1-Current Transformers ALSTOM [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Current Transformers



GRID Technical Institute



This document is the exclusive property of Alstom Grid and shall not be transmitted by any means, copied, reproduced or modified without the prior written consent of Alstom Grid Technical Institute. All rights reserved.



Current Transformer Function



X Reduce power system current to lower value for measurement. X Insulate secondary circuits from the primary. X Permit the use of standard current ratings for secondary equipment.



REMEMBER : The relay performance DEPENDS on the C.T which drives it !



2



s



Instrument Transformer Standards IEC



IEC 185:1987



CTs



IEC 44-6:1992



CTs



IEC 186:1987



VTs



BS 7625



VTs



BS 7626



CTs



BS 7628



CT+VT



BS 3938:1973



CTs



BS 3941:1975



VTs



AMERICAN



ANSI C51.13.1978



CTs and VTs



CANADIAN



CSA CAN3-C13-M83



CTs and VTs



AUSTRALIAN



AS 1675-1986



CTs



EUROPEAN



BRITISH



3



s



Current Transformer Construction



BAR PRIMARY



WOUND PRIMARY



Primary



Secondary



4



s



Bar Primary Type Current Transformer(s)



Primary Conductor Primary Insulation



Core Secondary Winding



5



s



Ring Type Current Transformer



Typical Protection Bar-Primary Current Transformer Laminated ‘strip’ wound steel toroidal core Insulation to stop flash-over from HV primary to core & secondary circuit



1000 turns sec. ? ‘Feeder’ or ‘Bus-bar’ forming 1 turn of primary circuit



RELAY



1000A ? Generator, or system voltage source



6



s



1A ? Insulation covered wire, giving inter-turn insulation & secondary to core insulation



Polarity



Is P2



P1 Ip



S1



S2



Inst. Current directions :P1 Î P2 S1 Î S2 Externally 7



s



Flick Test



P1 Is



Ip



FWD kick on application,



S1 +



REV kick on removal of test lead.



-



Battery (6V) + to P1 AVO +ve lead to S1



V



S2



P2



8



s



Directional Protection P1



P2



S1



S2



IOP VPO L



67



IOP = Current direction for operation P1



P2



S2



S3



IFP



IFS



Operation for Forward Faults 9



s



IFP



IFS



No Operation for Reverse Faults



Differential Protection (1)



Operation for Internal Faults P1



P2



IFP1



IFP2



P2



P1



S1



S2



IFS1



IFS2



S2



S1



IFS



R



10



s



Differential Protection (2)



Stability for External Faults P1



P2



S1



S2



IFP



IFS



IFS



R



11



s



P2



P1



S2



S1



Differential Protection (3)



Maloperation due to Incorrect Connections P1



P2



S1



S2



IFP



IFS



P2



S2



P1



S1



IFP IFS



R 2IFS



12



s



Basic Theory



13



s



Basic Theory (1) IS IP



R



1 Primary Turn N Secondary Turns



For an ideal transformer :PRIMARY AMPERE TURNS = SECONDARY AMPERE TURNS ⇒ IP = N x IS



14



s



Basic Theory (2) IS IP



ES



R



For IS to flow through R there must be some potential ES = the E.M.F. ES = IS x R ES is produced by an alternating flux in the core. ES ∝ dØ dt 15



s



Basic Theory (3) NP IP NS IS



EK ZCT



ZB



VO/P 16



s



=



ISZB = EK - ISZCT



Basic Formulae



Circuit Voltage Required : ES = IS (ZB + ZCT + ZL) Volts where :IS



=



Secondary Current of C.T. (Amperes)



ZB



=



Connected External Burden (Ohms)



ZCT



=



C.T Winding Impedance (Ohms)



ZL



=



Lead Loop Resistance (Ohms)



Require EK > ES



17



s



Basic Formulae (1) Maximum Secondary Winding Voltage : EK = 4.44 x B A f N Volts …. 1 where :-



18



s



EK



=



Secondary Induced Volts (knee-point voltage)



B



=



Flux Density (Tesla)



A



=



Core Cross-sectional Area (square metres)



f



=



System Frequency (Hertz)



N



=



Number of Turns



Simple Selection Example Example Calculation : C.T. Ratio = 2000 / 5A



Max Flux Density = 1.6 T



RS = 0.31 Ohms



Core C.S.A = 20 cm2



IMAX Primary = 40 kA Find maximum secondary burden permissible if no saturation is to occur. Solution :



