Quantum Mechanics ميكانيكا الكم [PDF]

  • Commentary
  • no
  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

‫ﺣﺪﻭﺩ ﺍﻟﻔﻴﺰﻳﺎء ﺍﻟﻜﻼﺳﻴﻜﻴﺔ‬ ‫‪THE LIMITS OF CLASSICAL PHYSICS‬‬ ‫ﻤﻴﻼﺩ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻜﻤﻴﺔ ‪The Dawn of the Quantum Theory‬‬



‫ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻘﺭﻥ ﺍﻟﺘﺎﺴﻊ ﻋﺸﺭ‪ ،‬ﺍﻋﺘﻘﺩ ﻜﺜﻴﺭ ﻤﻥ ﺍﻟﻌﻠﻤﺎﺀ ﺃﻥ ﻜل ﺍﻻﻜﺘـﺸﺎﻓﺎﺕ‬



‫ﺍﻟﻌﻠﻤﻴﺔ ﻗﺩ ﺘﻡ ﺇﻨﺠﺎﺯﻫﺎ ﻭﻓﻬﻤﻬﺎ ﻭﺃﻨﻪ ﻟﻡ ﻴﺒﻘﻰ ﺇﻻ ﺒﻌﺽ ﺍﻟﻤـﺴﺎﺌل ﺍﻟﺒـﺴﻴﻁﺔ ﺍﻟﺘـﻲ‬



‫ﺘﺤﺘﺎﺝ ﻟﻤﺯﻴﺩ ﻤﻥ ﺍﻹﻴﻀﺎﺡ‪ .‬ﺇﻥ ﻫﺫﻩ ﺍﻟﻘﻨﺎﻋﺔ ﻭﻜﺎﻨﺕ ﻨﺎﺸﺌﺔ ﻤﻥ ﺍﻟﺘﻘﺩﻡ ﺍﻟﻌﻠﻤﻲ ﻓـﻲ‬



‫ﻤﺠﺎﻻﺕ ﺸﺘﻰ ﻭﺍﻟﺫﻱ ﺘﻤﺜل – ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل – ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﻨﻴـﻭﺘﻥ ‪Newton‬‬



‫ﻭﺍﻟﺘﻲ ﻁﹸﻭﺭﺕ ﺒﻭﺍﺴﻁﺔ ﺍﻟﻌﺎﻟﻤﺎﻥ ﻻﺠـﺭﺍﻨﺞ ﻭﻫـﺎﻤﻠﺘﻭﻥ ‪J. LaGrange and W.‬‬



‫‪ .Hamilton‬ﺤﻴﺙ ﺘﻡ ﺍﺴﺘﺨﺩﺍﻡ ﻫﺫﻩ ﺍﻟﻨﻅﺭﻴﺔ ﻟﻭﺼﻑ ﺤﺭﻜﺔ ﺍﻟﻜﻭﺍﻜﺏ ﻭﻜﺫﻟﻙ ﻓﻬـﻡ‬



‫ﻜﺜﻴﺭ ﻤﻥ ﺍﻟﻅﻭﺍﻫﺭ ﺍﻟﻤﻌﻘﺩﺓ ﻤﺜل ﻨﻅﺭﻴﺔ ﺍﻟﻤﺭﻭﻨـﺔ ‪ elasticity theory‬ﻭﺩﻴﻨﺎﻤﻴﻜـﺎ‬ ‫ﺍﻟﻤﻭﺍﺌﻊ ‪ hydrodynamic‬ﺇﻨﺠﺎﺯﺍﺕ ﺍﻟﻌﺎﻟﻡ ﺠﻭل ﻭﺒﻴﺎﻥ ﺘﻜﺎﻓﺅ ﺍﻟـﺸﻐل ﻭﺍﻟﺤـﺭﺍﺭﺓ‪،‬‬



‫ﺃﺒﺤﺎﺙ ﻜﺎﺭﻨﻭﺕ ‪ Carnot‬ﻭﺍﻟﺘﻲ ﺃﺩﺕ ﻟﻔﻬﻡ ﺍﻹﻨﺘﺭﻭﺒﻲ ﻭﺍﻟﻘﺎﻨﻭﻥ ﺍﻟﺜـﺎﻨﻲ ﻟﻠـﺩﻴﻨﺎﻤﻴﻜﺎ‬ ‫ﺍﻟﺤﺭﺍﺭﻴﺔ‪ ،‬ﻭﻤﺎ ﻴﺘﺒﻊ ﻫﺫﻩ ﺍﻷﺒﺤﺎﺙ ﻤﻥ ﺘﻁﻭﻴﺭ ﻋﻠﻰ ﻴﺩ ﺍﻟﻌـﺎﻟﻡ ﺠـﺒﺱ ‪J. Gibbs‬‬



‫ﻹﺭﺴﺎﺀ ﺃﺴﺱ ﻋﻠﻡ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﺎ ﺍﻟﺤﺭﺍﺭﻴﺔ‪.‬‬



‫ﻭﺸﻬﺩﺕ ﻤﺠـﺎﻻﺕ ﺃﺨـﺭﻯ ﻤـﻥ ﺍﻟﻔﻴﺯﻴـﺎﺀ )ﻤﺜـل ﺍﻟـﻀﻭﺀ ﻭﺍﻟﻨﻅﺭﻴـﺔ‬



‫ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﺔ ‪ (optics and electromagnetic theory‬ﺇﻨﺠﺎﺯﺍﺕ ﻤﻠﺤﻭﻅـﺔ‪.‬‬ ‫ﻓﻤﺜﻼﹰ‪ ،‬ﺍﻻﺴﺘﻨﺘﺎﺠﺎﺕ ﺍﻟﻬﺎﻤﺔ ﺍﻟﺘﻲ ﺘﻭﺼل ﺇﻟﻴﻬﺎ ﺍﻟﻌﺎﻟﻡ ﻤﺎﻜﺴﻭﻴل ‪ J. Maxwell‬ﻤﺘﻤﺜﻠﺔ‬



‫ﺒﻤﻌﺎﺩﻻﺘﻪ ﺍﻟﺸﻬﻴﺭﺓ "ﻭﺍﻟﺒﺴﻴﻁﺔ" ﻭﺍﻟﺘـﻲ ﻭ‪‬ﺤ‪‬ـﺩﺕ ﻤﺠـﺎﻻﺕ ﺍﻟـﻀﻭﺀ ﻭﺍﻟﻜﻬﺭﺒﻴـﺔ‬



‫ﻭﺍﻟﻤﻐﻨﺎﻁﻴﺴﻴﺔ ﻭﻤﺎ ﻴﺘﺒﻊ ﻫﺫﻩ ﺍﻷﺒﺤﺎﺙ ﻤﻥ ﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻌﻤﻠﻴﺔ ﺒﻭﺍﺴﻁﺔ ﺍﻟﻌﺎﻟﻡ ﻫﻴﺭﺘﺯ‬ ‫‪ H. Hertz‬ﻓﻲ ﻋﺎﻡ ‪ 1887‬ﻭﺍﻟﺘﻲ ﺃﺩﺕ ﺇﻟﻰ ﺇﺜﺒﺎﺕ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﻭﺠﺒﺔ ﻟﻠﻀﻭﺀ‪.‬‬



‫‪-٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻜل ﻫﺫﻩ ﺍﻹﻨﺠﺎﺯﺍﺕ ﻓﻲ ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﻠﻔﻴﺯﻴﺎﺀ ﻜﻭ‪‬ﻨﺕ ﻤﺎ ﻴ‪‬ﻌـﺭﻑ ﺍﻵﻥ‬ ‫ﺒﺎﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ‪ Classical physics‬ﻭﻤﻊ ﺒﺩﺍﻴﺔ ﺍﻟﻘﺭﻥ ﺍﻟﻌﺸﺭﻴﻥ‪ ،‬ﻭ‪‬ﺠﺩﺕ ﺒﻌﺽ‬ ‫ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﺍﻟﺠﺩﻴﺩﺓ ﻭﺍﻟﺘﻲ ﺍﺴﺘﻠﺯﻡ ﺘﻔﺴﻴﺭﻫﺎ ﻤﻔﺎﻫﻴﻡ ﻓﻴﺯﻴﺎﺌﻴﺔ ﺠﺩﻴﺩﺓ ﺘﺘﻨـﺎﻗﺽ‬



