Aspen-Plus Ternary Mixture [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

I t d ti t A Introduction to Aspen Plus Pl Short Courses on Computer Applications for ChE Students



Speaker: JianKai Cheng (程建凱) p g (程建凱) [email protected] PSE Laboratory Department of Chemical Engineering Department of Chemical Engineering Nation Taiwan University



What What is Aspen Plus is Aspen Plus • Aspen Plus is a market‐leading process modeling tool  for conceptual design, optimization, and  performance monitoring for the chemical, polymer,  specialty chemical, metals and minerals, and coal  power industries.



Ref: http://www.aspentech.com/products/aspen-plus.cfm



2



What What Aspen Plus provides Aspen Plus provides • Physical Property Models – World’s largest database of pure component and phase equilibrium  data for conventional chemicals electrolytes solids and polymers data for conventional chemicals, electrolytes, solids, and polymers – Regularly updated with data from U. S. National Institute of Standards  and Technology (NIST)



• Comprehensive Library of Unit Operation Models – Addresses a wide range of solid, liquid, and gas processing equipment – Extends steady‐state simulation to dynamic simulation for safety and  d d l d l f f d controllability studies, sizing relief valves, and optimizing transition,  startup, and shutdown policies – Enables you build your own libraries using Aspen Custom Modeler  or  programming languages (User‐defined models)



3



Ref: Aspen Plus® Product Brochure



More Detailed More Detailed • Properties analysis – Properties of pure component and mixtures (Enthalpy,  density, viscosity, heat capacity,…etc) – Phase equilibrium (VLE, VLLE, azeotrope calculation…etc) – Parameters estimation for properties models (UNIFAC  method for binary parameters, Joback method for boiling  points etc) points…etc) – Data regression from experimental deta



• Process simulation P i l ti – pump, compressor, valve, tank, heat exchanger, CSTR, PFR,  di till ti distillation column, extraction column, absorber, filter,  l t ti l b b filt crystallizer…etc 4



What course Aspen Plus  can be employed for • • • • • • •



MASS AND ENERGY BALANCES PHYSICAL CHEMISTRY CHEMICAL ENGINEERING THERMODYNAMICS  CHEMICAL REACTION ENGINEERING CHEMICAL REACTION ENGINEERING UNIT OPERATIONS PROCESS DESIGN PROCESS CONTROL



5



Lesson Objectives Lesson Objectives • Familiar with the interface of Aspen Plus • Learn how to use properties analysis • Learn how to setup a basic process simulation



6



Problem Formulation 1: Calculation  the mixing properties of two stream 



Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Temperature C Pressure bar Enthalpy kcal/mol E t Entropy cal/mol-K l/ l K Density kmol/cum



1



2



3



4



10 0 0 10 50 0 1 ? ? ?



0 9 6 15 80 1 ? ? ?



? ? ? ? ? 1 ? ? ?



? ? ? ? ? 10 ? ? ?



Mass Balance E Energy B Balance l Enthalpy Entropy…



7



Problem Formulation 2:  Flash Separation 120 T-x T T-y



Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



o



T=105 C P=1atm



T ( C)



115 110 105 100 0.0



What are flowrates and compositions of the two outlets?



0.2



0.4



0.6



xWater and yWater



0.8



1.0



Problem Formulation 3: Dehydration of  Acetic Acid by Distillation Column  ((Optional) p )



10 1.0



Duty ?



0.6 yWater



Reflux ratio ?



0.8



0.4 0.2 0.0 0 0 0.0



0.2



0.4



0.6



xWater



0.8



1.0



Outline • Startup in Aspen Plus (Basic Input) (45 min) – User Interface – Basic Input: Setup, Components, Properties. • Properties Analysis (1 hour) – Pure Component – Mixtures (phase equilibrium) • Running Simulation (1 hour) – Blocks (Unit Operations) – Streams (flow streams) – Results 10



Introduction to Aspen Plus – Part 1



Startup in Aspen Plus



11



Start with Aspen Plus Start with Aspen Plus A Aspen Pl Plus User U IInterface t f



12



Aspen Plus Startup Aspen Plus Startup



13



Interface of Aspen Plus Interface of Aspen Plus



ProcessFlowsheet Flowsheet Windows Process Windows



ModelLibrary Library (View||| Model yy) ) Model yy ((View| ModelLibrary Library



Stream



Status message



14



More Information More Information



Help for Commands for Controlling Simulations



15



Data Browser Data Browser • The Data Browser is a sheet and form viewer with a  hierarchical tree view of the available simulation  input, results, and objects that have been defined



16



Status Indicators Status Indicators



17



Basic Input Basic Input • The minimum required inputs to run a simulation  are: – – – – –