N = 2000 / 5 = 400 Turns IS MAX = 40,000 / 400 = 100 Amps From equation 1 the knee point voltage is :VK = (4.44 x 1.6 x 20 x 50 x 400) = 284 Volts 104 Therefore Maximum Burden = 284 / 100 = 2.84 Ohms Hence Maximum CONNECTED burden : 2.84 - 0.31 = 2.53 Ohms



19



s



Mag Curves Flux Density (B) Tesla (Wb/m2)



Material : Cross



1.8 1.6



Knee Point



1.4 1.2 1.0 0.8 0.6 0.4 0.2 0



0



0.02



0.04



0.06



0.08



0.1



0.12



Magnetizing Force (H) Ampere-Turns / mm (Magnetic Field Strength : H, A/m) 20



s



Mag Curves Cont...



ES ES = 4.44 N f A B = Kv B



(Secondary E.M.F.)



where :- Kv = 4.44 N f A (B in Wb/m2 ; A in m2) Ie = H . L = K i . H N where :Ki = L/N L = mean magnetic path in metres H = amp. Turns / metre Ie = Amps



(Magnetising Current) Ie 21



s



Mag Curves Cont... B



Multiply By KV to obtain Volts



Units :



KV = E = 4.44 N f A (m2 x turns) B Ki = Ie = L (m / turns) H



Note :



N



L = Mean Magnetic Path



ro



Mean Magnetic Path = 2πr r ri



r = r o - ri 2



H Multiply By Ki to obtain Amps



KV x B = Volts (E) Ki x H = Amps 22



s



+ ri



Magnetisation Characteristic (1)



C.T Ratio 100/5 A connected to CDG11. Relay Burden = 2 VA (at 10% rated I) Problem :Calculate the necessary values of Kv and Ki to provide the necessary output at ten times setting (Assume maximum flux density before saturation = 1.6 Tesla)



23



s



Magnetisation Characteristic (2) (i)



Bar Type Primary CDG current setting = 10% = 0.5 A Volts required to operate relay = 2 / 0.5 = 4 V Therefore voltage required at 10 times setting = 10 x 4 = 40 V Hence for a flux density of 1.6T the C.T. should have an output of at least 40 V. With bar primary, number of turns = 20. Ek = 4.44 B A f N = 4.44 x 1.6 x A x 10-4 x 20 x 50 A = 40 / 0.71 = 56.3 cm2 Assume a stacking factor of 0.92 => Total C.S.A. = 61.2 cm2 Assume I.D. = 18cm, O.D. = 30cm & Depth = 10.2cm KV = AN / 45 = (56.3 x 20) / 45 = 25 Ki = L / N = 24TT / 20 = 3.77 cm / turn



24



s



Magnetisation Characteristic (3)



(ii)



Wound Type Primary Assume primary has 5 turns - Therefore secondary has 100 turns Ek = 4.44 B A f N = 4.44 x 1.6 x A x 10-4 x 100 x 50 A = 40 / 3.55 = 11.26 cm2 Assume a stacking factor of 0.92 => Total C.S.A. = 12.24 cm2 Assume I.D. = 18cm, O.D. = 30cm & Depth = 2.04cm KV = AN / 45 = (11.26 x 100) / 45 = 25 Ki = L / N = 24TT / 100 = 0.754 cm/turn



25



s



Low Reactance Design



With evenly distributed winding the leakage reactance is very low and usually ignored. Thus ZCT ~ RCT



26



s



Exciting Voltage (VS)



Knee-Point Voltage Definition



+10% Vk Vk +50% Iek



Iek Exciting Current (Ie) 27



s



C.T. Equivalent Circuit Ip



ZCT Is



P1 Ip/N



Ie



S1 N



28



Ze



Vt



Es



Ip = Primary rating of C.T.



