Bilangan Kuantum [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Bilangan kuantum Bilangan kuantum (bahasa Inggris: Quantum number) adalah bilangan yang menyatakan kedudukan atau posisi elektron dalam atom yang diwakili oleh suatu nilai yang menjelaskan kuantitas kekal dalam sistem dinamis. Bilangan kuantum menggambarkan sifat elektron dalam orbital.[1] Bilangan kuantum menentukan tingkat energi utama atau jarak dari inti, bentuk orbital, orientasi orbital, dan spin elektron. Setiap sistem kuantum dapat memiliki satu atau lebih bilangan kuantum.[2] Bilangan kuantum merupakan salah satu ciri khas dari model atom mekanika kuantum atau model atom modern yang dicetuskan oleh Ernest Schrodinger. Dalam mekanika kuantum, bilangan kuantum diperlukan untuk menggambarkan distribusi elektron dalam atom hidrogen dan atom-atom lain. Bilangan-bilangan ini diturunkan dari solusi matematis persamaan Schrodinger untuk atom hidrogen.



Daftar isi     



Jenis Bilangan kuantum utama (n) Bilangan kuantum azimut / momentum sudut (l) Bilangan kuantum magnetik (m) Bilangan kuantum spin (s)



Jenis Jenis bilangan kuantum adalah:[3] 1. Bilangan kuantum utama (n) yang menyatakan tingkat energi. 2. Bilangan kuantum azimut/momentum sudut (l) yang menyatakan bentuk orbital. 3. Bilangan kuantum magnetik (m) yang menyatakan orientasi orbital dalam ruang tiga dimensi. 4. Bilangan kuantum spin (s) yang menyatakan spin elektron pada sebuah atom.



Bilangan kuantum utama (n) Bilangan kuantum utama (primer) digunakan untuk menyatakan tingkat energi utama yang dimiliki oleh elektron dalam sebuah atom. Bilangan kuantum utama tidak pernah bernilai nol. Bilangan kuantum utama dapat mempunyai nilai semua bilangan positif, yaitu 1,2,3,4 dan seterusnya. Sedangkan kulit atom dinyatakan dengan huruf K,L,M,N dan seterusnya[3]. Kulit K L M N Nilai n 1 2 3 4 contoh: n=1 elektron berada pada kulit K; n=2 elektron berada pada kulit L; n=3 elektron berada pada kulit M; n=4 elektron berada pada kulit N; dan seterusnya Bilangan kuantum utama juga berhubungan dengan jarak rata-rata elektron dari inti dalam orbital tertentu. Semakin besar n, semakin besar jarak rata-rata elektron dalam orbital tersebut dari inti dan oleh karena itu semakin besar orbitalnya[3].



Bilangan kuantum azimut / momentum sudut (l) Bilangan kuantum azimut sering disebut bilangan kuantum anguler (sudut). Energi sebuah elektron berhubungan dengan gerakan orbital yang digambarkan dengan momentum sudut. Momentum sudut tersebut dikarakterisasi menggunakan bilangan kuantum azimut. Bilangan azimut menyatakan bentuk suatu orbital dengan simbol (l) "huruf L kecil". Bilangan kuantum azimut juga berhubungan dengan jumlah subkulit. Nilai ini menggambarkan subkulit yang dimana elektron berbeda. Untuk subkulit s,p,d,f bilangan kuantum azimut berturut-turut adalah 0,1,2,3[2]. Nilai bilangan kuantum azimut atau "l" ini bergantung pada nilai bilangan kuantum utama atau "n" . Untuk nilai n tertentu, l mempunyai nilai bilangan bulat yang mungkin dari 0 sampai (n-1). Bila n-1, hanya ada satu nilai l yakni l =n-1=1-1=0. Bila n=2, ada dua nilai l, yakni 0 dan 1. Bila n=3, ada tiga nilai l, yakni 0,1, dan 2. Nilai-nilai l biasanya ditandai dengan huruf s,p,d,f... sebagai berikut:[3] l 0 1 2 3 Nama orbital s p d f Jadi bila l =0, kita mempunyai sebuah orbital s; bila l =1, kita mempunyai orbilat f; dan seterusnya. Sekumpulan orbital-orbital dengan nilai n yang sama seringkali disebut kulit. Satu atau lebih orbital dengan nilai n dan l yang sama dirujuk selalu subkulit. Misalnya kulit dengan n=2 terdiri atas 2 subkulit, l=0 dan 1 (nilai-nilai l yang diizinkan untuk n=2). Subkulit-subkulit ini disebut subkulit 2s dan subkulit 2p di mana 2 melambangkan nilai n, sedangan s dan p melambangkan nilai l[3]. Tabel dibawah ini menunjukkan keterkaitan jumlah kulit dengan banyaknya subkulit serta jenis subkulit dalam suatu atom.