‫ﻤﻊ ﻤﺒﺎﺩﺉ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺠﺩﻴﺩﺓ ﻭﻟﺩ ﻤﺎ ﻴﺴﻤﻰ ﺍﻵﻥ ﺒﺎﻟﻨﻅﺭﻴﺔ ﺍﻟﻜﻤﻴﺔ ‪quantum theory‬‬



‫ﻭﺴﻨﺤﺎﻭل ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺃﻥ ﻨﺼﻑ ﺨﻠﻔﻴﺔ ﻫﺫﻩ ﺍﻷﺯﻤﺎﺕ ﻟﻨـﺼل ﻤـﻥ ﺨﻼﻟﻬـﺎ‬ ‫ﻟﻤﻌﺭﻓﺔ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻜﻤﻴﺔ‪.‬‬



‫ﻭﻴﻤﻜﻨﻨﺎ ﺘﻠﺨﻴﺹ ﺍﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﺠﺩﻴـﺩﺓ ﻓـﻲ‪ :‬ﺍﻟﺨـﻭﺍﺹ ﺍﻟﺠـﺴﻴﻤﻴﺔ‬ ‫ﻟﻺﺸﻌﺎﻉ ‪ ،the particle properties of radiation‬ﺍﻟﺨﻭﺍﺹ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﻤﺎﺩﺓ ‪the‬‬



‫‪ ،wave properties of matter‬ﻭﺘﻜﻤﻴﻡ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ‪the quantization of‬‬



‫‪ .physical quantities‬ﻭﺴﻨﻘﻭﻡ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺒﻤﻨﺎﻗﺸﺔ ﻫﺫﻩ ﺍﻟﻤﻔﺎﻫﻴﻡ‪.‬‬ ‫‪ .1-1‬ﺇﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ "ﺍﻷﺴﻭﺩ"‬



‫‪1-1 Blackbody Radiation‬‬



‫ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﻟﻡ ﺘﺘﻤﻜﻥ ﻤﻥ ﺸﺭﺡ ﺇﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ‬‫‪- Blackbody Radiation could not be explained by classical physics‬‬



‫ﻤﻥ ﺃﻫﻡ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﺍﻟﺘﻲ ﺃﺤﺩﺜﺕ ﺜﻭﺭﺓ ﻓﻲ ﺍﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‬ ‫ﺘﻠﻙ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻹﺸﻌﺎﻉ ﺍﻟﺼﺎﺩﺭ ﻤﻥ ﺍﻷﺠﺴﺎﻡ ﻋﻨﺩ ﺘﺴﺨﻴﻨﻬﺎ‪ .‬ﻓﻤـﻥ ﺍﻟﻤﻌﻠـﻭﻡ ﻋﻨـﺩ‬



‫ﺘﺴﺨﻴﻥ ﺠﺴﻡ ﻤﺎ‪ ،‬ﻨﺠﺩ ﺃﻥ ﻟﻭﻨﻪ ﻴﺘﻐﻴﺭ ﻤﻊ ﺯﻴﺎﺩﺓ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ﺤﻴﺙ ﻴﺒﺩﺃ ﺒﺎﻷﺤﻤﺭ‬



‫ﺜﻡ ﺍﻷﺒﻴﺽ ﺜﻡ ﺍﻷﺯﺭﻕ‪ .‬ﻭﺒﺩﻻﻟﺔ ﺍﻟﺘﺭﺩﺩ‪ ،‬ﻨﻘﻭل ﺃﻥ ﺍﻹﺸﻌﺎﻉ ﺍﻟﻤﻨﺒﻌﺙ ﻤﻥ ﻫﺫﺍ ﺍﻟﺠﺴﻡ‬



‫ﻴﺒﺩﺃ ﺒﺘﺭﺩﺩﺍﺕ ﻤﻨﺨﻔﻀﺔ‪ ،‬ﻭﻋﻨﺩ ﺍﺭﺘﻔﺎﻉ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ‪ ،‬ﺘﺯﺩﺍﺩ ﺍﻟﺘﺭﺩﺩﺍﺕ‪ ،‬ﺤﻴﺙ ﺃﻥ‬ ‫ﺍﻟﻠﻭﻥ ﺍﻷﺤﻤﺭ ﺫﻭ ﺘﺭﺩﺩ ﻗﻠﻴل ﻓﻲ ﻤﻨﻁﻘﺔ ﻁﻴﻑ ﺍﻹﺸﻌﺎﻉ ﻭﺫﻟـﻙ ﻤﻘﺎﺭﻨـﺔ ﺒـﺎﻟﻠﻭﻥ‬



‫ﺍﻷﺯﺭﻕ‪ .‬ﺇﻥ ﻁﻴﻑ ﺍﻟﺘﺭﺩﺩ ﻟﻺﺸﻌﺎﻉ ﺍﻟﻤﻨﺒﻌﺙ ﻤﻥ ﺠﺴﻡ ﻤﺎ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻁﺒﻴﻌﺔ ﺍﻟﺠﺴﻡ‬ ‫ﻨﻔﺴﻪ‪ ،‬ﻭﻟﻜﻥ ﺍﻟﺠﺴﻡ ﺍﻟﻤﺜﺎﻟﻲ ‪ ،deal body‬ﻭﺍﻟﺫﻱ ﻴﻤﺘﺹ ﺃﻭ ﻴﺒﻌﺙ ﻜل ﺍﻟﺘـﺭﺩﺩﺍﺕ‬



‫‪-٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻴ‪‬ﺴﻤﻰ ﺒﺎﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ ﻭﻴﻌﺘﺒﺭ ﺤﺎﻟﺔ ﻤﺜﺎﻟﻴﺔ ﻷﻱ ﻤﺎﺩﺓ ﺘﹸـﺼﺩﺭ ﺇﺸـﻌﺎﻉ‪ .‬ﺍﻹﺸـﻌﺎﻉ‬ ‫ﺍﻟﻤﻨﺒﻌﺙ ﻤﻥ "ﺠﺴﻡ ﺃﺴﻭﺩ" ﻴﺴﻤﻰ ﺇﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ‪.‬‬ ‫‪an ideal body, which absorbs and emits all frequencies, is called‬‬ ‫‪a blackbody and serves as an idealization for any radiating material,‬‬ ‫‪the radiation emitted by a blackbody is called blackbody radiation.‬‬



‫ﺸﻜل ‪ 1-1‬ﻴﻭﻀﺢ ﺘﻐﻴﺭ ﺸﺩﺓ ﺍﻹﺸﻌﺎﻉ ﺍﻟﺼﺎﺩﺭ ﻤﻥ ﺠﺴﻡ ﺃﺴﻭﺩ ﻤﻊ ﺍﻟﺘـﺭﺩﺩ‬



‫ﻭﺫﻟﻙ ﻋﻨﺩ ﺩﺭﺠﺎﺕ ﺤﺭﺍﺭﺓ ﻤﺨﺘﻠﻔﺔ‪ .‬ﻭﻗﺩ ﺤﺎﻭل ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﻔﻴﺯﻴـﺎﺌﻴﻴﻥ ﺍﺴـﺘﻨﺘﺎﺝ‬ ‫ﻤﻌﺎﺩﻟﺔ ﺭﻴﺎﻀﻴﺔ ﺘﺸﺭﺡ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ )ﻓﻲ ﺸﻜل ‪ (1-1‬ﻭﻟﻜﻥ ﺒﺩﻭﻥ ﺘﻭﺍﻓﻕ ﻜﺎﻤل‬