Ie



= Secondary excitation current



N



Is



= Secondary current



= C.T. ratio



Zb = Burden of relays in ohms



Es = Secondary excitation voltage



(r+jx) ZCT = C.T. secondary winding impedance in ohms (r+jx) Ze = Secondary excitation impedance in ohms (r+jx)



Vt = Secondary terminal voltage across the C.T. terminals



s



Zb



Phasor Diagram Φ



Ip/N Ie Ie



Is Es



29



Ep



Im Ic



Ep = Es =



Primary voltage Secondary voltage



Im = Ie =



Magnetising current Excitation current



Φ = Ic =



Flux Iron losses (hysteresis & eddy currents)



Ip = Is =



Primary current Secondary current



s



Saturation



30



s



Steady State Saturation (1)



E= 100V



100A



100A



1A



1A 100/1



E



100/1



1 ohm



E



100 ohm



E= 1V



100A



1A



1A 100/1



31



E=?



100A E



s



10 ohm



E= 10V



100/1



E



1000 ohm



Steady State Saturation (2) Φ



+V



0V



A



-V



Time



Assume :- Zero residual flux Switch on at point A 32



s



Steady State Saturation (3) +V



0V



C



Φ -V



Time



Assume :- Zero residual flux Switch on at point C 33



s



Steady State Saturation (4) +V Φ



0V



B



-V



Time



Assume :- Zero residual flux Switch on at point B 34



s



Steady State Saturation (5)



+V Mag Core Saturation 0V Mag Core Saturation -V



Time 35



s



Steady State Saturation (6) +V



Prospective Output Voltage Φ



Mag Core Saturation



0V Mag Core Saturation



-V



+V Output lost due to steady state saturation



0V Actual Output Voltage



-V Time 36



s



Transient Saturation v = VM sin (wt + σ) L1



R1 Z1



i1



v = VM sin (wt + σ) i1 = +



VM V sin (wt + σ - ∅ ) = M sin (σ - ∅ ) . e Z1 Z1



= + Ιˆ1 sin (wt + σ - ∅ ) - Ιˆ1 sin (σ - ∅ ) . e =



37



STEADY STATE



s



+



-R1t / L1



-R1t / L1



TRANSIENT



where : -



Z1 =



R12 + w 2L12



∅ = tan-1 V Ιˆ1 = M Z1



wL1 R1



Transient Saturation : Resistive Burden



Required Flux ØSAT



FLUX Actual Flux Mag Current



0



Primary Current Secondary Current CURRENT 0



38



10



s



20 30



40 50



60 70



80



M



CT Types



39



s



Current Transformer Function



Two basic groups of C.T. X



Measurement C.T.s



Š Limits well defined X



Protection C.T.s



Š Operation over wide range of currents Note : They have DIFFERENT characteristics



40



s



Measuring C.T.s Measuring C.T.s X Require good accuracy up to approx 120% rated current. X Require low saturation level to protect instruments, thus use nickel iron alloy core with low exciting current and knee point at low flux density.



B Protection C.T.



Protection C.T.s X Accuracy not as important as above. X Require accuracy up to many times rated current, thus use grain orientated silicon steel with high saturation flux density. 41



s



Measuring C.T.



H



CT Errors



42



s



Current Transformer Errors ZS



Is



Ip Ie Ze



Zb



Es



Φ Ip/N Ie



I Iq p/N Ie Ic’ Is Es 43



Ie Is Ep



s



Current Transformer Error Transformer Error vs Primary Current



Error



Current Error Phase Error Primary Current



Rated Current



Errors can be reduced by :1. 2. 3. 44



s



Using better quality magnetic material Shortening the mean magnetic path Reducing the flux density in the core



Current Transformer Errors Current Error Definition. Error in magnitude of the secondary current, expressed as a percentage, given by :Current error % = 100 (kn IS - Ip) Ip kn Ip



= =



Rated Transmission Ratio Actual Primary Current



Is



=



Actual Secondary Current



Current Error is :+ve : When secondary current is HIGHER than the rated nominal value. -ve : When secondary current is LOWER than the rated nominal value. 45



s



Current Transformer Errors



Phase Error Definition. The displacement in phase between the primary and secondary current vectors, the direction of the vectors being chosen so the angle is zero for a perfect transformer. Phase Error is :+ve : When secondary current vector LEADS the primary current vector. -ve : When secondary current vector LAGS the primary current vector.