Jenis subkulit Jumlah orbital Elektron maksimum



Subkulit s



1 orbital



2 elektron



Subkulit p



3 orbital



6 elektron



Subkulit d



5 orbital



10 elektron



Subkulit f



7 orbital



14 elektron



Bilangan kuantum magnetik (m) Bilangan kuantum magnetik menyatakan tingkah laku elektron dalam medan magnet. Tidak adanya medan magnet luar membuat elektron atau orbital mempunyai nilai n dan l yang sama tetapi berbeda m. Namun dengan adanya medan magnet, nilai tersebut sedikit berubah. Hal ini dikarenakan timbulnya interaksi antara medan magnet sendiri dengan medan magnet luar[2]. Bilangan kuantum magnetik ada karena momentum sudut elektron, gerakannya berhubungan aliran arus listrik. Karena interaksi ini, elektron menyesuaikan diri di wilayah tertentu sekitar inti. Daerah khusus ini dikenal sebagai orbital. Orientasi elektron di sekitar inti dapat ditentukan dengan menggunakan bilangan kuantum magnetik m [2].



Di dalam satu subkulit, nilai m bergantung pada nilai bilangan kuantum azimut/momentum sudut l. Untuk nilai l tertentu, ada (2l + 1) nilai bulat m sebagai berikut: -l, (-l + 1), ..., 0 , ... , (+l - 1), +l Bila l =0, maka m=0. Bila l =1, maka terdapat tiga nilai m yaitu -1,0,dan -1. Bila l =2, maka terdapat lima nilai m yaitu -2,-1,0,+1, dan +2. Jumlah m menunjukkan jumlah orbital dalam subkulit dengan nilai l tertentu[3].



Bilangan kuantum spin (s) Bilangan kuantum spin menyatakan momentum sudut suatu partikel. Spin mempunyai simbol "s" atau sering ditulis dengan ms (bilangan kuantum spin magnetik). Suatu elektron dapat mempunyai bilangan kuantum spin s = +1/2 atau -1/2[1]. Nilai positif atau negatif dari spin menyatakan spin atau rotasi partikel pada sumbu. Sebagai contoh, untuk nilai s=+1/2 berarti berlawanan arah jarum jam (ke atas), sedangkan s=-1/2 berarti searah jarum jam (ke bawah). Diambil nilai setengah karena hanya ada dua peluang orientasi, yaitu atas dan bawah. Dengan demikian, peluang untuk mengarah ke atas adalah 50% dan peluang untuk ke bawah adalah 50%.



Konfigurasi elektron



Orbital-orbital molekul dan atom elektron



Dalam fisika atom dan kimia kuantum, konfigurasi elektron adalah susunan elektron-elektron pada sebuah atom, molekul, atau struktur fisik lainnya.[1]Sama seperti partikel elementer lainnya, elektron patuh pada hukum mekanika kuantum dan menampilkan sifat-sifat bak-partikel maupun bak-gelombang. Secara formal, keadaan kuantum elektron tertentu ditentukan oleh fungsi gelombangnya, yaitu sebuah fungsi ruang dan waktu yang bernilai kompleks. Menurut interpretasi mekanika kuantum Copenhagen, posisi sebuah elektron tidak bisa ditentukan kecuali setelah adanya aksi pengukuran yang menyebabkannya untuk bisa dideteksi. Probabilitas aksi pengukuran akan mendeteksi sebuah elektron pada titik tertentu pada ruang adalah proporsional terhadap kuadrat nilai absolut fungsi gelombang pada titik tersebut. Elektron-elektron dapat berpindah dari satu aras energi ke aras energi yang lainnya dengan emisi atau absorpsi kuantum energi dalam bentuk foton. Oleh karena asas larangan Pauli, tidak boleh ada lebih dari dua elektron yang dapat menempati sebuah orbital atom, sehingga elektron hanya akan meloncat dari satu orbital ke orbital yang lainnya hanya jika terdapat kekosongan di dalamnya. Pengetahuan atas konfigurasi elektron atom-atom sangat berguna dalam membantu pemahaman struktur tabel periodik unsur-unsur. Konsep ini juga berguna dalam menjelaskan ikatan kimia yang menjaga atom-atom tetap bersama.