‫ﻭﺃﻭﻟﻰ ﺍﻟﻤﺤﺎﻭﻻﺕ ﻟﻭﺼﻑ ﻫﺫﻩ ﺍﻟﻨﺘﺎﺌﺞ ﻗﺎﻡ ﺒﻬﺎ ﻜل ﻤﻥ ﺍﻟﻌﺎﻟﻤﻴﻥ ﺭﺍﻟـﻲ ﻭﺠﻴﻨـﺯ‬ ‫‪ Rayleigh and Jeans‬ﻭﺍﻟﺘﻲ ﺍﺸﺘﻘﺕ ﺒﻨﺎﺀﺍﹰ ﻋﻠﻰ ﻗﻭﺍﻨﻴﻥ ﺍﻟﻘﺭﻥ ﺍﻟﺘﺎﺴﻊ ﻋﺸﺭ ﻭﻴﻤﻜﻥ‬ ‫ﻜﺘﺎﺒﺔ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﺒﺎﻟﺼﻴﻐﺔ‪:‬‬ ‫)‪(1-1‬‬



‫‪ν2‬‬



‫ﺤﻴﺙ‬



‫)‪u (ν , T‬‬



‫‪8D K B T‬‬ ‫‪3‬‬



‫‪C‬‬



‫= )‪u (ννT‬‬



‫ﻜﺜﺎﻓﺔ ﺍﻟﻁﺎﻗﺔ ‪ energy density‬ﻭﻭﺤﺩﺘﻬﺎ ﺠـﻭل ﻟﻜـل ﻤﺘـﺭ‬



‫ﻤﻜﻌﺏ )‪ .(J/m3‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪T ،(1-1‬ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ﺒﺎﻟﻜﻴﻠـﭭﻥ‪ c ،‬ﺴﺭﻋﺔ ﺍﻟﻀﻭﺀ‪،‬‬



‫‪ KB‬ﺜﺎﺒﺕ ﺒﻭﻟﺘﺯﻤﺎﻥ‪ .‬ﺍﻟﺨﻁ ﺍﻟﻤﺘﻘﻁﻊ ﻓﻲ ﺸﻜل ‪ 1-1‬ﻴﺒﻴﻥ ﺍﻟﻌﻼﻗﺔ ﺤـﺴﺏ ﻤﻌﺎﺩﻟـﺔ‬



‫ﺭﺍﻟﻲ‪ -‬ﺠﻴﻨﺯ‪ .‬ﻻﺤﻅ ﺍﻟﺘﻭﺍﻓﻕ ﺒﻴﻥ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﻭﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﻋﻨﺩ ﺍﻟﺘـﺭﺩﺩﺍﺕ‬ ‫ﺍﻟﻤﻨﺨﻔﻀﺔ‪ .‬ﻋﻨﺩ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻌﺎﻟﻴﺔ‪ ،‬ﻭﺤﺴﺏ ﻤﻌﺎﺩﻟﺔ ﺭﺍﻟـﻲ‪-‬ﺠﻴﻨـﺯ‪ ،‬ﻓـﺈﻥ ﻜﺜﺎﻓـﺔ‬ ‫ﺍﻹﺸﻌﺎﻉ ﺘﺯﺩﺍﺩ ﻁﺒﻘﺎﹰ ﻟـ‬



‫‪ν2‬‬



‫ﻭﺘﺼل ﺇﻟﻰ ﻤﺎﻻ ﻨﻬﺎﻴﺔ ﻭﺫﻟﻙ ﻋﻨﺩﻤﺎ ﺘﺼل ﺍﻟﺘـﺭﺩﺩﺍﺕ‬



‫ﺇﻟﻰ ﻤﺎﻻ ﻨﻬﺎﻴﺔ ﻭﻫﺫﺍ ﻴﺤﺩﺙ ﻓﻲ ﻤﻨﻁﻘﺔ ﺍﻷﺸﻌﺔ ﻓﻭﻕ ﺍﻟﺒﻨﻔﺴﺠﻴﺔ ‪ ultraviolet‬ﻭﻫـﺫﺍ‬



‫ﻤﺎ ﻴﻌﺭﻑ ﺒﺎﻻﻨﻬﻴﺎﺭ ﻓﻭﻕ ﺒﻨﻔﺴﺠﻲ ‪ .ultraviolet catastrophe‬ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪(1-1‬‬



‫ﻭﻟﻜل ﺍﻟﺘﺭﺩﺩﺍﺕ ﻤﻥ ﺼﻔﺭ ﺇﻟﻰ ﻤﺎﻻ ﻨﻬﺎﻴﺔ‪.‬‬



‫‪8 Dk B T 2‬‬ ‫∞ → ‪ν dν‬‬ ‫‪C3‬‬



‫∞‬



‫∞‬



‫‪°‬‬



‫‪°‬‬



‫∫ = ‪∫ u (ν1T) dν‬‬



‫‪-٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺘﺘﻨﺎﻗﺽ ﻤﻊ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﺤﻴﺙ ﺃﻥ ﺸﺩﺓ ﺍﻹﺸﻌﺎﻉ ﺘﺯﺩﺍﺩ ﻤﻊ‬ ‫ﺜﻡ ﺘﻘل ﺇﻟﻰ‬



ν max



‫ﺯﻴﺎﺩﺓ ﺍﻟﺘﺭﺩﺩ ﻟﺘﺼل ﺇﻟﻰ ﺃﻗﺼﻰ ﻗﻴﻤﺔ ﻋﻨﺩ ﺘﺭﺩﺩ ﻤﻌﻴﻥ ﻨﺭﻤﺯ ﻟﻪ ﺒـ‬



‫ ﻭﻤﻥ ﺍﻟﺠـﺩﻴﺭ ﺒﺎﻟـﺫﻜﺭ‬.‫ﺍﻟﺼﻔﺭﺓ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﻗﻴﻤﺔ ﺍﻟﺘﻜﺎﻤل ﻻ ﺘﺴﺎﻭﻱ ﻤﺎﻻ ﻨﻬﺎﻴﺔ‬ .‫ﺘﺘﻐﻴﺭ ﻤﻊ ﺘﻐﻴﺭ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﺒﺎﻟﺸﻜل‬



ν max



‫ﻜﺫﻟﻙ ﻤﻼﺤﻅﺔ ﺃﻥ‬



FIGURE 1.1 Spectral distribution of the intensity of blackbody radiation as a function of frequency for several temperatures. The intensity is given in arbitrary units. The dashed line is the prediction of classical physics. As the temperature increases. The maximum shifts to higher frequencies and the total radiated energy (the area under each curve) increases significantly. Note that the horizontal axis is labeled by 14 -1 ν /10 s . This notation means that the dimensionless numbers on that axis re frequencies divided by 1014 s-1. We shall use this notation to label columns in tables and axes in figures because of its unambiguous nature and algebraic convenience.



-٥PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﻜﻴﻑ ﺘﻡ ﺤل ﻫﺫﺍ ﺍﻹﺸﻜﺎل ﺒﻴﻥ ﺍﻟﻨﻅﺭﻴﺔ ﻭﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻌﻤﻠﻴﺔ؟‬ ‫‪ 2-1‬ﺘﻭﺯﻴﻊ ﺒﻼﻨﻙ ﻭﺘﻜﻤﻴﻡ ﺍﻟﻁﺎﻗﺔ‬ ‫‪1-2 The Planck Distribution and the Quantum of Energy‬‬



‫ﺇﻥ ﺃﻭل ﻤﻥ ﻗﺩﻡ ﺘﻔﺴﻴﺭ ﺼﺤﻴﺢ ﻹﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ ﻫﻭ ﺍﻟﻌﺎﻟﻡ ﺍﻷﻟﻤـﺎﻨﻲ‬