46



s



Current Transformer Ratings



47



s



Current Transformer Ratings (1) Rated Burden X Value of burden upon which accuracy claims are based X Usually expressed in VA X Preferred values :2.5, 5, 7.5, 10, 15, 30 VA



Continuous Rated Current X Usually rated primary current



Short Time Rated Current X Usually specified for 0.5, 1, 2 or 3 secs X No harmful effects X Usually specified with the secondary shorted



Rated Secondary Current X Commonly 1, 2 or 5 Amps 48



s



Current Transformer Ratings (2) Rated Dynamic Current Ratio of :IPEAK : IRATED (IPEAK = Maximum current C.T. can withstand without suffering any damage). Accuracy Limit Factor - A.L.F. (or Saturation Factor) Ratio of :IPRIMARY : IRATED up to which the C.T. rated accuracy is maintained. e.g. 200 / 1A C.T. with an A.L.F. = 5 will maintain its accuracy for IPRIMARY < 5 x 200 = 1000 Amps 49



s



Choice of Ratio Clearly, the primary rating IP ≥ normal current in the circuit if thermal (continuous) rating is not to be exceeded. Secondary rating is usually 1 or 5 Amps (0.5 and 2 Amp are also used). If secondary wiring route length is greater than 30 metres - 1 Amp secondaries are preferable. A practical maximum ratio is 3000 / 1. If larger primary ratings are required (e.g. for large generators), can use 20 Amp secondary together with interposing C.T. e.g. 5000 / 20 - 20 / 1 50



s



Current Transformer Designation



Class “P” Specified in terms of :i) Rated burden ii) Class (5P or 10P) iii) Accuracy limit factor (A.L.F.) Example :15 VA 10P 20 To convert VA and A.L.F. into useful volts Vuseful ≈ VA x ALF IN



51



s



BS 3938 Classes :-



5P, 10P. ‘X’



Designation (Classes 5P, 10P) (Rated VA)



(Class)



(ALF)



Multiple of rated current (IN) up to which declared accuracy will be maintained with rated burden connected. 5P or 10P. Value of burden in VA on which accuracy claims are based. (Preferred values :- 2.5, 5, 7.5, 10, 15, 30 VA) ZB = rated burden in ohms = Rated VA IN2 52



s



Protection Current Transformers



Table 3 - Limits of Error for Accuracy Class 5P and 10P



Accuracy Current Error at Phase Displacement at Composite Error Class rated primary rated primary current (%) at rated current (%) Minutes Centiradians accuracy limit primary current 5P 5 ±1 ±60 ±1.8 10P



53



s



±3



10



Interposing CT



54



s



Interposing CT



LINE CT



NP



NS



ZCT



Burden presented to line CT = ZCT + ZB x NP2 NS2 55



s



ZB



NEG.



5A



1A



0.5Ω



R 500/5



0.1Ω



1VA @ 1A ≡ 1.0Ω



0.4Ω



‘Seen’ by main ct :- 0.1 + (1)2 (2 x 0.5 + 0.4 + 1) = 0.196Ω (5)2 Burden on main ct :- I2R = 25 x 0.196 = 4.9VA Burden on a main ct of required ratio :0.5Ω



R 500/1



1.0Ω



Total connected burden = 2 x 0.5 + 1 = 2Ω Connected VA = I2R = 2 ∴ The I/P ct consumption was about 3VA. 56



s



Current Transformer Designation



57



s



Current Transformer Designation Class “X” Specified in terms of :-



58



s



i)



Rated Primary Current



ii)



Turns Ratio (max. error = 0.25%)



iii)



Knee Point Voltage



iv)



Mag Current (at specified voltage)



v)



Secondary Resistance (at 75°C)



Choice of Current Transformer X Instantaneous Overcurrent Relays



Š Class P Specification Š A.L.F. = 5 usually sufficient Š For high settings (5 - 15 times C.T rating) A.L.F. = relay setting



X IDMT Overcurrent Relays



Š Generally Class 10P Š Class 5P where grading is critical Note : A.L.F. X V.A < 150 X Differential Protection



Š Class X Specification Š Protection relies on balanced C.T output 59



s



Selection Example



60



s



Burden on Current Transformers



1. Overcurrent : RCT + RL + Rr



2. Earth : RCT + 2RL + 2Rr



RCT



RCT



RCT RCT



Rr



61



Rr



s



RCT



IF RL



RL



RCT



IF



RL



Rr



RL



Rr



RL Rr



IF



IF



RL



Rr



RL



Rr



RL



Rr



Overcurrent Relay VK Check Assume values :