Kelopak dan subkelopak Konfigurasi elektron yang pertama kali dipikirkan adalah berdasarkan pada model atom model Bohr. Adalah umum membicarakan kelopak maupun subkelopak walaupun sudah terdapat kemajuan dalam pemahaman sifat-sifat mekanika kuantum elektron. Berdasarkan asas larangan Pauli, sebuah orbital hanya dapat menampung maksimal dua elektron. Namun pada kasus-kasus tertentu, terdapat beberapa orbital yang memiliki aras energi yang sama (dikatakan berdegenerasi), dan orbital-orbital ini dihitung bersama dalam konfigurasi elektron. Kelopak elektron merupakan sekumpulan orbital-orbital atom yang memiliki bilangan kuantum utama n yang sama, sehingga orbital 3s, orbital-orbital 3p, dan orbital-orbital 3d semuanya merupakan bagian dari kelopak ketiga. Sebuah kelopak elektron dapat menampung 2n2 elektron; kelopak pertama dapat menampung 2 elektron, kelopak kedua 8 elektron, dan kelopak ketiga 18 elektron, demikian seterusnya. Subkelopak elektron merupakan sekelompok orbital-orbital yang mempunyai label orbital yang sama, yakni yang memiliki nilai n dan l yang sama. Sehingga tiga orbital 2p membentuk satu subkelopak, yang



dapat menampung enam elektron. Jumlah elektron yang dapat ditampung pada sebuah subkelopak berjumlah 2(2l+1); sehingga subkelopak "s" dapat menampung 2 elektron, subkelopak "p" 6 elektron, subkelopak "d" 10 elektron, dan subkelopak "f" 14 elektron. Jumlah elektron yang dapat menduduki setiap kelopak dan subkelopak berasal dari persamaan mekanika kuantum,[n 1]terutama asas larangan Pauli yang menyatakan bahwa tidak ada dua elektron dalam satu atom yang bisa mempunyai nilai yang sama pada keempat bilangan kuantumnya.[2]



Notasi Para fisikawan dan kimiawan menggunakan notasi standar untuk mendeskripsikan konfigurasikonfigurasi elektron atom dan molekul. Untuk atom, notasinya terdiri dari untaian label orbital atom (misalnya 1s, 3d, 4f) dengan jumlah elektron dituliskan pada setiap orbital (atau sekelompok orbital yang mempunyai label yang sama). Sebagai contoh, hidrogen mempunyai satu elektron pada orbital s kelopak pertama, sehingga konfigurasinya ditulis sebagai 1s1. Litium mempunyai dua elektron pada subkelopak 1s dan satu elektron pada subkelopak 2s, sehingga konfigurasi elektronnya ditulis sebagai 1s2 2s1. Fosfor (bilangan atom 15) mempunyai konfigurasi elektron : 1s2 2s2 2p6 3s2 3p3. Untuk atom dengan banyak elektron, notasi ini akan menjadi sangat panjang, sehingga notasi yang disingkat sering digunakan. Konfigurasi elektron fosfor, misalnya, berbeda dari neon (1s2 2s2 2p6) hanya pada keberadaan kelopak ketiga. Sehingga konfigurasi elektron neon dapat digunakan untuk menyingkat konfigurasi elektron fosfor. Konfigurasi elektron fosfor kemudian dapat ditulis: [Ne] 3s2 3p3. Konvensi ini sangat berguna karena elektron-elektron pada kelopak terluar sajalah yang paling menentukan sifatsifat kimiawi sebuah unsur. Urutan penulisan orbital tidaklah tetap, beberapa sumber mengelompokkan semua orbital dengan nilai n yang sama bersama, sedangkan sumber lainnya mengikuti urutan berdasarkan asas Aufbau. Sehingga konfigurasi Besi dapat ditulis sebagai [Ar] 3d6 4s2 ataupun [Ar] 4s2 3d6 (mengikuti asas Aufbau). Adalah umum untuk menemukan label-label orbital "s", "p", "d", "f" ditulis miring, walaupaun IUPAC merekomendasikan penulisan normal. Pemilihan huruf "s", "p", "d", "f" berasal dari sistem lama dalam mengkategorikan garis spektra, yakni "sharp", "principal", "diffuse", dan "fundamental". Setelah "f", label selanjutnya diikuti secara alfabetis, yakni "g", "h", "i", ...dst, walaupun orbital-orbital ini belum ditemukan. Konfigurasi elektron molekul ditulis dengan cara yang sama, kecuali bahwa label orbital molekullah yang digunakan, dan bukannya label orbital atom.