‫ﻤﺎﻜﺱ ﺒﻼﻨﻙ ‪ Max Planck‬ﻓﻲ ﻋﺎﻡ ‪ .1900‬ﻭﻓﻲ ﻨﻅﺭﻴﺘﻪ‪ ،‬ﺍﻓﺘـﺭﺽ ﺒﻼﻨـﻙ ﺃﻥ‬ ‫ﺍﻹﺸﻌﺎﻉ ﺍﻟﻤﻨﺒﻌﺙ ﻤﻥ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ ﻤﻥ ﺍﻫﺘﺯﺍﺯ ﺍﻹﻟﻜﺘﺭﻭﻨـﺎﺕ ﺍﻟﻤﻜﻭﻨـﺔ ﻟﻤـﺎﺩﺓ‬ ‫ﺍﻟﺠﺴﻡ‪ .‬ﻭﻟﻜﻭﻥ ﻫﺫﻩ ﺍﻻﻫﺘﺯﺍﺯﺍﺕ ﺫﺍﺕ ﺘﺭﺩﺩﺍﺕ ﻋﺎﻟﻴﺔ ﻓﺈﻨﻨﺎ ﻨﺠﺩ ﻓﻲ ﻁﻴﻑ ﺍﻹﺸﻌﺎﻉ‬



‫ﺍﻟﻤﻨﺒﻌﺙ ﺘﺭﺩﺩﺍﺕ ﻓﻲ ﻤﻨﻁﻘﺔ ﺍﻟﻀﻭﺀ ﺍﻟﻤﺭﺌﻲ ﻭﺍﻷﺸﻌﺔ ﺘﺤـﺕ ﺍﻟﺤﻤـﺭﺍﺀ ﻭﻓـﻭﻕ‬



‫ﺍﻟﺒﻨﻔﺴﺠﻴﺔ ﺒﻴﻨﻤﺎ ﻻ ﻨﺠﺩ ﺃﻱ ﻤﻥ ﺘﺭﺩﺩﺍﺕ ﺍﻟﺭﺍﺩﻴﻭ ﻓﻲ ﻫﺫﺍ ﺍﻟﻁﻴﻑ‪ .‬ﻁﺒﻘـﺎﹰ ﻟﻨﻅﺭﻴـﺔ‬



‫ﺭﺍﻟﻲ‪-‬ﺠﻴﻨﺯ‪ ،‬ﻓﺈﻨﻪ ﻤﻔﻬﻭﻡ ﻅﻤﻨﺎﹰ ﺃﻥ ﻁﺎﻗﺔ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﻬﺘﺯﺓ‪ ،‬ﻭﺍﻟﺘﻲ ﻫﻲ ﺴـﺒﺏ‬ ‫ﺍﻨﺒﻌﺎﺙ ﺍﻹﺸﻌﺎﻉ ﻤﻥ ﺍﻟﻤﺎﺩﺓ‪ -‬ﻤﺴﻤﻭﺡ ﻟﻬﺎ ﺃﻥ ﺘﺄﺨﺫ ﺃﻱ ﻗﻴﻤﺔ ﻤﻥ ﺍﻟﻁﺎﻗـﺔ‪ .‬ﻭﻫـﺫﻩ‬



‫ﺍﻟﻔﺭﻀﻴﺔ ﻫﻲ ﺇﺤﺩﻯ ﺍﻷﺴﺎﺴﻴﺎﺕ ﺍﻟﻔﺭﻀﻴﺔ ﻓﻲ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴـﺔ‪ .‬ﻓـﻲ ﺍﻟﻔﻴﺯﻴـﺎﺀ‬ ‫ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ ،‬ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﻤﺘﻐﻴﺭﺓ ﻭﺍﻟﺘﻲ ﺘﹸﻤﺜـل ﻤـﺸﺎﻫﺩﺍﺕ )ﻤﺜـل ﺍﻟﻤﻭﻗـﻊ‬



‫‪ ،Position‬ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ‪ Momentum‬ﻭﺍﻟﻁﺎﻗﺔ ‪ (energy‬ﻴﻤﻜﻥ ﺘﻤﻠﻙ ﻗﻴﻡ ﻤﺘﺼﻠﺔ‪.‬‬ ‫‪In classical physics, the variables that represent observables‬‬ ‫‪(such as position, momentum and energy) can take on a continuum of‬‬ ‫‪values.‬‬



‫ﻭﻟﻘﺩ ﺃﺩﺭﻙ ﺍﻟﻌﺎﻟﻡ ﺒﻼﻨﻙ – ﺒﻌﻤﻕ ﺘﻔﻜﻴﺭﻩ – ﺒﻀﺭﻭﺭﺓ ﺇﺤﺩﺍﺙ ﺘﻐﻴﻴﺭ ﺠﺫﺭﻱ‬ ‫ﻭﺠﻭﻫﺭﻱ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﻔﻬﻭﻡ ﺍﻟﻔﻴﺯﻴﺎﺌﻲ ﻓﻜﺎﻨﺕ ﻓﺭﻀﻴﺘﻪ ﺍﻻﻨﻘﻼﺒﻴـﺔ ﻓـﻲ ﺍﻟﻔﻴﺯﻴـﺎﺀ‬



‫ﺍﻟﺤﺩﻴﺜﺔ‪ :‬ﻁﺎﻗﺔ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﻬﺘﺯﺓ ﻤﻜﻤﻤﺔ ﻭﻗﻴﻤﻬﺎ ﻏﻴﺭ ﻤﺘﺼﻠﺔ ﻭﺘﺘﻨﺎﺴﺏ ﺒـﺭﻗﻡ‬



‫ﻜﻤﻲ ﺼﺤﻴﺢ ﻤﻊ ﺍﻟﺘﺭﺩﺩ ﻭﺫﻟﻙ ﻤﻥ ﺨﻼل ﺍﻟﻤﻌﺎﺩﻟﺔ‬



‫‪E = nhν‬‬



‫‪-٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪Energies of the oscillators were discrete and had to be‬‬ ‫‪proportional to an integral multiple of the frequently in an equation of‬‬ ‫‪the form E = nhv‬‬



‫ﺤﻴﺙ ‪ E‬ﻫﻲ ﻁﺎﻗﺔ ﺍﻟﻤﺘﺫﺒﺫﺏ‪ n ،‬ﻫﻭ ﺭﻗﻡ ﺼﺤﻴﺢ‪ h ،‬ﺜﺎﺒﺕ ﺍﻟﺘﻨﺎﺴﺏ ﻭﻴ‪‬ﻌﺭﻑ‬ ‫ﺒﺜﺎﺒﺕ ﺒﻼﻨﻙ‪ ،‬ﻭ‪ v‬ﻫﻭ ﺘﺭﺩﺩ ﺍﻟﻤﺘﺫﺒﺫﺏ‪.‬‬ ‫ﻭﺒﻨﺎﺀﺍﹰ ﻋﻠﻰ ﻤﺒﺩﺃ ﺘﻜﻤﻴﻡ ﺍﻟﻁﺎﻗﺔ ﻭﻤﻔﺎﻫﻴﻡ ﺩﻴﻨﺎﻤﻴﻜﺎ ﺤﺭﺍﺭﻴﺔ ﺇﺤﺼﺎﺌﻴﺔ‪ ،‬ﺘﻤﻜـﻥ‬



‫ﺒﻼﻨﻙ ﻤﻥ ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬



‫‪8 Dh‬‬ ‫‪ν3‬‬ ‫‪u (ν1 T) = 3 hv/k T‬‬ ‫‪c e B −1‬‬



‫)‪(1-2‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﺘﺘﻔﻕ ﺘﻤﺎﻤﺎﹰ ﻤﻊ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﻋﻨﺩ ﻜل ﺍﻟﺘﺭﺩﺩﺍﺕ ﻭﺩﺭﺠﺎﺕ‬ ‫ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1-2‬ﺘﹸﻌﺭﻑ ﺒﺘﻭﺯﻴﻊ ﺒﻼﻨﻙ ﻹﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ‬ ‫‪Planck distribution lance for black body radiation.‬‬



‫)‪ (i‬ﻋﻨﺩ ﺍﻟﺘﺭﺩﺩﺍﺕ ﺍﻟﻤﻨﺨﻔﻀﺔ‪ ،‬ﺘﺅﻭل ﻤﻌﺎﺩﻟﺔ ﺒﻼﻨﻙ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﺭﺍﻟﻲ‪-‬ﺠﻴﻨﺯ ﺒﺎﻟﻨﻅﺭ‬ ‫ﺇﻟﻰ ﺍﻟﻨﺴﺒﺔ‬