If max C.T



= =



7226 A 1000 / 5 A 7.5 VA 10P 20



RCT = Rr = RL =



0.26 Ω 0.02 Ω 0.15 Ω



Check to see if VK is large enough : Required voltage = VS = IF (RCT + Rr + RL) = 7226 x 5 (0.26 + 0.02 + 0.15) = 36.13 x 0.43 = 15.54 Volts 1000 Current transformer VK approximates to :VK ~ VA x ALF + RCT x IN x ALF In = 7.5 x 20 + 0.26 x 5 x 20 = 56 Volts 5 VK > VS therefore C.T VK is adequate 62



s



Earth Fault Relay VK Check Assume values : As per overcurrent. Note



For earth fault applications require to be able to pass 10 x relay setting.



Check to see if VK is large enough : Total load connected = 2RL + RCT + 2Rr = 2 x 0.15 + 0.26 + 2 x 0.02 ∴



Maximum secondary current = 56 = 93.33A 0.6



Typical earth fault setting



= =



30% IN 1.5A



Therefore C.T can provide > 60 x setting C.T VK is adequate 63



s



VK = 56 Volts



Voltage Transformers



64



s



Voltage Transformers



65



s



X



Provides isolation from high voltages



X



Must operate in the linear region to prevent accuracy problems - Do not over specify VT



X



Must be capable of driving the burden, specified by relay manufacturer



X



Protection class VT will suffice



Typical Working Points on a B-H Curve Flux Density ‘B’



Saturation



1.6



Tesla 1.0



0.5



Cross C.T.’s & Power Transformers



V.T.’s



Protection C.T. (at full load) ‘H’ 1000



2000



3000 Magnetising Force AT/m



66



s



Types of Voltage Transformers



Two main basic types are available: X Electromagnetic VT`s



Š Similar to a power transformer Š May not be economical above 132kV X Capacitor VT`s (CVT)



Š Used at high voltages Š Main difference is that CVT has a capacitor divider on the front end.



67



s



Electromagnetic Voltage Transformer



NP / NS = Kn



LP



RP IP



EP = ES



68



s



IS



Ie LM



VP



LS



RS



IM



Re IC



VS



ZB



(burden)



Basic Circuit of a Capacitor V.T.



C1 L T



VP C2



69



s



ZB VC2



Vi



VS



Ferro-resonance



X The exciting impedance of auxiliary transformer T and the capacitance of the potential divider form a resonant circuit. X May oscillate at a sub normal frequency X Resonant frequency close to one-third value of system frequency X Manifests itself as a rise in output voltage, r.m.s. value being 25 to 50 per cent above normal value X Use resistive burden to dampen the effect



70



s



VT Earthing



X Primary Earthing



Š Earth at neutral point Š Required for phase-ground measurement at relay X Secondary Earthing Š Required for safety Š Earth at neutral point Š When no neutral available - earth yellow phase (VERY COMMON) Š No relevance for protection operation



71



s



VT Construction



X



5 Limb



Š Used when zero sequence measurement is required (primary must also be earthed)



X



Three Single Phase



Š Used when zero sequence measurement is required (primary must also be earthed)



X



3 Limb



Š Used where no zero sequence measurement is required



X



V Connected (Open Delta)



Š Š Š Š 72



s



No yellow phase Cost effective Two phase-phase voltages No ground fault measurement



VT Connections



Broken Delta A



B



da



a



73



s



C



N



V Connected a



b



c



dn



b



c n



a



b



c



VT Construction - Residual



X Used to detect earthfault X Useful where current operated protection cannot be used X Connect all secondary windings in series X Sometimes referred to as `Broken Delta` X Residual Voltage is 3 times zero sequence voltage X VT must be 5 Limb or 3 single phase units X Primary winding must be earthed



74



s



Voltage Factors Vf



X Vf is the upper limit of operating voltage.



75



X



Important for correct relay operation.



X



Earthfaults cause displacement of system neutral, particularly in the case of unearthed or impedance earthed systems.



s



Protection of VT’s



76



X



H.R.C. Fuses on primary side



X



Fuses may not have sufficient interrupting capability



X



Use MCB



s



GRID Technical Institute



This document is the exclusive property of Alstom Grid and shall not be transmitted by any means, copied, reproduced or modified without the prior written consent of Alstom Grid Technical Institute. All rights reserved.