Asas Aufbau Asas Aufbau (berasal dari Bahasa Jerman Aufbau yang berarti "membangun, konstruksi") adalah bagian penting dalam konsep konfigurasi elektron awal Bohr. Ia dapat dinyatakan sebagai:[7] Terdapat maksimal dua elektron yang dapat diisi ke dalam orbital dengan urutan peningkatan energi orbital: orbital berenergi terendah diisi terlebih dahulu sebelum elektron diletakkan ke orbital berenergi lebih tinggi.



Urutan pengisian orbital-orbital atom mengikuti arah panah.



Asas ini bekerja dengan baik (untuk keadaan dasar atom-atom) untuk 18 unsur pertama; ia akan menjadi semakin kurang tepat untuk 100 unsur sisanya. Bentuk modern asas Aufbau menjelaskan urutan energi orbital berdasarkan kaidah Madelung, pertama kali dinyatakan oleh Erwin Madelung pada tahun 1936.[6][n 2] 1. Orbital diisi dengan urutan peningkatan n+l; 2. Apabila terdapat dua orbital dengan nilai n+l yang sama, maka orbital yang pertama diisi adalah orbital dengan nilai n yang paling rendah. Sehingga, menurut kaidah ini, urutan pengisian orbital adalah sebagai berikut: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p Asas Aufbau dapat diterapkan, dalam bentuk yang dimodifikasi, ke proton dan neutron dalam inti atom. Tabel periodikSunting



Tabel konfigurasi elektron



Bentuk tabel periodik berhubungan dekat dengan konfigurasi elektron atom unsur-unsur. Sebagai contoh, semua unsur golongan 2 memiliki konfigurasi elektron [E] ns2 (dengan [E] adalah konfigurasi gas inert), dan memiliki kemiripan dalam sifat-sifat kimia. Kelopak elektron terluar atom sering dirujuk sebagai "kelopak valensi" dan menentukan sifat-sifat kimia suatu unsur. Perlu diingat bahwa kemiripan dalam sifat-sifat kimia telah diketahui satu abad sebelumnya, sebelum pemikiran konfigurasi elektron ada.[n 3] Kelemahan asas Aufbau Asas Aufbau begantung pada postulat dasar bahwa urutan energi orbital adalah tetap, baik untuk suatu unsur atau di antara unsur-unsur yang berbeda. Ia menganggap orbital-orbital atom sebagai "kotak-kotak" energi tetap yang mana dapat diletakkan dua elektron. Namun, energi elektron dalam orbital atom bergantung pada energi keseluruhan elektron dalam atom (atau ion, molekul, dsb). Tidak ada "penyelesaian satu elektron" untuk sebuah sistem dengan elektron lebih dari satu, sebaliknya yang ada hanya sekelompok penyelesaian banyak elektron, yang tidak dapat dihitung secara eksak[n 4] (walaupun terdapat pendekatan matematika yang dapat dilakukan, seperti metode Hartree-Fock). Ionisasi logam transisi Aplikasi asas Aufbau yang terlalu dipaksakan kemudan menghasilkan paradoks dalam kimia logam transisi. Kalium dan kalsium muncul dalam tabel periodik sebelum logam transisi, dan memiliki konfigurasi elektron [Ar] 4s1 dan [Ar] 4s2 (orbital 4s diisi terlebih dahulu sebelum orbital 3d). Hal ini sesuai dengan kaidah Madelung, karena orbital 4s memiliki nilai n+l = 4 (n = 4, l = 0), sedangkan orbital 3d n+l = 5 (n = 3, l = 2). Namun kromium dan tembaga memiliki konfigurasi elektron [Ar] 3d5 4s1dan [Ar] 3d10 4s1 (satu elektron melewati pengisian orbital 4s ke orbital 3d untuk menghasilkan subkelopak yang terisi setengah). Dalam kasus ini, penjelasan yang diberikan adalah "subkelopak yang terisi setengah ataupun terisi penuh adalah susunan elektron yang stabil".



