Material Teknik Elektro - Semi Konduktor [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

14 Desember 2019



SEMI KONDUKTOR



MUHAMAD IKHWANUDIN C2B019313 MATERIAL TEKNIK ELEKTRO



UNIVERSITAS MUHAMMADIYAH SEMARANG ( KELAS KARYAWAN TEKNIK ELEKTRO S1 )



0



Windows User Material Teknik Elektro 12/14/2019



BAB I PENDAHULUAN 1.1. Latar Belakang



Bahan-bahan penghantar adalah bahan yang memiliki banyak elektron bebas pada kulit terluar orbit. Elektron bebas ini akan sangat berpengaruh pada sifat bahan tersebut. Jika suatu bahan listrik memiliki banyak elektron bebas pada orbit-orbit elektron, bahan ini memiliki sifat sebagai penghantar listrik. Penghantar listrik dapat dikelompokkan sebagai konduktor, semikonduktor, dan isolator. Masyarakat pada umumnya mengetahui konduktor, semikonduktor dan isolator sebagai bahan penghantar listrik sebatas ukuran baik atau tidaknya bahan tersebut menghantarkan listrik. Umumnya konduktor didefinisikan sebagai bahan yang mudah mengalirkan arus listrik jika dihubungkan dengan sumber tegangan; isolator sebagai bahan - bahan yang akan menghambat arus listrik bila dihubungkan dengan sumber tegangan; semikonduktor adalah bahan - bahan yang pada kondisi tertentu akan bersifat sebagai isolator dan pada kondisi lain akan bersifat sebagai konduktor. Pada makalah ini akan dibahas mengenai SEMIKONDUKTOR yang merupakan bahan penghantar listrik tidak murni yang memiliki sifat dual-karakter (bisa berupa konduktor atau isolator). Pembahasan mengenai semikonduktor ini akan dibatasi pada definisi, karakteristik, klasifikasi, dan kegunaan semikonduktor ; dan tidak akan dibahas mengenai pengembangan semikonduktor dalam bidang-bidang tertentu.



1.2. Rumusan Masalah



1.2.1. Apakah definisi semikonduktor? 1.2.2. Apa saja karakteristik dari bahan semikonduktor? 1.2.3. Bagaimana klasifikasi dari semikonduktor? 1.2.4. Apakah kegunaan dari semikonduktor?



1.3. Tujuan



1.3.1. Dapat mengetahui definisi dari semikonduktor. 1.3.2. Dapat mengetahui karakteristik dari bahan semikonduktor. 1.3.3. Dapat mengklasifikasikan semikonduktor. 1.3.4. Dapat mengetahui kegunaan dari semikonduktor.



BAB II PEMBAHASAN



1.2.1. Definisi SemiKonduktor Semikonduktor adalah sebuah bahan dengan konduktivitas listrik yang berada di antara insulator (isolator) dan konduktor. Semikonduktor disebut juga sebagai bahan setengah penghantar listrik. Suatu semikonduktor bersifat sebagai insulator jika tidak diberi arus listrik dengan cara dan besaran arus tertentu, namun pada temperatur, arus tertentu, tatacara tertentu dan persyaratan kerja semikonduktor berfungsi sebagai konduktor, misal sebagai penguat arus, penguat tegangan dan penguat daya. Untuk menggunakan suatu semikonduktor supaya bisa berfungsi harus tahu spesifikasi dan karakter semikonduktor itu, jika tidak memenuhi syarat operasinya maka akan tidak berfungsi dan rusak. Bahan semikonduktor yang sering digunakan adalah silikon, germanium, dan gallium arsenide. Semikonduktor dengan properti elektronik yang dapat diprediksi dan handal diperlukan untuk produksi massa. Tingkat kemurnian kimia yang diperlukan sangat tinggi karena adanya ketidak sempurnaan, bahkan dalam proporsi sangat kecil dapat memiliki efek besar pada properti dari material. Kristal dengan tingkat kesempurnaan yang tinggi juga



diperlukan, karena kesalahan dalam struktur kristal (seperti dislokasi, kembaran, dan retak tumpukan) mengganggu properti semikonduktivitas dari material. Retakan kristal merupakan penyebab utama rusaknya perangkat semikonduktor. Semakin besar kristal, semakin sulit mencapai kesempurnaan yang diperlukan. Proses produksi massa saat ini menggunakan ingot (bahan dasar) kristal dengan diameter antara empat hingga dua belas inci (300 mm) yang ditumbuhkan sebagai silinder kemudian diiris menjadi wafer. Karena diperlukannya tingkat kemurnian kimia dan kesempurnaan struktur kristal untuk membuat



perangkat



semikonduktor,



metode



khusus



telah



dikembangkan



untuk



memproduksi bahan semikonduktor awal. Sebuah teknik untuk mencapai kemurnian tinggi termasuk pertumbuhan kristal menggunakan proses Czochralski. Langkah tambahan yang dapat digunakan untuk lebih meningkatkan kemurnian dikenal sebagai perbaikan zona. Dalam perbaikan zona, sebagian dari kristal padat dicairkan. Impuritas cenderung berkonsentrasi di daerah yang dicairkan, sedangkan material yang diinginkan mengkristal kembali sehingga menghasilkan bahan lebih murni dan kristal dengan lebih sedikit kesalahan. Dalam pembuatan perangkat semikonduktor yang melibatkan heterojunction antara bahan-bahan semikonduktor yang berbeda, konstanta kisi, yaitu panjang dari struktur kristal yang berulang, penting untuk menentukan kompatibilitas antar bahan.



