Practice Example Solutions Chapter 1 1 Alexander Sadiku [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Monday, June 27.2011



CHAPTER 11 P.P.11.1



i (t )  33 sin(10t  60)  33 cos(10t  30) v(t )  330 cos(10t  20)



p(t )  v(t ) i (t )  (330)(33) cos(10t  20) cos(10t  30) 1 p(t )  10890[cos(20t  20  30)  cos(20  (30))] 2 p( t )  (3.5 + 5.445cos(20t–10˚)) kW 1 P  Vm I m cos( v   i )  3.5 kW 2 P.P.11.2



V  I Z  13208



1 V I cos(v  i ) 2 m m 1 P  (1320)(33) cos(8  30)  20.19 kW 2



P



P.P.11.3 3



32045 V



I



+ 



I



j1 



32045  101.1926.57 3 j



For the resistor, I R  I  101.1926.57 VR  3I  303.626.57 1 1 PR  Vm I m  (303.6)(101.19)  15.361 kW 2 2



For the inductor,



I L  101 .1926.57 VL  j I L  101.19( 26.57  90)  101.19116.57 1 PL  (101.19) 2 cos(90)  0 W 2



The average power supplied is 1 P  (320)(101.19) cos(45  26.57)  15.361 kW 2 P.P.11.4



Consider the circuit below. 8



40 V



+ 



I1



j4 



I2



-j2 



+ 



j20 V



For mesh 1, - 40  (8  j2) I 1  (- j2) I 2  0 ( 4  j) I 1  j I 2  20



(1)



- j20  ( j4  j2) I 2  (- j2) I 1  0 - j I 1  j I 2  j10



(2)



For mesh 2,



In matrix form,  4  j - j I 1   20    -j j  I 2   j10     2  j4 , I1 



 1  -10  j20 ,



1  553.14 and 



I2 



 2  10  j60



2  13.6 17.11 



For the 40-V voltage source, Vs  400 I 1  5 53.14 -1 Ps  (40)(5) cos(-53.14)  - 60 W 2 For the j20-V voltage source,



Vs  2090 I 2  13.6 17.11 -1 Ps  (20)(13.6) cos(90  17.11)  - 40 W 2



For the resistor, I  I1  5 V  8 I 1  40 1 P  (40)(5)  100 W 2



The average power absorbed by the inductor and capacitor is zero watts. P.P.11.5 We first obtain the Thevenin equivalent circuit across Z L . Z Th is obtained from the circuit in Fig. (a). -j4 



j10 



8



Z th



5



(a) Z Th  5 || (8  j4  j10) 



(5)(8  j6)  3.415  j0.7317 13  j6



VTh is obtained from the circuit in Fig. (b).



-j4 



j10  I



8



5



12 A



+ V th 



(b) By current division, I



8  j4 (12) 8  j 4  j10  5



VTh  5 I 



(60)(8  j 4)  37.5 - 51.34 13  j 6



Z L = (Z Th )* = [3.415–j0.7317] Ω Pmax 



P.P.11.6 Let



VTh



2



8 RL







(37.5) 2  51.47 W (8)(3.415)



We first find Z Th and VTh across R L . Z 1  80  j60



(90)(- j30)  9 (1  j3) 90  j30 (80  j60)(9  j27)  Z1 || Z 2   17.181  j24.57  80  j60  9  j27



Z 2  90 || (- j30)  Z Th



Z2 (9)(1  j3) (12060)  (12060) Z1  Z 2 89  j33  35.98  - 31.91



VTh  VTh



R L  Z Th  30 



The current through the load is VTh 35.98 - 31.91   0.6764 - 4.4 I Z Th  R L 47.181  j24.57 The maximum average power absorbed by R L is 1 1 2 Pmax  I R L  (0.6764) 2 (30)  6.863 W 2 2 P.P.11.7



0  t 1  16t i(t )   32  16t 1  t  2



2 1 T 2 1 1 i dt    (16t ) 2 dt   (32  16t ) 2 dt   1  2  0 T 0 2 256  1 2  t dt   (4  4t  t 2 ) dt    1 2  0 1  t 3   256  128    4t  2t 2   12   3  3 3 



2  I rms 2 I rms



2 I rms



T2



I rms 



256  9.238 A 3











2 P  I rms R  9.238 2 (9)  768 w



P.P.11.8



T   , v(t )  100 sin(t ), 0  t  



1 T 2 1  v dt   (100 sin(t )) 2 dt   0 T 0 4 10  1  1  cos(2t ) dt  5000  0 2



2 Vrms 



2 Vrms



Vrms  70.71 V P



P.P.11.9



2 Vrms 5000   833.3 W R 6



The load impedance is Z  60  j40  72.1133.7 



The power factor is pf  cos(33.7)  0.8321 lagging Since the load is inductive V 32010 I   4.438 - 23.69 A Z 72.1133.7 The apparent power is S = V rms (I rms )* = 0.5(320)(4.438)(10˚–(–23.69˚)) = 71033.69˚ VA P.P.11.10