Paradoks akan muncul ketika elektron dilepaskan dari atom logam transisi, membentuk ion. Elektron yang pertama kali diionisasikan bukan berasal dari orbital 3d, melainkan dari 4s. Hal yang sama juga terjadi ketika senyawa kimia terbentuk. Kromium heksakarbonil dapat dijelaskan sebagai atom kromium (bukan ion karena keadaan oksidasinya 0) yang dikelilingi enam ligan karbon monoksida; ia bersifat diamagnetik dan konfigurasi atom pusat kromium adalah 3d6, yang berarti bahwa orbital 4s pada atom bebas telah bepindah ke orbital 3d ketika bersenyawa. Pergantian elektron antara 4s dan 3d ini dapat ditemukan secara universal pada deret pertama logam-logam transisi.[n 5] Fenomena ini akan menjadi paradoks hanya ketika diasumsikan bahwa energi orbital atom adalah tetap dan tidak dipengaruhi oleh keberadaan elektron pada orbital-orbital lainnya. Jika begitu, maka orbital 3d akan memiliki energi yang sama dengan orbital 3p, seperti pada hidrogen. Namun hal ini jelas-jelas tidak demikian. Pengecualian kaidah Madelung lainnya Terdapat beberapa pengecualian kaidah Madelung lainnya untuk unsur-unsur yang lebih berat, dan akan semakin sulit untuk menggunakan penjelasan yang sederhana mengenai pengecualian ini. Adalah mungkin untuk memprediksikan kebanyakan pengecualian ini menggunakan perhitungan HartreeFock,[8] yang merupakan metode pendekatan dengan melibatkan efek elektron lainnya pada energi orbital. Untuk unsur-unsur yang lebih berat, diperlukan juga keterlibatan efek relativitas khusus terhadap energi orbital atom, karena elektron-elektron pada kelopak dalam bergerak dengan kecepatan mendekati kecepatan cahaya. Secara umun, efek-efek relativistik ini[9] cenderung menurunkan energi orbital s terhadap orbital atom lainnya.[10] Periode 5 Konfigurasi elektron



Unsur



Z



Itrium



39 [Kr] 5s2 4d1



Periode 6



Unsur



Z



Lantanum Serium



Konfigurasi elektron



Periode 7 Konfigurasi elektron



Unsur



Z



57 [Xe] 6s2 5d1



Aktinium



89 [Rn] 7s2 6d1



58 [Xe] 6s2 4f1 5d1



Torium



90 [Rn] 7s2 6d2



Praseodimium 59 [Xe] 6s2 4f3



Protaktinium 91



[Rn] 7s2 5f2 6d1



Neodimium



60 [Xe] 6s2 4f4



Uranium



92



[Rn] 7s2 5f3 6d1



Prometium



61 [Xe] 6s2 4f5



Neptunium



93



[Rn] 7s2 5f4 6d1



Samarium



62 [Xe] 6s2 4f6



Plutonium



94 [Rn] 7s2 5f6



Europium



63 [Xe] 6s2 4f7



Amerisium



95 [Rn] 7s2 5f7



Gadolinium



64 [Xe] 6s2 4f7 5d1



Kurium



96



[Rn] 7s2 5f7 6d1



Terbium



65 [Xe] 6s2 4f9



Zirkonium



40 [Kr] 5s2 4d2



Hafnium



72 [Xe] 6s2 4f14 5d2



Niobium



41 [Kr] 5s1 4d4



Tantalum



73 [Xe] 6s2 4f14 5d3



Molibdenum 42 [Kr] 5s1 4d5



Tungsten



74 [Xe] 6s2 4f14 5d4



Teknesium



43 [Kr] 5s2 4d5



Renium



75 [Xe] 6s2 4f14 5d5



Rutenium



44 [Kr] 5s1 4d7



Osmium



76 [Xe] 6s2 4f14 5d6



Rodium



45 [Kr] 5s1 4d8



Iridium



77 [Xe] 6s2 4f14 5d7



Paladium



46 [Kr] 4d10



Platinum



78 [Xe] 6s1 4f14 5d9



Perak



47 [Kr] 5s1 4d10



Emas



79 [Xe] 6s1 4f14 5d10



Kadmium



48 [Kr] 5s2 4d10



Raksa



80 [Xe] 6s2 4f14 5d10



Indium



49



Talium



81



[Kr] 5s2 4d10 5p1



[Xe] 6s2 4f14 5d10 6p1



Berkelium



97 [Rn] 7s2 5f9



Prinsip Aufbau



Urutan di mana orbital diatur berdasarkan kenaikan energi sesuai dengan aturan Madelung. Setiap panah merah diagonal menyatakan nilai yang berbeda dari n + ℓ.