1.2.2. Karakteristik SemiKonduktor Semikonduktor elemental terdiri atas unsur – unsur pada system periodik golongan IV A seperti silikon (Si), Germanium (Ge) dan Karbon (C).Karbon semi konduktor ditemukan dalam bentuk Kristal intan.Semikonduktor intan memiliki konduktivitas panas yang tinggi sehingga dapat digunakan dengan efektif untuk mengurangi efek panas pada pembuatan semikonduktor laser. Semikonduktor gabungan (kompon) terdiri atas senyawa yang dibentuk dari logam unsur periodik golongan IIB dan IIIA (valensi 2 dan 3) dengan non logam pada golongan VA dan VIA (valensi 5 dan 6) sehingga membentuk ikatan yang stabil (valensi 8).



Semikonduktor gabungan III dan V misalnya GaAs dan InP, sedangakan gabungan II dan VI misalnya CdTe dan ZnS.



Silikon dan germanium merupakan dua jenis semikonduktor yang sangat penting dalam elektronika.Keduanya terletak pada kolom empat dalam tabel periodik dan mempunyaielektron valensi empat. Struktur kristal silikon dan germanium berbentuk tetrahedraldengan setiap atom memakai bersama sebuah elektron valensi dengan atom-atom tetangganya. Energi yang diperlukan mtuk memutus sebuah ikatan kovalen adalah sebesar 1,1eV untuk silikon dan 0,7 eV untuk germanium. Pada temperatur ruang (300K),sejumlah elektron mempunyai energi yang cukup besar untuk melepaskan diri dari ikatan dan tereksitasi dari pita valensi ke pita konduksi menjadi elektron bebas. Besarya energi yang diperlukan untuk melepaskan elektron dari pita valensi kepita konduksi ini disebut energi terlarang (energy gap). Jika sebuah ikatan kovalenterputus, maka akan terjadi kekosongan atau lubang (hole). Pada daerah dimana terjadi kekosongan akan terdapat kelebihan muatan positif, dan daerah yang ditempati electron bebas mempunyai kelebihan muatan negatif. Kedua muatan inilah yang memberikankontribusi adanya aliran listrik pada semikonduktor murni. Jika elektron valensi dariikatan kovalen yang lain mengisi lubang tersebut, maka akan terjadi lubang baru ditempat yang lain dan seolah-olah sebuah muatan positif bergerak dari lubang yang lamake lubang baru. Proses aliran muatan ini, yang biasa disebut sebagai “arus drift” dapat dituliskan sebagai berikut “Peristiwa hantaran listrik pada semikonduktor adalah akibat adanya dua partikel masingmasing bermuatan positif dan negative yang bergerak dengan arah yang berlawanan akibat adanya pengaruh medan listrik”Akibat adanya dua pembawa muatan tersebut, besarnya rapat arus dinyatakan sebagai: konduktivitas (S cm-1) Karena timbulnya lubang dan elektron terjadi secara serentak, maka pada semikonduktor murni



Besar energi yang dibutuhkan untuk membentuk pasangan elektron dan hole pada semikonduktor intrinsik ditentukan oleh jarak celah energi antara pita valensi dengan pita konduksi semakin jauh jaraknya maka semakin besar energi yang dibutuhkan untuk membentuk elektron – hole sebagai pembawa muatan. Pada Si dibutuhkan energi Eg = 1,12 eV.



Semikonduktor Ekstrinsik (Tak Murni)



Kita dapat memasukkan pengotor berupa atom-atom dari kolom tiga atau lima dalamtabel periodik (memberi doping) ke dalam silikon atau germanium. Elemen semikonduktor beserta atom pengotor uang biasa digunakan. 



Semikonduktor tipe-n



Semikonduktor tipe-ndapat dibuat dengan menambahkan sejumlah kecil atom pengotor pentavalen (antimony, phosphorus atau arsenic) pada silikon murni. Atom-atompengotor (dopan) ini mempunyai lima elektron valensi sehingga secara efektif memiliki muatan sebesar +5q. Saat sebuah atom pentavalen menempati posisi atom silicon dalam kisi kristal, hanya empat elektron valensi yang dapat membentuk ikatan kovalen lengkap, dan tersisa sebuah elektron yang tidak berpasangan. Dengan adanya energi thermal yang kecil saja, sisa elektron ini akan menjadi electron bebas dan siap menjadi pembawa muatan dalam proses hantaran listrik. Material yangdihasilkan dari proses pengotoran ini disebut semikonduktor tipe-n karena menghasilkan pembawa muatan negatif dari kristal yang netral. Karena atom pengotor memberikan elektron, maka atom pengotor ini disebut sebagai atom donor.Secara skematik . 