‫‪hv‬‬ ‫‪k BT‬‬



‫ﻓﻌﻨﺩﻤﺎ ﺘﻜﻭﻥ ‪ v‬ﺼﻐﻴﺭﺓ ﻓﺈﻥ‬



‫ﻤﻥ ﻤﻜﻨﻭﻥ ﺘﺎﻴﻠﻭﺭ ﻟﻠﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ‬



‫‪v2‬‬ ‫‪+ ...‬‬ ‫‪2i‬‬



‫‪hv‬‬ ‫‪〈〈 1‬‬ ‫‪k BT‬‬ ‫‪e v =1+ v +‬‬



‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ v‬ﺼﻐﻴﺭﺓ‪ ،‬ﻴﻤﻜﻨﻨﺎ ﺇﻫﻤﺎل ﺍﻟﺤﺩﻭﺩ ﺫﺍﺕ ﺍﻷﺴـﺱ ﺍﻟﻌﻠﻴـﺎ ﻭﻋﻠﻴـﻪ‬ ‫‪e v ≈1+ v‬‬



‫ﻭﺫﻟﻙ ﺇﺫﺍ ﻜﺎﻨﺕ‬



‫‪v 〈〈 1‬‬



‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻤﻜﻨﻨﺎ ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﺒﻼﻨﻙ‬



‫‪8Dh‬‬ ‫‪v3‬‬ ‫‪8Dh v 3‬‬ ‫‪u (v1 T) = 3‬‬ ‫=‬ ‫‪c 1 + hν − 1 c 3 hv‬‬ ‫‪vT‬‬ ‫‪k BT‬‬ ‫‪8D‬‬ ‫‪K T v3‬‬ ‫‪c3 B‬‬



‫)‪(1-3‬‬



‫= )‪u (v1 T‬‬



‫ﻭﻫﺫﻩ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺭﺍﻟﻲ‪ -‬ﺠﻴﻨﺯ‪.‬‬ ‫)‪ (ii‬ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ‬



‫‪-٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫∞‬



‫∞‬



‫‪v3‬‬ ‫‪8Dh‬‬ ‫‪u (t) = ∫ u (v1T) dv = 3 ∫ dv hv/k T‬‬ ‫‪c ° e B −1‬‬ ‫‪°‬‬



‫ﻭﻹﺠﺭﺍﺀ ﻫﺫﺍ ﺍﻟﺘﻜﺎﻤل ﻨﻌﻭﺽ ﻋـﻥ‬ ‫ﻭﻴﻤﻜﻨﻨﺎ ﻜﺘﺎﺒﺔ ‪ dv‬ﺒﺩﻻﻟﺔ ‪ dv‬ﻭ‬ ‫ﻋﻥ ‪ v‬ﺒـ‬



‫‪v‬‬



‫‪k BT‬‬ ‫‪h‬‬



‫‪dv‬‬



‫‪k BT‬‬ ‫‪h‬‬



‫‪hν‬‬ ‫‪k BT‬‬



‫= ‪ ، v‬ﻫـﺫﺍ ﻴﻌﻨـﻲ ﺃﻥ‬



‫‪h‬‬ ‫‪dv‬‬ ‫‪k BT‬‬



‫= ‪dv‬‬



‫= ‪ . dv‬ﺤﺩﻭﺩ ﺍﻟﺘﻜﺎﻤل ﻟﻡ ﺘﺘﻐﻴﺭ‪ ،‬ﺒـﺎﻟﺘﻌﻭﻴﺽ‬



‫ﻭﻜﺫﻟﻙ ‪ dv‬ﺒﺩﻻﻟﺔ ‪ dv‬ﻨﺘﺤﺼل ﻋﻠﻰ‬ ‫∞‬



‫‪8Dh kT‬‬ ‫‪v 3 kT‬‬ ‫‪u (v, T) = 3 ∫ ( ) 3 v ( ) dv‬‬ ‫‪c ° h e −1 h‬‬ ‫∞‬ ‫∞‬ ‫‪8Dh kT 4 v 3‬‬ ‫‪8Dh k B T 4 v 3‬‬ ‫(‬ ‫)‬ ‫‪dv‬‬ ‫=‬ ‫(‬ ‫)‬ ‫‪∫° e v −1 dv‬‬ ‫‪D‬‬ ‫‪c 3 ∫° h e v − 1‬‬ ‫‪c3‬‬



‫ﺍﻟﺘﻜﺎﻤل ‪ ∫ v dv‬ﻗﻴﻤﺘﻪ ﺘﺴﺎﻭﻱ‬ ‫‪e −1‬‬ ‫∞‬



‫‪3‬‬



‫‪v‬‬



‫‪°‬‬



‫‪D4‬‬ ‫‪15‬‬



‫‪8Dh k B T 4 D 4 8D 5 k B 4 4‬‬ ‫‪( ) T‬‬ ‫(‬ ‫)‬ ‫=‬ ‫‪h‬‬ ‫‪15 15 c 3 h‬‬ ‫‪c3‬‬ ‫)‪(1 − 4‬‬



‫ﺤﻴﺙ‪:‬‬



‫=‬



‫= )‪∴u (T‬‬



‫‪= aT 4 .............‬‬ ‫‪8D 5 k B 4‬‬ ‫) (‬ ‫‪15c 3 h‬‬



‫=‪a‬‬



‫ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1-4‬ﺘﻤﺜل ﻤﺎ ﻴﻌـﺭﻑ ﺒﻘـﺎﻨﻭﻥ ﺴـﺘﻴﻔﺎﻥ‪ -‬ﺒﻭﻟﺘﺯﻤـﺎﻥ ‪Stefan-‬‬



‫‪ Boltzman‬ﻟﻠﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻜل ﻭﺤﺩﺓ ﺍﻟﺤﺠﻭﻡ‪.‬‬



‫)‪ (iii‬ﻤﻌﺎﺩﻟﺔ ﺒﻼﻨﻙ ﺘﻤﻜﻨﻨﺎ ﻤﻥ ﺇ – ﺝ ﻗﺎﻨﻭﻥ ﻭﺍﻴﻥ ‪ Wien‬ﻭﺍﻟﺫﻱ ﻴﻨﺹ ﻋﻠﻰ ﺃﻨﻪ ﺇﺫﺍ‬ ‫ﻜﺎﻨﺕ‬



‫‪λ max‬‬



‫ﻀﺭﺏ‬ ‫)‪..(1-5‬‬



‫ﺘﻤﺜل ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﺍﻟﻤﻘﺎﺒل ﻷﻗﺼﻰ ﻗﻴﻤﺔ ﻟﻜﺜﺎﻓﺔ ﺍﻟﻁﺎﻗﺔ ‪ u‬ﻓﺈﻥ ﺤﺎﺼل‬



‫‪λ max‬‬



‫ﻓﻲ ﺩﺭﺠﺔ ﺍﻟﺤﺭﺍﺭﺓ ‪ T‬ﻴﻌﻁﻴﻨﺎ ﻗﻴﻤﺔ ﺜﺎﺒﺘﺔ‪ ،‬ﺃﻱ‪:‬‬ ‫‪λ max T = 2.90 × 10 −3 m.K‬‬



‫ﻭﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﻌﺎﺩﻟﺔ )‪ (1-5‬ﻤﻥ ﻤﻌﺎﺩﻟﺔ ﺒﻼﻨﻙ‪.‬‬ ‫ﻟﻜﻲ ﻨﻭﺠﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻭﻯ ﻟـ‬ ‫‪ v‬ﻭﺘﺴﺎﻭﻱ ﻫﺫﺍ ﺍﻟﺘﻔﺎﻀل ﺒﺎﻟﺼﻔﺭ‪ ،‬ﺃﻱ‬