Prinsip Aufbau menyatakan bahwa, secara hipotetis, elektron yang mengorbit satu atau lebih atom mengisi tingkat energi terendah yang tersedia sebelum mengisi tingkat yang lebih tinggi (misalnya, 1s sebelum 2s). Dengan cara ini, elektron pada atom, molekul, atau ion menyelaraskan ke konfigurasi elektron yang paling stabil. Aufbau adalah kata benda bahasa Jerman yang berarti "konstruksi". Prinsip Aufbau kadang-kadang disebut prinsip membangun atau aturan Aufbau. Menurut prinsip Aufbau ini elektron di dalam suatu atom akan berada dalam kondisi yang stabil bila mempunyai energi yang rendah, sedangkan elektronelektron akan berada pada orbital-orbital yang bergabung membentuk subkulit[1]. Jadi, elektron mempunyai kecenderungan akan menempati subkulit yang tingkat energinya rendah.[2] Rincian kecenderungan "membangun" ini dijelaskan secara matematis bedasarkan fungsi orbital atom. Perilaku elektron diuraikan oleh prinsip lain fisika atom, seperti aturan Hund dan asas larangan Pauli. Aturan Hund menegaskan bahwa bahkan jika beberapa orbital dari energi yang sama yang tersedia, elektron mengisi orbital kosong pertama, sebelum menggunakan kembali orbital yang ditempati oleh elektron lainnya. Tetapi berdasarkan prinsip pengecualian Pauli, syarat agar elektron dapat mengisi orbital yang sama, mereka harus mempunyai putaran elektron yang berbeda (-1/2 dan 1/2). Satu versi prinsip Aufbau dikenal sebagai model kulit nuklir digunakan untuk memperkirakan konfigurasi proton dan neutron dalam inti atom.[3]



Sejarah Prinsip Aufbau dalam teori kuantum baru



Dalam teori kuantum lama, orbit dengan momentum sudut rendah (s- dan p- orbital) lebih dekat ke inti.



Prinsip ini mengambil namanya dari Jerman, Aufbauprinzip, "prinsip membangun", bukannya diberi nama seorang ilmuwan. Bahkan, ia dirumuskan oleh Niels Bohr dan Wolfgang Pauli di awal 1920-an, dan menyatakan bahwa:







Orbital energi yang lebih rendah diisi pertama dengan elektron dan hanya kemudian orbital energi tinggi dipenuhi.







Ini merupakan sebuah aplikasi awal mekanika kuantum untuk sifat-sifat elektron, dan menjelaskan sifat kimia dalam hal fisik. Setiap elektron ditambahkan tunduk pada medan listrik dibuat oleh muatan positif dari inti atom dan muatan negatif elektron lainnya yang terikat untuk inti. Meskipun dalam hidrogen tidak ada perbedaan energi antara orbital dengan bilangan kuantum utama yang sama n, hal ini tidak berlaku untuk elektron terluar dari atom lain. Dalam teori kuantum lama sebelum mekanika kuantum, elektron seharusnya menempati orbit elips klasik. Orbit dengan momentum sudut tertinggi adalah 'orbit lingkaran' di luar elektron dalam, tapi orbit dengan momentum sudut rendah (s- dan p- orbital) memiliki eksentrisitas orbit yang tinggi, sehingga mereka lebih dekat dengan inti dan merasa rata-rata muatan nuklir kurang kuat disaring.



Urutan konfigurasi



Urutan konfigurasi elektron



Urutan-urutan tingkat energi di tujukan pada gambar di samping kanan. Jadi pengisian orbital dimulai dari orbital 1s, 2s, 2p, dan seterusnya. Pada gambar dapat dilihat bahwa subkulit 3d mempunyai energi lebih tinggi daripada subkulit 4s[1]. Oleh karena itu, setelah 3p terisi penuh maka elektron berikutnya akan mengisi subkulit 4s, baru kemudian akan mengisi sub kulit 3d.[2]



Langkah-langkah penulisan konfigurasi elektron 1. Menentukan jumlah elektron dari atom tersebut. Jumlah elektron dari atom unsur sama dengan nomor atom unsur tersebut. 2. Menuliskan jenis subkulit yang dibutuhkan secara urut berdasarkan diagram curah hujan pada gambar 2 yaitu : 1s- 2s- 2p- 3s- 3p- 4s- 3d- 4p- 5s- 4d- 5p- 6s- 4f- 5d- 6p- 7s- 5f- 6d- 7p- 8s 3. Mengisikan elektron pada masing-masing subkulit dengan memperhatikan jumlah elektron maksimumnya, maka sisa elektron dimasukan pada subkulit berikutnya