Setup Components Properties Streams Blocks



Property Analysis



Process Simulation



18



Setup – Specification Setup  – Setup   Run Type



Input mode



19



Setup – Run Type Setup  – Setup   Run Type Run Type



Description



Assay Data Analysis



A standalone assay data  A t d l d t analysis/pseudocomponents generation run



Flowsheet



A Flowsheet run (including sensitivity studies and  ( g y optimization). also include the following  calculations: Property estimation, Assay data  analysis and Property analysis



Use to



Analyze assay data when you do not want to  A l d t h d t tt perform a flowsheet simulation in the same run.  Fit physical property model parameters required  by Aspen Plus to measured pure component,  A standalone data regression run. Can contain  D t R Data Regression i property constant estimation and property analysis  t t t ti ti d t l i VLE, LLE and other mixture data. Aspen VLE LLE d th i t d t A Pl Plus  calculations. cannot perform data regression in a Flowsheet  run.  Prepare a property package for use with Aspen  C Custom Modeler, with third party commercial  M d l i h hi d i l engineering programs, or with your company's  Properties Plus A Properties Plus setup run in house programs.  You must be licensed to use Properties Plus. P f Perform property analysis by generating tables  l i b i bl A standalone property analysis run. Can contain  of physical property values when you do not  Property Analysis property constant estimation and assay data  want to perform a flowsheet simulation in the  analysis calculations. same run E i Estimate property parameters when you do not  h d want to perform a flowsheet simulation in the  Property Estimation A standalone property constant estimation run same run. 



Perform process simulations 20



Components – Specification Components  – Components  



IInput components t t with Component name or Formula



21



Input components Input components



Remark: If available, are



22



Specification To do this Find components in the databanks Define a custom component that is not in  a databank Generate electrolyte components and  reactions from components you entered Reorder the components you have  specified Review databank data for components  you have specified (Retrieved physical  property parameters from databanks ) property parameters from databanks.)



Click this button Find User Defined Elec Wizard Reorder Review



23



Find Components Find Components



Click “Find”



24



Find Components (cont Find Components (cont’d) d) Input Component name or Formula or p p CAS number



25



NIST Chemistry WebBook NIST Chemistry WebBook NIST Chemistry 



26



Properties Process type(narrow the number of Process type(narrow the number of methods available)



Base method: IDEAL NRTL UNIQAC UNIFAC Base method: IDEAL, NRTL, UNIQAC, UNIFAC…



27



Property Property Method Selection  – Property Method Selection   Method Selection – Assistant



Interactive help in choosing a property method



28



Assistant Wizard Assistant Wizard



Specify Component type Chemical Systems



Is the system at high pressure? (NO) Two liquid phases



29



Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/



30



Thermodynamic Model – NRTL Thermodynamic Model – Thermodynamic Model 



NRTL



Vapor EOS Liquid gamma Liquid enthalpy Liquid volume Liquid volume



31



Modify Property Model Modify Property Model Check “Modify y Property p y Model”



Specify p y New Method Name



32



NRTL – Binary Parameters NRTL – NRTL  Binary Parameters



Click Cli k “NRTL” and d th then b built-in ilt i binary bi parameters t appear automatically if available.



33



Access Properties Models and  Parameters



Review Databank Data



34



Review Databank Data Review Databank Data Including: Ideal g gas heat of formation at 298.15 K Ideal gas Gibbs free energy of formation at 298.15 K Heat of vaporization at TB Normal boiling point Standard liquid volume at 60°F 60 F



….



Description of each parameter 35



Pure Component Databank Parameters Pure Component Databank Parameters



Help for Pure Component Databank Parameters



36



Pure Component  Temperature‐‐Dependent Properties Temperature



CPIGDP‐1



ideal gas heat capacity



CPSDIP‐1



Solid heat capacity



DNLDIP‐1



Liquid density



DHVLDP‐1



Heat of vaporization 



PLXANT 1 PLXANT‐1



Extended Antoine Equation Extended Antoine Equation



MULDIP



Liquid viscosity



KLDIP



Liquid thermal q conductivityy



SIGDIP



Liquid surface tension



UFGRP



UNIFAC functional group 37



Example: PLXANT Example: PLXANT‐‐1  (Extended Antoine Equation) Corresponding Model Click “↖?” and then click where you don’t know



?



38



Example: CPIGDP Example: CPIGDP‐‐1  (Ideal Gas Heat Capacity Equation) Corresponding Model



?



