coriolis = koreksi energi kinetik Chapter 6: Persamaan Bernoulli



Analisis Energi Aliran Mantap α sering diabaikan, sepanjang mendekati 1 untuk aliran turbulen dan kontribusi energi kinetis kecil. persamaan energi untuk aliran mantap, tak termampatkan, menjadi



Chapter 6: Persamaan Bernoulli



Harga Faktor Koreksi α 1 3 Harga faktor koreksi α = Av 3 ∫ v dA A



Harga α tegantung distribusi kecepatan Aliran dalam pipa : laminer α = 2 turbulen α = 1,01 – 1,15 Setelah dikoreksi persamaan energi 2 2 menjadi : p1 v1 p2 v2



z1 +



γ



+ α1



2g



= z2 +



γ



+ α2



2g



Chapter 6: Persamaan Bernoulli



Chapter 6: Persamaan Bernoulli