‫) ‪u (ν‬‬



‫ﻴﻠﺯﻡ ﺃﻥ ﺘﻔﺎﻀل ﺍﻟﺩﺍﻟﺔ‬



‫) ‪u (ν‬‬



‫ﺒﺎﻟﻨﺴﺒﺔ ﻟـ‬



‫) ‪dv (ν‬‬ ‫‪=0‬‬ ‫‪dv‬‬



‫‪-٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪or‬‬ ‫‪‬‬ ‫‪d  8Dh‬‬ ‫‪v3‬‬ ‫‪‬‬ ‫‪ =0‬‬ ‫‪3‬‬ ‫‪hv/k BT‬‬ ‫‪dv  c e‬‬ ‫‪− 1‬‬



‫ﻭﻤﺭﺓ ﺃﺨﺭﻯ ﻨﻌﻭﺽ ﻋﻥ‬



‫‪hv‬‬ ‫‪k BT‬‬



‫= ‪dv , v‬‬



‫‪k BT‬‬ ‫‪h‬‬



‫‪vν‬‬



‫ﻭﺒﻘﺴﻤﺔ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻋﻠﻰ ﻜل ﺍﻟﺜﻭﺍﺒﺕ ﻨﺘﺤﺼل ﻋﻠﻰ‪.‬‬ ‫‪3 (e v − 1) − ve v = o‬‬ ‫‪3 e v − 3 = ve v‬‬



‫ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ ‪ev‬‬ ‫‪3 − 3 e −v = v‬‬ ‫‪or‬‬ ‫‪3 - v = 3e - v‬‬



‫ﻭﻴﻤﻜﻥ ﺤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺨﻼل ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﺒﻴﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ‬ ‫)‪ (3-v‬ﻭ )‪ (3e-v‬ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﺒﺎﻟﺭﺴﻡ ﻓﻲ ﺸﻜل )‪(١-٤‬‬



‫ﺸﻜل ‪ :1-2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ 3 – x = 3 e-x‬ﺒﺎﻟﺭﺴﻡ‬



‫‪-٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻤﻥ ﺍﻟﺸﻜل‪ ،‬ﻨﺠﺩ ﺃﻥ‬ ‫‪v = 2.82‬‬ ‫‪or‬‬ ‫‪hv mar‬‬ ‫‪= 2.82‬‬ ‫‪k BT‬‬ ‫‪or‬‬ ‫‪k BT‬‬



‫= ‪v max‬‬



‫)‪(2.82‬‬ ‫‪h‬‬ ‫‪h T‬‬ ‫‪c‬‬ ‫∴‬ ‫)‪= b (2.82‬‬ ‫‪λ max‬‬ ‫‪h‬‬ ‫‪hc‬‬ ‫)‪(6.63 × 10 −34 J.s) (3.0 × 10 8 m/s‬‬ ‫=‬ ‫‪= 2.9 × 10 −3 m.K‬‬ ‫‪− 23‬‬ ‫‪−1‬‬ ‫‪2.82K B‬‬ ‫) ‪(2.82) (1.38× 10 J.v‬‬



‫= ‪or λ max T‬‬



‫ﻭﻤﻥ ﺍﻟﺠﺩﻴﺭ ﺒﺎﻟﺫﻜﺭ‪ ،‬ﺃﻥ ﻨﻅﺭﻴﺔ ﺇﺸﻌﺎﻉ ﺍﻟﺠﺴﻡ ﺍﻷﺴﻭﺩ ﺘﺴﺘﺨﺩﻡ ﻓﻲ ﻋﻠﻡ ﺍﻟﻔﻠﻙ‬ ‫ﻭﺫﻟﻙ ﻟﺘﺤﺩﻴﺩ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻟﻨﺠﻭﻡ‪ .‬ﺒﺎﻟﻨﻅﺭ ﻟﺸﻜل ﻭﺍﻟﺫﻱ ﻴﻭﻀﺢ ﻁﻴﻑ ﺇﺸـﻌﺎﻉ‬ ‫ﺍﻟﺸﻤﺱ ﻤﻘﺎﺱ ﻤﻥ ﻁﺒﻘﺎﺕ ﺍﻟﺠﻭ ﺍﻟﻌﻠﻴﺎ ﻟﻸﺭﺽ‪ ،‬ﻨﺠﺩ ﺃﻥ ﻗﻴﻤﺔ‬



‫‪λ max = 500nm‬‬



‫‪ ،(1nm = 10-9 m‬ﻭﺒﺎﺴﺘﺨﺩﺍﻡ ﻗﺎﻨﻭﻥ ﻭﺍﻴﻥ ﻴﺘﺒﻴﻥ ﺃﻥ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻟﺸﻤﺱ‪.‬‬ ‫‪2.9 ×10 −3 m.k 2.9 × 10 −3 m.k‬‬ ‫=‬ ‫‪= 5800k‬‬ ‫‪λ max‬‬ ‫‪500 × 10 −3 m‬‬



‫)ﺤﻴﺙ‬



‫=‪T‬‬



‫ﺍﻟﻁﻴﻑ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻲ ﻷﺸﻌﺔ ﺍﻟﺸﻤﺱ‪.‬‬



‫ ‪- ١٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪FIGURE 1.3 The electromagnetic spectrum of the sun as measured in the upper‬‬ ‫‪atmosphere of the earth. A comparison of this figure with Figure 1.2 shows that‬‬ ‫‪the sun's surface radiates as a blackbody at a temperature of about 6000 k.‬‬



‫ﻭﺒﻌﺩﻤﺎ ﻋﺭﻓﻨﺎ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﻜﻤﻴﺔ ﻟﻠﻁﺎﻗﺔ )ﻤﻤﺜﻠﺔ ‪ (quanta‬ﻭﻫﻲ ‪ nv‬ﻓﺈﻥ ﻫـﺫﺍ‬



‫ﻴﻌﻨﻲ ﺃﻥ ﺸﻌﺎﻉ ﻁﻭﻟﻪ ﺍﻟﻤﻭﺠﻲ‬



‫‪°‬‬



‫‪λ = 6000 A‬‬



‫)ﺤﻴﺙ‬



‫‪m‬‬



‫‪−10‬‬



‫‪ (1 A =10‬ﻁﺎﻗﺘﻪ ﺘﺴﺎﻭﻱ‪.‬‬ ‫‪°‬‬



‫)‪hc (6.63 × 10 34 J.s) (3 × 10 8 m/s‬‬ ‫= = ‪E = hv‬‬ ‫‪λ‬‬ ‫‪(6000 ×10 −10 m‬‬ ‫‪= 3.3 × 10 −19 J = 2.06 ev‬‬



‫ﻓﺈﺫﺍ ﻜﺎﻥ ﻫﺫﺍ ﺍﻟﺸﻌﺎﻉ ﺼﺎﺩﺭ ﻤﻥ ﻤﺼﺩﺭ ﻗﺩﺭﺘـﻪ ‪ 100‬ﻭﺍﻁ )‪) (W‬ﻭﺤـﺩﺓ‬



‫ﺍﻟﻭﺍﻁ ‪ Watt‬ﻫﻲ ﺠﻭل ﻟﻜل ﺜﺎﻨﻴﺔ ‪ ،(W: Joul/sec‬ﻫﺫﺍ ﻤﻌﻨﺎﻩ ﺃﻥ ﺇﺫﺍ ﻜﺎﻨﺕ ‪ N‬ﺘﺭﻤﺯ‬



‫ﻟﻌﺩﺩ ﺍﻟﻜﻤﺎﺕ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ ﺍﻟﻭﺍﺤﺩﺓ‪ ،‬ﻓﺈﺫﺍ ﻜﺎﻨﺕ ﻜل ﻜﻡ ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﺘـﺴﺎﻭﻱ ‪ hv‬ﻓـﺈﻥ‬ ‫ﺍﻟﻘﺩﺭﺓ )‪.Power = N (hv‬‬ ‫‪∴ P = 100 = W = N hv‬‬ ‫‪P‬‬ ‫‪100W‬‬ ‫= =‪∴N‬‬ ‫‪= 3×10 20 guanta/sec‬‬ ‫‪−19‬‬ ‫‪E 3.3× 10 J‬‬