The total impedance as seen by the source is ( j4)(8  j6) Z  10  j4 || (8  j6)  10  8  j2 Z  12.6920.62



The power factor is pf  cos(20.62)  0.936 (lagging) V 1650 I rms  rms   13.002 - 20.62 Z 12.6920.62 The average power supplied by the source is equal to the power absorbed by the load. 2 P  I rms R  (13.002) 2 (11.88)  1,062 W = 2.008 kW or



P  Vrms I rms pf  (165)(13.002)(0.936)  2.008 kW



P.P.11.11 (a)



S  Vrms I *rms  (110 85)(0.4  - 15) S  4470 VA S  S  44 VA



(b)



S  4470  15.05  j41.35



Q  41.35 VAR



P  15.05 W ,



(c)



pf  cos(70)  0.342 (lagging) Vrms 11085   27570 I rms 0.4 - 15 Z  94.06  j258.4  Z



P.P.11.12 (a)



If Z  250 - 75 ,



(b)



Q  S sin 



(c)



S



P.P.11.13



2 Vrms Z



pf  cos(-75)  0.2588 (leading)



  S 



Q  100 kVAR   103.53 kVA sin  sin(-75)



  Vrms  S  Z  (103530 )(250)  5.087 kV



Consider the circuit below. I



20  I1



V



+ 



(30–j10)



+ Vo



 Let I 2 be the current through the 60- resistor. P 240 P  I 22 R   I 22   4 R 60 I 2  2 (rms)



I2 (60+j20) 



Vo  I 2 (60  j20)  120  j40 I1 



Vo  3.2  j2.4 30  j10



I  I 1  I 2  5.2  j2.4



V  20 I  Vo  (104  j48)  (120  j40) V  224  j88  240.721.45˚ V rms For the 20- resistor, V  20 I  204  j48  114.5424.8 I  5.2  j2.4  5.72724.8



S  V I *  (114.5424.8)(5.727 - 24.8) S  656 VA For the (30 – j10)- impedance, Vo  120  j40  126.518.43 I 1  3.2  j2.4  4 36.87 S 1  Vo I 1*  (126 .518.43 )( 4  - 36.87 )



S 1 = 506‫–ס‬18.44° = [480–j160] VA



For the (60 + j20)- impedance, I 2  2 0  S 2  Vo I *2  (126 .518.43)( 2  - 0)



S 2 = 253‫ס‬18.43° = [240+j80] VA



The overall complex power supplied by the source is S T  V I *  (240.6721.45)(5.727 - 24.8)



S T = 1378.3‫–ס‬3.35° = [1376–j80] VA



P.P.11.14



For load 1, pf  0.75  cos 1   1  -41.41 P1 P1  S1 cos 1   S1   2666.67 cos 1 Q1  S1 sin 1  -176.85 S1  P1  jQ 1  2000  j1763.85 (leading) P1  2000 ,



For load 2, P2  4000 , pf  0.95  cos  2    2  18.19 P2 S2   4210.53 cos  2 Q 2  S 2 sin  2  1314.4 S 2  P2  jQ 2  4000  j1314.4 (lagging)



The total complex power is S = S 1 + S 2 = [6–j0.4495] kVA P 6000 pf    0.9972 (leading) 6016.18 S P.P.11.15



pf  0.85  cos      31.79 Q 140 Q  S sin    S    265.8 kVA sin  sin(31.79) P  S cos   225.93 kW



For pf  1  cos 1



  1  0



Since P remains the same,



P  P1  S1 cos 1



  S1 



P1  225.93 cos 1



Q 1  S1 sin 1  0



The difference between the new Q 1 and the old Q is Q c . 2 Q c  140 kVAR  CVrms



C



140  10 3  30.69 mF (2 )(60)(110) 2



P.P.11.16



Let



The wattmeter measures the average power from the source. Z 1  4  j2



Z 2  12 || j9 



(12)( j9)  4.32  j5.76 12  j9



Z  Z 1  Z 2  8.32  j3.76  9.13 24.32 2



V (120 ) 2 S  VI  *   1577 .224.32 VA 9.13 - 24.32 Z *



P  S cos   1.437 kW



P.P.11.17



Demand charge  $5  32,000  $160,000 Energy charge for the first 50,000 kWh  $0.08  50,000  $4,000 The remaining energy  500,000  50,000  450,000 kWh Charge for this bill  $0.05  450,000  $22,500 Total bill  $160,000  $4,000  $22,500  $186,500



P.P.11.18



Energy consumed  800 kW  20  26  416,000 kWh



The power factor of 0.88 exceeds 0.85 by 3  0.01 . Hence, there is a power factor credit which amounts to an energy credit of 0.1 416,000   3  1248 kWh 100 Total energy billed  416,000  1,248  414,752 kWh Energy cost  $0.06  414,752  $24,885.12