39



Summary



So far, we have finished the basic settings including setup, components, and properties. This is enough to perform properties analysis. l i



40



File File Formats in Aspen Plus Formats in Aspen Plus



File Type



Extension



Format



Description



Document



*.apw



Binary



File containing simulation input and results and i t intermediate convergence information di t i f ti



Backup



*.bkp



ASCII



Archive file containing simulation input and results



History



*.his



Text



Detailed calculation history and diagnostic messages



Problem  Problem Description



*.appdf appdf



Binary



File containing arrays and intermediate File containing arrays and intermediate convergence information used in the simulation 41 calculations



File Type Characteristics File Type Characteristics •











Binary files fl – Operating system and version specific – Not readable, not printable Not readable not printable ASCII files – Transferable between operating systems – Upwardly compatible – Contain no control characters, “readable” – Not intended to be printed N i d d b i d Text files – Transferable between operating systems Transferable between operating systems – Upwardly compatible – Readable, can be edited – Intended to be printed 42



Introduction to Aspen Plus – Part 2



Properties Analysis in Aspen Plus 43



Overview of Property Analysis Overview of Property Analysis Use this form Use this form



To generate To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternary Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes Ternary maps showing phase envelope tie lines and azeotropes of ternary  of ternary systems This feature locates all the azeotropes that exist among a specified set of  components.  components



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Ti li Tie lines, Vapor curve, Boiling point V B ili i Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  ( than three) is  also included. 44



Reminding • When you start properties analysis, you MUST  p y components , properties model, and  p p p specify corresponding model parameters. (Refer to  Part I) Part I)



45



Properties Analysis – Pure Component  Properties Analysis – Properties Analysis  Pure Component Use this form



To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternaryy Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 46



Properties Analysis – Pure Component  Properties Analysis – Properties Analysis  Pure Component



47



Available Properties Available Properties Property (thermodynamic)



Property (transport)



Availability Free energy Constant pressure Constant pressure  Enthalpy heat capacity Heat capacity ratio Fugacity coefficient Constant volume heat Fugacity coefficient  Constant volume heat  Fugacity coefficient capacity pressure correction Free energy departure Vapor pressure  Free energy departure  Density pressure correction Enthalpy departure Entropy Enthalpy departure  Volume pressure correction py Enthalpy of  Sonic velocity Sonic velocity vaporization  Entropy departure



Thermal conductivity Surface tension Viscosity



48



Example1: CP (Heat Capacity) Example1: CP (Heat Capacity)



1. Select property (CP) 4. Specify p y range g of temperature p 2. Select phase 5 S 5. Specify if pressure Add “N-butyl-acetate”



3. Select component



6. Select property method 7. click Go to generate the results 49



Example1: Calculation Results of CP Example1: Calculation Results of CP



Data results



50



Example2: H (Enthalpy) Example2: H (Enthalpy)



1. Select property (H) 4. Specify range of temperature 2. Select phase 5. Specify pressure



3. Select component



6 S 6. Select l t property t method th d



7. click Go to generate the results



51



Example: Example: Calculation Results of H Calculation Results of H



Data results 52



Properties Analysis – Binary Components Properties Analysis – Properties Analysis  Binary Components Use this form



To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternaryy Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 53



Properties Analysis – Binary Components Properties Analysis – Properties Analysis  Binary Components



Binary Component Properties Analysis Binary Component Properties Analysis Use this Analysis type To generate Temperature‐compositions diagram at  Txy constant pressure Pressure‐compositions diagram at  Pxy constant temperature Gibbs energy of mixing diagram as a  function of liquid compositions. The  A Aspen Physical Property System uses this  Ph i l P S hi Gibbs energy of mixing diagram to determine whether the  binary system will form two liquid phases  at a given temperature and pressure at a given temperature and pressure.



Example: T‐ Example: T‐XY Example: T 1. Select analysis y type yp ((Txy) y)



2. Select two component



2. Select phase (VLE, VLLE)



5. Specify pressure



3. Select compositions basis



6 Select property method 6. 4. Specify composition range 7. click Go to generate the results



Example: calculation result of T‐ Example: calculation result of T‐XY Example: calculation result of T



Data results



Example: Generate XY plot Example: Generate XY plot



Click “plot wizard” to generate XY plot



Example: Generate XY plot (cont Example: Generate XY plot (cont’d) d)



Shortcoming of Binary Analysis Shortcoming of Binary Analysis Water-BuOH 120



110



o



T ( C)



100



90



?



80



70 0.0



0.2



0.4



0.6



Mole Fraction (Water)



Bi Binary A l i cannott generate Analysis t LLE data d t below b l azeotrope. t



0.8



1.0



Property Analysis – Generic Property Analysis – Property Analysis  Use this form



To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternaryy Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 61



Properties Analysis – Ternary Properties Analysis – Properties Analysis 



Ternary Map Ternary Map



1 Select three component 1. 4. Select phase (VLE, LLE) 2. Specify number of tie line



5. Specify pressure



3. Select property method



6. Specify temperature (if LLE is slected) 7. click Go to generate the results



Calculation Calculation Result of Ternary Map (LLE) Result of Ternary Map (LLE)



D t results Data lt



Property Analysis – Generic Property Analysis – Property Analysis  Use this form



To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternaryy Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 65 Generic analysis is used if properties analysis of mixture is performed.