‫ﻭﻫﺫﺍ ﺒﻼ ﺸﻙ ﻋﺩﺩ ﻜﺒﻴﺭ ﺠﺩﺍﹰ ﻤﻥ ﺍﻟﻜﻤﺎﺕ ﻤﻤﺎ ﻴﺅﺩﻱ ﺇﻟﻰ ﻋـﺩﻡ ﺇﺤـﺴﺎﺴﻨﺎ‬ ‫ﺒﺎﻟﻁﺒﻴﻌﺔ ﺍﻟﺠﺴﻴﻤﻴﺔ ﻟﻠﻀﻭﺀ )ﻋﻠﻰ ﺍﻓﺘﺭﺍﺽ ﺃﻥ ﻜل ﻜﻡ ﻤﻥ ﺍﻟﻁﺎﻗﺔ ﻫﻭ ﺠﺴﻴﻡ(‪.‬‬ ‫‪ 3-1‬ﺍﻟﺘﺄﺜﻴﺭ ﺍﻟﻜﻬﺭﻭﻀﻭﺌﻲ‬



‫‪1-3 The Photoelectric Effect‬‬



‫ﻓﻲ ﻋﺎﻡ ‪ 1887, 1886‬ﻭﺒﻴﻨﻤﺎ ﻜﺎﻥ ﻴﺠﺭﻱ ﺘﺠﺎﺭﺒﻪ ﺍﻟﺘـﻲ ﺃﻜـﺩﺕ ﻨﻅﺭﻴـﺔ‬



‫ﻤﺎﻜﺴﻭﻴل ﺍﻟﺨﺎﺼﺔ ﺒﺎﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﻀﻭﺀ‪ ،‬ﺍﻜﺘﺸﻑ ﺍﻟﻔﻴﺯﻴﺎﺌﻲ ﺍﻷﻟﻤﺎﻨﻲ ﻫﻴﻨـﺭﻙ‬



‫ﻫﻴﺭﺘﺯ ‪ Heinrich Hertz‬ﺃﻥ ﺍﻷﺸﻌﺔ ﺍﻟﻀﻭﺌﻴﺔ ﺍﻟﻔﻭﻕ ﺒﻨﻔـﺴﺠﻴﺔ ‪ultraviolet light‬‬



‫ﺘﺴﺒﺏ ﺍﻨﻁﻼﻕ )ﺍﻨﺒﻌﺎﺙ( ‪ emission‬ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻤﻥ ﺴﻁﺢ ﻤﻌﺩﻥ ﺒﺎﻹﺸﻌﺎﻉ ﻴﺴﻤﻰ‬



‫ﺒﺎﻟﺘﺄﺜﻴﺭ ﺍﻟﻜﻬﺭﻭﻀﻭﺌﻲ‪.‬‬



‫ﻭﻁﺒﻘﺎﹰ ﻟﻘﻭﺍﻨﻴﻥ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ ،‬ﻓﺈﻥ ﺍﻹﺸﻌﺎﻉ ﺍﻟﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻲ ﻋﺒﺎﺭﺓ ﻋﻥ‬ ‫ﻤﺠﺎل ﻜﻬﺭﺒﻲ ﻴﺘﺫﺒﺫﺏ ﻋﻤﻭﺩﻴﺎﹰ ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺍﻨﺒﻌﺎﺙ ﺍﻹﺸﻌﺎﻉ )ﻫﻨﺎ ﺃﻫﻤﻠﻨـﺎ ﺍﻟﻤﺠـﺎل‬ ‫ ‪- ١١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻟﻤﻐﻨﺎﻁﻴﺴﻲ(‪ .‬ﻭﺍﻟﺫﻱ ﻨﺭﻴﺩ ﺃﻥ ﻨﺭﻜﺯ ﻋﻠﻴﻪ ﻫﻨﺎ ﺃﻥ ﺸﺩﺓ ﺍﻷﺸﻌﺔ ‪intensity of the‬‬



‫‪ radiation‬ﺘﺘﻨﺎﺴﺏ ﻤﻊ ﻤﺭﺒﻊ ﺴﻌﺔ ﺍﻟﻤﺠﺎل ﺍﻟﻜﻬﺭﺒﻲ‪.‬‬ ‫‪The intensity of the radiation is proportioned to the square of the‬‬ ‫‪amplitude of the .oscillating electric field.‬‬



‫ﻭﻴﻤﻜﻥ ﻟﻼﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﺘﻲ ﻋﻠﻰ ﺴﻁﺢ ﺍﻟﻤﻌﺩﻥ ﺃﻥ ﺘﺘﺫﺒـﺫﺏ ﻤـﻊ ﺍﻟﻤﺠـﺎل‬ ‫ﺍﻟﻜﻬﺭﺒﻲ ﺍﻟﺴﺎﻗﻁ ﻋﻠﻴﻬﺎ‪ ،‬ﻭﻜﻠﻤﺎ ﺍﺯﺩﺍﺩﺕ ﺸـﺩﺘﻪ )ﺴـﻌﺘﻪ( ﺘـﺯﺩﺍﺩ ﺴـﻌﺔ ﺘﺫﺒـﺫﺏ‬



‫ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻜﺜﻴﺭﺍﹰ ﻤﻤﺎ ﻴﺅﺩﻱ ﻓﻲ ﺍﻟﻨﻬﺎﻴﺔ ﺇﻟﻰ ﻜﺴﺭ ﺍﺭﺘﺒﺎﻁﻬﺎ ﺒﺎﻟﺴﻁﺢ ﻭﺍﻨﻁﻼﻗﻬـﺎ‬



‫ﺒﻁﺎﻗﺔ ﺤﺭﻜﻴﺔ ‪ kinetic energy‬ﻭﺍﻟﺘﻲ ﺴﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺴﻌﺔ )ﺸﺩﺓ( ﺍﻟﻤﺠﺎل ﺍﻟﻜﻬﺭﺒﻲ‬ ‫ﻟﻺﺸﻌﺎﻉ ﺍﻟﺴﺎﻗﻁ‪ .‬ﺇﻥ ﻫﺫﺍ ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻔﻴﺯﻴﺎﺌﻲ )ﺍﻟﺘﻘﻠﻴـﺩﻱ( ﻴﺘﻌـﺎﺭﺽ ﺘﻤﺎﻤـﺎﹰ ﻤـﻊ‬ ‫ﺍﻟﻤﺸﺎﻫﺩﺍﺕ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﻟﻬﺫﻩ ﺍﻟﻅﺎﻫﺭﺓ ﻭﺍﻟﺘﻲ ﺘﻤﺜﻠﺕ ﻓﻲ‪:‬‬



‫‪ -1‬ﻭ‪‬ﺠﺩ ﺃﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﻨﺒﻌﺜﺔ ﻤﻥ ﺍﻟﺴﻁﺢ ﻻ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺸﺩﺓ‬ ‫ﺍﻻﻨﺒﻌﺎﺙ ‪.independent of the intensity of incidental‬‬ ‫‪ -2‬ﻭﺠﺩ ﺘﺠﺭﻴﺒﻴﺎﹰ ﺃﻥ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻻ ﺘﻨﺒﻌﺙ ﻤﻥ ﺍﻟﺴﻁﺢ ﺇﻻ ﺇﺫﺍ ﻜﺎﻥ ﺘﺭﺩﺩ ﺍﻹﺸﻌﺎﻉ‬