Semikonduktor tipe-p



Dengan cara yang sama seperti pada semikonduktor tipe-n, semikonduktor tipe-p dapat dibuat dengan menambahkan sejumlah kecif atom pengotor trivalen (aluminium, boron,galium atau indium) pada semikonduktor murni, misalnya silikon murni. Atom-



atompengotor (dopan) ini mempunyai tiga elektron valensi sehingga secara efektif hanya dapat membentuk tiga ikatan kovalen. Saat sebuah atom trivalen menempati posisiatom silikon dalam kisi kristal, terbentuk tiga ikatan kovalen lengkap, dan tersisasebuah muatan positif dari atom silikon yang tidak berpasangan yang disebut lubang (hole). Material yang dihasilkan dari proses pengotoran ini disebut emikonduktor tipe-p karena menghasilkan pembawa muatan negatif pada kristal yang netral. Karena atom pengotor menerima elektron, maka atom pengotor ini disebutsebagai atom aseptor (acceptor). 



Generasi dan Rekombinasi Proses



generasi



(timbulnya



pasangan



elektron-lubang



per



detik



per



meter



kubik)tergantung pada jenis bahan dan temperatur. Energi yang diperlukan untuk prosesgenerasi dinyatakan dalam elektron volt atau eV. Energi dalam bentuk temperatur Tdinyatakan dengan kT, dimana kadalah konstanta Boltzmann. Analisa secara statistic menunjukkan bahwa probabilitas sebuah elektron valensi menjadi elektron bebas adalahsebanding dengan e eVG kT/ . Jika energi gap eVGberharga kecil dan temperatur Ttinggimaka laju generasi termal akan tinggi.Pada semikonduktor, elektron atau lubang yang bergerak cenderungmengadakan rekombinasi dan menghilang.Laju rekombinasi (R), dalam pasanganelektron-lubang per detik per meter kubik, tergantung pada jumlah muatan yang ada.Jika hanya ada sedikit elektron dan lubang maka Rakan berharga rendah; sebaliknya Rakan berharga tinggi jika tersedia elektron dan lubang dalam jumlah yang banyak.Sebagai contoh misalnya pada semikonduktor tipe-n, didalamnya hanya tersedia sedikitlubang tapi terdapat jumlah elektron yang sangat besar sehingga Rakan berharga sangattinggi. Dimana r menyatakan konstanta proporsionalitas bahan. Dalam kondisi setimbang, besamya laju generasi adalah sama dengan besarnyalaju rekombinasi atau dengan kata lain perkalian konsentrasi elektron dan lubang menghasilkan suatukonstanta, jika salah satu dinaikkan (melalui proses doping), yang lain harus berkurang. Jika kita menambahkan atom pengotor pada semikonduktor murni, praktis semua atomdonor atau aseptor terionisasi pada suhu ruang. Pada semikonduktor tipe-n, konsentrasiatom donor ND>>ni, dengan konsentrasi electronsebesar.



Model Setara Penguat



Secara umum penguat (amplifier) dapat dikelompokkan menjadi 3 (tiga), yaitu penguat tegangan, penguat arus dan penguat transresistansi. Pada dasarnya kerja sebuah penguatadalah mengambil masukan (input), mengolahnya dan menghasilkan keluaran (output) yang besarnya sebanding dengan masukan. Besarnya tegangan keluaran (vo) dibandingkan dengan tegangan masukan (vi) dinyatakan sebagai v=Av Pada paragrap sebelumnya telah dijelaskan bagaimana semikonduktor sambungan NPN atau PNP terbentuk menjadi sebuah transistor. Pada beberapa rangkaian elektronik transistor sering difungsikan sebagai elemen penguat dan saklar terkendali. Dua hal yang membedakan, bila transistor dioperasikan sebagai penguat pemberian tegangan bias diletakkan pada daerah aktif (linier), sedangkan apabila transistor bekerjasebagai saklar pemberian tegangan bias berada pada daerah hantaranpenuh/sumbatan penuh (non linier).



Karakteristik masukan



Untuk memudahkan pengertian secara kualitatif perilaku dari bentuk karakteristik masukan dan keluaran suatu transistor dapat dipandang sebagai ekivalen dari dua buah dioda yang saling bertolak belakang dengan posisi katodanya saling dihubungkan. Suatu simbol dan rangkaian pengganti transistor-npn, dimana pada daerah aktif susunan dioda antara emitor-basis mendapat tegangan bias maju (forward biased).Suatu sifat penting dari karakteristik masukan arus tegangan adalah menyerupai sifat sumber tegangan konstan yang ditandai dengan adanya tegangan ambang (V) dengan arus emitor kecil. Umumnya, besarnya tegangan ambang (V) kira-kira