When to Use Generic Analysis When to Use Generic Analysis 



Enthalpy of Mixtures



?



Water-BuOH 120



110



o



T ( C)



100



90



70 0.0



?



?



80



Specific composition



LLE 0.2



0.4



0.6



Mole Fraction (Water)



0.8



1.0



66



Property Analysis – Generic Property Analysis – Property Analysis 



Select Property analysis



67



Add New Analysis Add New Analysis



Select Generic



68



Specification Specification of System of System



3. Specify component flow



. Select “flash calculation” or not



2. Select phase (VLE, LLE) 4 S 4. Specify if the th corresponding di composition iti



69



Determine Determine Adjusted Variables Adjusted Variables



Specify feed condition



Temperature Pressure Vapor fraction Mole flow Mass flow StdVol flow Mole fraction Mass fraction StdVol fraction Specify range of adjusted variables 70



Specify Property‐ Specify Property‐Sets for  Calculation Results



71



Add New Property‐ Add New Property‐Set (User‐ Add New Property Set (User‐Defined) Set (User



Select Physical Property



Description 72



Add New Property‐ Add New Property‐Set (cont Add New Property Set (cont’d) d) If the system requires VLLE calculation… calculation Select “Vapor” “1st liquid” “2nd liquid”



73



Specify Property‐ Specify Property‐Sets Specify Property



74



Run Properties Analysis Run Properties Analysis Click ► to generate the results



Check “simulation status” “Results Available” means convergency convergency. 75



Example1: Calculation of Enthalpy  Change for binary mixtures Change  for binary mixtures Molar ratio of Butanol/Water=1:1



o



Temperature = 50 C



-60000



-56000 -58000 Liquid Vapor



-64000



-60000



-66000 66000 -68000 -70000



Liquid Vapor



-62000 Enthalpy (cal/m E mol)



Enthalpy (cal//mol)



-62000



-64000 -66000 -68000 -70000 -72000 -74000



-72000



-76000 -74000 40



50



60



70



80 o



Temperature ( C)



90



100



-78000 0.0



0.2



0.4



0.6



0.8



1.0



Mole fraction of Water in BuOH and Water



76



Search Physical Properties for  Enthalpy of Mixtures (HMX)  Select HMX. Others are optimal.



Add Property-Set



77



Calculate of Enthalpy Change As  Calculate of Enthalpy Change As  Temperature Varies Temperature  Varies 1



2



3 4



78



Read Calculation Read Calculation Results Read  Calculation Results Results



79



Exercise o



Temperature = 50 C -56000 -58000 -60000 Liquid Vapor



Enthalpy (ccal/mol)



-62000 -64000 -66000 -68000 -70000 -72000 -74000 -76000 -78000 0.0



0.2



0.4



0.6



0.8



1.0



Mole fraction of Water in BuOH and Water



80



Example 2:  Example 2: Calculation of  Calculation of LLE  LLE  for Binary system for  Binary system Water-BuOH 120



110



o



T ( C)



100



90



80



70 0.0



0.2



0.4



0.6



0.8



1.0



Mole Fraction (Water)



81



Add Add New Property Add New Property‐ New Property‐Set (cont Set (cont’d) d)



Select “Vapor” “1st liquid” “2nd liquid”



Specify System, Variable and Property‐ Specify Specify System, Variable and Property System Variable and Property‐Set 1



2



Select Vapor-liquid-liquid



3 4



Calculation Results Calculation Results



Water-BuOH 120



110



o



T ( C)



100



90



80



70 0.0



0.2



0.4



0.6



Mole Fraction (Water)



0.8



1.0



Property Analysis Property Analysis – Property Analysis  – Conceptual Conceptual Design Design (Optional) Use this form



To generate



Binary



Tables and plots of pure component properties as a function of temperature  and pressure Txy Pxy or Gibbs energy of mixing curves for a binary system Txy, Pxy, or Gibbs energy of mixing curves for a binary system



Residue



Residue curve maps



Pure



Ternary Azeotrope



Ternary maps showing phase envelope, tie lines, and azeotropes y p gp p , , p of ternary  y systems This feature locates all the azeotropes that exist among a specified set of  p components. 



Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines Vapor curve Boiling point Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations Properties analysis of multi‐components  (more  without flash calculations. Properties analysis of multi‐components (more than three) is  also included. 85



Conceptual Design Conceptual Design



Conceptual Design Conceptual Design • Conceptual design enables the user to: 1. Locate all the azeotropes (homogeneous and  heterogeneous) present in any multicomponent mixture 2. Automatically compute distillation boundaries and  residue curve maps for ternary mixtures id f t i t 3. Compute multiple liquid phase envelopes (liquid‐liquid  and vapor liquid liquid) for ternary mixtures and vapor‐liquid‐liquid) for ternary mixtures 4. Determine the feasibility of splits for distillation columns



Azeotrope Analysis Azeotrope Analysis



Azeotrope Analysis Azeotrope Analysis 1. Select components (at least two)



2. Specify pressure



3. Select property method 6. click Report to generate the results 4 Select phase (VLE 4. (VLE, LLE)



5. Select report Unit



Error Message Error Message



Close analysis input dialog box (pure or binary analysis)



Azeotrope Analysis Report Azeotrope Analysis Report



Ternary Maps Ternary Maps



Ternary Maps Ternary Maps 3 Select property method 3. 1. Select three components



4. Select phase (VLE, LLE)



2. Specify pressure



5. Select report Unit



6. Click Ternary Plot to generate the results



6. Specify temperature of LLE (If liquid-liquid envelope is selected)



Ternary Maps Ternary Maps Change pressure or temperature



Ternary Plot Toolbar: Add Tie line,, Curve,, Marker…



Introduction to Aspen Plus – Part 3



Running Simulation in Aspen Plus 95



Example 1: Calculate the mixing  properties of two stream 



Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Temperature C Pressure bar Enthalpy kcal/mol E t Entropy cal/mol-K l/ l K Density kmol/cum



1



2



3



4



10 0 0 10 50 0 1 ? ? ?



0 9 6 15 80 1 ? ? ?



? ? ? ? ? 1 ? ? ?



? ? ? ? ? 10 ? ? ?



96



Example 2: Flash Separation Example 2: Flash Separation 120 T-x T T-y



Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



o



T=105 C P=1atm



T ( C)



115 110 105 100 0.0



What are flowrates and compositions of the two outlets?



0.2



0.4



0.6



xWater and yWater



0.8



1.0



Example 3: Dehydration of Acetic  Acid by Distillation Column (Optional) 10 1.0



Duty ?



0.6 yWater



Reflux ratio ?



0.8



0.4 0.2 0.0 0 0 0.0



0.2



0.4



0.6



xWater



0.8



1.0



Setup – Specification Setup  – Setup  



Select Flowsheet



99



Reveal Model Library Reveal Model Library



View|| Model Library or press F10



100



Model Library: Mixer/Splitter Model Library: Mixer/Splitter



Model



Description



Purpose



Use for



Mixer



Stream mixer



Combines multiple streams  into one stream



Mixing tees. Stream  mixing operations.  g p Adding heat streams.  Adding work streams



FSplit



Stream splitter Stream splitter



Divides feed based on splits  Divides feed based on splits specified for outlet streams



Stream splitters. Bleed  Stream splitters Bleed valves



SSplit



Substream splitter



Divides feed based on splits  Divides feed based on splits specified for each substream



Stream splitters. Perfect  Stream splitters Perfect fluid‐solid separators 101



Model Library: Pressure Changers Model Library: Pressure Changers



102



Model



Description Purpose Use for P Pump or hydraulic  h d li Changes stream pressure when the  Ch t h th Pumps and hydraulic  P d h d li Pump turbine power requirement is needed or  turbines known C Compressor or  Ch Changes stream pressure when  t h P l t i compressors,  Polytropic Compr turbine power requirement is needed or  polytropic positive  known displacement compressors,  isentropic compressors isentropic compressors,  isentropic turbines Changes stream pressure across  Multistage polytropic Mcompr Multistage  compressor or compressor or  multiple stages with intercoolers compressors, polytropic multiple stages with intercoolers.  compressors polytropic turbine Allows for liquid knockout streams  positive displacement  from intercoolers compressors, isentropic  compressors isentropic compressors, isentropic  turbines Valve pressure  Models pressure drop through a  Control valves and pressure  Valve drop valve changers Single segment  Models pressure drop through a  Pipe with constant diameter  Pipe pipe single segment of pipe (may include fittings) Multiple segment Models pressure drop through a  Models pressure drop through a Pipeline with multiple Pipeline with multiple  Pipeline Multiple segment  pipeline pipe or annular space lengths of different  diameter or elevation103



Adding a Mixer Adding a Mixer



Click “one of icons” and d then th click li k again i on the th flowsheet fl h t window i d Remark: The shape of the icons are meaningless



104



Adding Material Streams Adding Material Streams



Click “Materials” and then click again on the flowsheet window



105



Adding Material Streams (cont’d) Adding Material Streams (cont d)



When clicking the mouse on the flowsheet window window, arrows (blue and red) appear.



106



Adding Material Streams (cont’d) Adding Material Streams (cont d) When moving the mouse on the arrows, some description appears.



Blue arrow: Water decant for Free water of dirty water. water



Red arrow(Left) Feed (Required; one ore more if mixing material streams)



Red arrow(Right): Product (Required; if mixing material streams)



107



Adding Material Streams (cont’d) Adding Material Streams (cont d)



After selecting “Material Streams”, click and pull a stream line. Repeat it three times to generate three stream lines lines.



108



Reconnecting Material Streams  (Feed Stream) Right Click on the stream and select Reconnect Destination



109



Reconnecting Material Streams  (Product Stream)



Right Click on the stream and select Reconnect Source



B1



1



3



2



110



Specifying Feed Condition Specifying Feed Condition



Right Click on the stream and select Input



111



Specifying Feed Condition Specifying Feed Condition



You must specify two of the following conditions: Temperature p Pressure Vapor fraction



 You can enter stream composition in terms of component flows, fractions, or concentrations.  If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow. 112



Specifying Feed Condition (cont’d) Specifying Feed Condition (cont d) 1



2



113



Specifying Input of Mixer Specifying Input of Mixer



Right Click on the block and select Input



114



Specifying Input of Mixer (cont Specifying Input of Mixer (cont’d) d)



Specify Pressure and valid phase



The corresponding description about this blank: Outlet pressure if value > 0 Pressure drop if value ≦ 0 115



Run Simulation Run Simulation Click ► to run the simulation



Run



Start or continue calculations



Step



Step through the flowsheet one block at a time



Stop



Pause simulation calculations



Reinitialize



Purge simulation results



Check “simulation status” “Required q Input p Complete” p means the input p is ready y to run simualtion 116



Status Status of Simulation Results  of Simulation Results Message Results available



Means The run has completed normally, and results are  present. present



Results for the run are present. Warning  messages were generated during the  esu ts t a gs Results with warnings  calculations. View the Control Panel or History  l l i Vi h C l P l Hi for messages.  Results with errors 



Results for the run are present. Error messages  were generated during the calculations. View the  Control Panel or History for messages.



Input Changed



Results for the run are present, but you have  p , y changed the input since the results were  generated. The results may be inconsistent with  the current input. 117



Control Pannel Control Pannel Click here



1.A message window showing the progress of the simulation by displaying the most recent messages from the calculations 2.A status area showing the hierarchy and order of simulation blocks and convergence loops executed 118



Stream Results Stream Results



Right Click on the block and select Stream Results



119



Pull down the list and select “Full” to show more properties results.



Enthalpy and Entropy



Substream: MIXED Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Total Flow kg/hr Total Flow cum/hr Temperature C Pressure bar V Vapor Frac F Liquid Frac Solid Frac Enthalpy kcal/mol Enthalpy kcal/mol Enthalpy kcal/kg Enthalpy Gcal/hr Entropy cal/mol‐K Entropy cal/gm‐K Density kmol/cum Density kg/cum Average MW Average MW Liq Vol 60F cum/hr



1



2



3



10 0 0 10 180.1528 0.18582 50 2 0 1 0 ‐67.81 67.81 ‐3764.03 ‐0.6781 ‐37.5007 ‐2.0816 53.81564 969.5038 18 01528 18.01528 0.1805



0 9 6 15 1364.066 1.74021 80 1 0 1 0 ‐94.3726 94.3726 ‐1037.77 ‐1.41559 ‐134.947 ‐1.48395 8.619647 783.851 90 93771 90.93771 1.617386



10 9 6 25 1544.218 1.870509 70.08758 1 0 1 0 ‐83.7476 83.7476 ‐1355.82 ‐2.09369 ‐95.6176 ‐1.54799 13.36534 825.5604 61 76874 61.76874 1.797886 120



Change Change Units of Calculation Results Units of Calculation Results



121



Setup – Defining Setup – Setup  Defining Your Own Units Set  Your Own Units Set



122



Setup – Report Options Setup – Setup  Report Options



123



Stream Results with Format of  Mole Fraction



124



Add Pump Block Add Pump Block



125



Add A Material Stream Add A Material Stream



126



Connect Streams Connect Streams



127



Pump – Specification  Pump – Pump  Specification 1. Select “Pump” or “turbine” 2. Specify pump outlet specificati (pressure, power)



3. Efficiencies (Default: 1)



128



Run Simulation Run Simulation Click ► to generate the results



Check “simulation status” “Required q Input p Complete” p 129



Block Results (Pump) Block Results (Pump)



Right Click on the block and select Results



130



131



Streams Results Streams Results



132



Calculation Results  (Mass and Energy Balances)



1



2



3



Mole Flow kmol/hr WATER 10 0 10 BUOH 0 9 9 BUAC 0 6 6 Total Flow kmol/hr 10 15 25 Temperature C 50 0 80 70.09 0 09 Pressure bar 1 1 1 Enthalpy kcal/mol -67.81 -94.37 -83.75 E t Entropy cal/mol-K l/ l K -37.50 37 50 -134.95 134 95 -95.62 95 62 Density kmol/cum 969.50 783.85 825.56



4 10 9 6 25 71.20 1 20 10 -83.69 -95.46 95 46 824.29



133



Exercise



Mole Flow kmol/hr Water Ethanol Methanol Total Flow kmol/hr Temperature C Pressure essu e ba bar Enthalpy kcal/mol Entropy cal/mol-K Densityy kmol/cum



1



2



3



4



5



6



10 0 0 10 50 1 ? ? ?



0 5 0 15 70 1 ? ? ?



0 0 15 15 40 1 ? ? ?



? ? ? ? ? 1 ? ? ?



? ? ? ? ? 4 ? ? ?



? ? ? ? ? 2 ? ? ?



Please use Peng-Robinson EOS to solve this problem.



134



Example 2: Flash Separation Example 2: Flash Separation 120 T-x T T-y



Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



o



T=105 C P=1atm



T ( C)



115 110 105 100 0.0



What are flowrates and compositions of the two outlets?



0.2



0.4



0.6



xWater and yWater



0.8



1.0



Input Components Input Components



Thermodynamic Thermodynamic Model: NRTL Thermodynamic Model: NRTL‐ Model: NRTL‐HOC



Vapor ESHOC Liquid gamma q g Liquid enthalpy Liquid volume



Check Binary Parameters Check Binary Parameters



Association parameters of HOC Association parameters of HOC



Binary Parameters of NRTL Binary Parameters of NRTL



Binary Analysis Binary Analysis



T‐xy plot 1. Select analysis type (Txy)



2. Select two component 3 Select compositions basis 3.



2. Select p phase (VLE, ( , VLLE))



5. Specify pressure 6. Select property method



4. Specify composition range 7. click Go to generate the results



Calculation Calculation Result of T Calculation Result of T‐ Result of T‐xy



Data results



Generate xy plot Generate xy Generate 



Generate xy plot (cont Generate xy Generate  plot (cont’d) d)



Flash Separation Flash Separation 120 T-x T T-y



Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



o



T=105 C P=1atm



T ( C)



115 110 105 100 0.0



What are flowrates and compositions of the two outlets?



0.2



0.4



0.6



xWater and yWater



0.8



1.0



Add Block: Flash2 Add Block: Flash2



Add Material Stream Add Material Stream



Specify Feed Condition Specify Feed Condition



Saturated Feed (Vapor fraction=0) P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



Block Input: Flash2 Block Input: Flash2



Flash2: Specification Flash2: Specification



T=105 C P 1 t P=1atm



Required Input Incomplete Required Input Incomplete Connot click ► to run simulation



Close binary analysis window



Required Input Complete Required Input Complete Click ► to run simulation



Stream Results Stream Results



Stream Results (cont Stream Results (cont’d) d) 42.658 kmol/hr zwater=0.501 zHAc=0.409



Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5



T=105 C P=1atm



57.342 kmol/hr zwater=0.432 zHAc=0.568



Review Distillation Separation Review Distillation Separation McCabe- Thiele Graphical Method



1 Rectifying section:



LR D xn 1  xD VR VR



Stripping pp g section:



LS B yn  xn 1  xB VS VS



0.6 y



yn 



0.8



0.4 02 0.2 0 0



02 0.2



04 0.4



06 0.6 x



08 0.8



1



Trade‐off Between  Trade‐ Capital Cost and Operating Cost



Shortcut Design: RR≈1.2×RRmin NT ≈ 2×NTmin



Distillation Separation Distillation Separation



RR ?



QR ?



• There are two degrees of  freedom to manipulate  d ll distillate composition and  d bottoms composition to  manipulate the distillate and manipulate the distillate and  bottoms compositions.  • If the feed condition and the  If the feed condition and the number of stages are given,  how much of RR and QR are  required to achieve the  specification. 



Add Block: Radfrac Add Block: Radfrac Add Block: 



Add Material Stream Add Material Stream



Flowsheet Connectivity for  Connectivity for RadFrac Connectivity for RadFrac



RadFrac numbers stages from the top down, starting with the condenser (or starting with the top stage if there is no condenser).



Connect Material Stream Connect Material Stream



Specify Feed Condition Specify Feed Condition



Saturated Feed (Vapor fraction=0) P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5



Block Input: Radfrac Block Input: Radfrac Block Input: 



Radfrac:: Configuration Radfrac: Configuration Radfrac : Configuration



Radfrac::: Streams (Feed Location) Radfrac: Streams (Feed Location) Radfrac Streams (Feed Location)



Types of Feed Stage Types of Feed Stage Use this convention To introduce a feed g Between stages, above the designated stage g , g g Above‐stage On‐stage On the designated stage On the designated stage, all‐liquid feed  On‐stage‐liquid On stage liquid which is never flashed On the designated stage, all‐vapor feed  On‐stage‐vapor g p which is never flashed which is never flashed To the decanter attached to the designated  Decanter stage



Radfrac:: Column Pressure Radfrac: Column Pressure Radfrac : Column Pressure



Run Simulation Run Simulation Click ► to run simulation



Check Check Convergence Status Convergence Status



Stream Results Stream Results



D



B



Change Reflux Ratio Change Reflux Ratio Click ► to run simulation



Increase RR from 2 to 2.5



D



B



Again… Again



You can iterate RR until the specification is achieved achieved.



Smarter Way Smarter Way



Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.



Add New Design Specs Add New Design Specs



Design Design Specs: Specification Specs: Specification



Input current mole purity first



Design Design Specs: Components Specs: Components



Design Design Specs: Feed/Product Streams Specs: Feed/Product Streams



Add New Very Add New Very



Very: Specifications Very: Specifications



Specify the range of the adjusted variable Not all variables cane be selected selected. In this case, only reflux ratio and reboiler duty can be used.



Selection of Adjusted Variables Selection of Adjusted Variables



The options of adjusted variables must correspond to the operating specification.



Run Simulation Run Simulation Click ► to run simulation



Check Check Convergence Status Convergence Status



Change Target of Mole Purity Change Target of Mole Purity Click ► to run simulation



Increase Target from 0.95229424 to 0.99



Check Check Convergence Status Convergence Status



D



B



Column Column Performance Summary Performance Summary



Summary of Condenser Summary of Condenser



I l d condenser Include d duty, d t distillate di till t rate, t reflux fl rate, t reflux fl ratio ti



Summary of Reboiler Summary of Reboiler Summary of 



I l d reboiler Include b il duty, d t bottoms b tt rate, t boilup b il rate, t boilup b il ratio ti



Column Profile: TPFQ Column Profile: TPFQ



Column Profile: Vapor Composition Column Profile: Vapor Composition



Column Profile: Liquid Composition Column Profile: Liquid Composition



Plot Wizard for Column Profile Plot Wizard for Column Profile



Plot Wizard for Column Profile (cont’d) Plot Wizard for Column Profile (cont d) After entering g the block,, “Plot” appears. pp



Plot Wizard Plot Wizard



Plot Types Plot Types



Steps Steps for Composition Plot for Composition Plot



Composition Profiles Composition Profiles



Temperature Profiles Temperature Profiles



INTRODUCTION TO ASPEN PLUS INTRODUCTION TO ASPEN PLUS



Some Tips and Others 202



Tips: Next Tips: Next



Invokes the Aspen Plus expert system. Guides you through the p required q to complete p your y simulation. steps Status message Flowsheet Not  Complete Required Input Not  C Complete l



Meaning Flowsheet connectivity is incomplete. To find out why, click  the Next button in the toolbar. Input specifications for the run are incomplete. Click Next  on the toolbar to find out how to complete the input  h lb fi d h l h i specifications, and to go to sheets that are incomplete.



203



Example:  Example: “NEXT” NEXT



204



Tips: “What’s Tips:  What s this this” Cli k “↖?” and Click d then th click li k where h you don’t d ’t know k



?



205



Tips: “What’s Tips:  What s this this”



?



206



Tips: Window Tips: Window



If you are using



You should



Workbook mode Flowsheet as Wallpaper p p Normal View



Click the Process Flowsheet tab Click the flowsheet in the background g Select the Process Flowsheet window



207



Help Topics Help Topics Go to “Help” p Select “Help Topics”



208



Help Topics Help Topics



Unit U it O Operation ti M Model d l Reference R f Manual M l Physical Property Methods and Models Physical Property Data Reference Manual



209



Help Topics Help Topics Calculation of Properties Using an Equation-of-State Property Method



210



File File Formats in Aspen Plus Formats in Aspen Plus



File Type



Extension



Format



Description



Document



*.apw



Binary



File containing simulation input and results and i t intermediate convergence information di t i f ti



Backup



*.bkp



ASCII



Archive file containing simulation input and results



History



*.his



Text



Detailed calculation history and diagnostic messages



Problem  Problem Description



*.appdf appdf



Binary



File containing arrays and intermediate File containing arrays and intermediate convergence information used in the simulation 211 calculations



File Type Characteristics File Type Characteristics •











Binary files fl – Operating system and version specific – Not readable, not printable Not readable not printable ASCII files – Transferable between operating systems – Upwardly compatible – Contain no control characters, “readable” – Not intended to be printed N i d d b i d Text files – Transferable between operating systems Transferable between operating systems – Upwardly compatible – Readable, can be edited – Intended to be printed 212



Access Aspen Plus Software Access Aspen Plus Software • Please contact  PC Teaching Assistant: Name: 侯冠宇 Phone: 02‐3366‐3005 Email: chemeng@ntu edu tw Email: [email protected] Office: 101 電腦教室



213



如何進入講義下載及填寫問卷