‫ﺍﻟﺴﺎﻗﻁ ﺃﻜﺒﺭ ﻤﻥ ﺘﺭﺩﺩ ﻤﻌﻴﻥ‬ ‫ﺍﻟﺘﺭﺩﺩ‬



‫‪ν°‬‬



‫‪ν°‬‬



‫ﺒﻐﺽ ﺍﻟﻨﻅﺭ ﻋﻥ ﺸﺩﺓ ﺍﻹﺸـﻌﺎﻉ ﺴﻨـﺴﻤﻲ ﻫـﺫﺍ‬



‫ﺒﻌﺘﺒﺔ ﺍﻟﺘﺭﺩﺩ ‪ threshold frequency‬ﻭﻗﻴﻤﺔ‬



‫‪ν°‬‬



‫ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﻨﻭﻉ ﺍﻟﻤﻌﺩﻥ‪.‬‬



‫ﻭﻜﺫﻟﻙ ﻭﺠﺩ ﺃﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﻟﻼﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﻨﺒﻌﺜﺔ ﺘﺘﻨﺎﺴﺏ ﺨﻁﻴﺎﹰ ﻤﻊ ﺍﻟﺘﺭﺩﺩ‬ ‫ﻭﺫﻟﻙ ﺇﺫﺍ ﻜﺎﻨﺕ‬



‫‪ν‬‬



‫ﺃﻜﺒﺭ‬



‫ﻤﻥ ‪ν °‬‬



‫‪ν‬‬



‫ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺸﻜل ‪.1-4‬‬



‫ﺸﻜل ‪ :1-4‬ﺘﻐﻴﺭ ﻗﻴﻡ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ ﻤﻊ ﺍﻟﺘﺭﺩﺩ‪.‬‬ ‫ ‪- ١٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪FIGURE 1.4 The kinetic energy of electrons ejected from the surface of‬‬



‫‪sodium metal versus the frequency of the incident ultraviolet radiation. The‬‬ ‫)‪threshold frequency here is 4.40 × 1014 Hz (1 Hz = 1 s-1‬‬



‫ﻭﻟﺘﻔﺴﻴﺭ ﻫﺫﻩ ﺍﻟﻨﺘﺎﺌﺞ‪ ،‬ﻁﻭﺭ ﺍﻟﻌﺎﻟﻡ ﺍﻴﻨﺸﺘﺎﻴﻥ ﻓﺭﻀﻴﺔ ﺒﻼﻨﻙ ﻤﻥ ﺘﻜﻤﻴﻡ ﺍﻟﻁﺎﻗﺔ‪.‬‬



‫ﻭﻫﻨﺎ ﻨﺫﻜﺭ ﺃﻥ ﺒﻼﻨﻙ ﻁﺒﻕ ﻤﻔﻬﻭﻡ ﺘﻜﻤﻴﻡ ﺍﻟﻁﺎﻗﺔ ﻓﻘﻁ ﻋﻠﻰ ﺍﻟﻤﺘﺫﺒﺫﺏ ﺍﻟﺫﻱ ﻴﻤـﺘﺹ‬ ‫ﺃﻭ ﻴﺒﻌﺙ ﺍﻟﻁﺎﻗﺔ )ﻓﺈﺫﺍ ﻤﺼﺩﺭ ﺘﺭﺩﺩﻩ‬



‫‪ν‬‬



‫ﻓﺈﻨﻪ ﻴﻤﻠﻙ ﻁﺎﻗﺔ‬



‫‪E = nhν‬‬



‫( ﺃﻤﺎ ﺇﺫﺍ ﻤﺎ ﺍﻨﺒﻌﺙ‬



‫ﺍﻹﺸﻌﺎﻉ ﻤﻥ ﻫﺫﺍ ﺍﻟﻤﺘﺫﺒﺫﺏ ﻓﺈﻨﻪ ﻴﺴﻠﻙ )ﻜﻤﺎ ﺍﻗﺘﺭﺡ ﺒﻼﻨﻙ( ﻜﻤﻭﺠﺔ ﻋﺎﺩﻴﺔ ﺘﺨـﻀﻊ‬



‫ﻟﻠﻤﻔﺎﻫﻴﻡ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ .‬ﺃﻤﺎ ﺍﻟﻌﺎﻟﻡ ﺍﻴﻨﺸﺘﺎﻴﻥ ﻓﻘﺩ ﺫﻫﺏ ﺇﻟﻰ ﻤﺎ ﻫﻭ ﺃﺒﻌﺩ ﻤﻥ ﻫﺫﺍ‪،‬‬



‫ﻓﻘﺎل ﺇﻥ ﺍﻟﺘﻜﻤﻴﻡ ﻻ ﻴﻨﻁﺒﻕ ﻓﻘﻁ ﻋﻠﻰ ﺍﻟﻤﺘﺫﺒﺫﺏ ﺒل ﺇﻥ ﺍﻹﺸﻌﺎﻉ ﺍﻟﻤﻨﺒﻌﺙ ﻤﻨﻪ ﻴﻨﺒﻌﺙ‬



‫ﻜﻤﺎﺕ ﻤﻥ ﺍﻟﻁﺎﻗﺔ ) ﺃﻭ ﺤ‪‬ﺯ‪‬ﻡ‪ ‬ﻤﻥ ﺍﻟﻁﺎﻗﺔ( ﻤﻨﻔﺼﻠﺔ ﻋﻥ ﺒﻌﻀﻬﺎ ﻭﻁﺎﻗـﺔ ﻜـل ﻜـﻡ‬ ‫‪E = hν‬‬



‫ﻭﺃﻁﻠﻕ ﺍﺴﻡ ﺍﻟﻔﻭﺘﻭﻥ ‪ photon‬ﻋﻠﻴﻪ‪.‬‬



‫‪Einstein proposed that the radiation itself existed as smell‬‬ ‫‪packers of energy, E = hν , now known as photons.‬‬



‫ﻭﺒﻨﺎﺀﺍﹰ ﻋﻠﻰ ﻤﺒﺩﺃ ﺤﻔﻅ ﺍﻟﻁﺎﻗﺔ ‪ ،Conservation of energy‬ﻭﻀﺢ ﺍﻴﻨﺸﺘﺎﻴﻥ‬ ‫ﺃﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ‬



‫‪1‬‬ ‫‪mv 2‬‬ ‫‪2‬‬



‫= ‪K. E‬‬



‫)ﺍﻟﺘﻲ ﻴﻨﺒﻌـﺙ ﺒﻬـﺎ ﺍﻹﻟﻜﺘـﺭﻭﻥ ﺫﻭ ﺍﻟﻜﺘﻠـﺔ ‪m‬‬



‫ﻭﺍﻟﺴﺭﻋﺔ ‪ (v‬ﻤﻥ ﺴﻁﺢ ﺍﻟﻤﻌﺩﻥ ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟـﺴﺎﻗﻁﺔ ﻟﻠﻔﻭﺘـﻭﻥ‬ ‫‪hν‬‬



‫ﻭﺃﻗل ﻁﺎﻗﺔ ﻻﺯﻤﺔ ﻟﻨﺯﻉ ﺍﻹﻟﻜﺘﺭﻭﻥ )ﻭﺘﺤﺭﻴﺭﻩ( ﻤﻥ ﻁﺎﻗﺔ ﺭﺒﻁﺔ ﺒﺎﻟﻤﻌـﺩﻥ ‪W‬‬



‫)ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺃﺤﻴﺎﻨﺎﹰ ﺒـ ‪ ( ο/‬ﻭﺍﻟﺘﻲ ﺘﺴﻤﻰ ﺩﺍﻟﺔ ﺍﻟﺸﻐل ‪.Work function‬‬ ‫ﻭﻴﻤﻜﻨﻨﺎ ﺼﻴﺎﻏﺔ ﻤﺎ ﺴﺒﻕ ﺫﻜﺭﻩ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪1‬‬ ‫‪mv 2 = hv − φ‬‬ ‫‪2‬‬



‫)‪(1-5‬‬



‫ﻻﺤﻅ ﺃﻥ ﻗﻴﻤﺔ‬



‫‪1 2‬‬ ‫‪mc‬‬ ‫‪2‬‬



‫= ‪K. E‬‬



‫ﻤﻭﺠﺒﺔ ﻭﻋﻠﻴﻪ ﻓـﺎﻟﻔﺭﻕ‬



‫ﺴﺎﻟﺏ‪ .‬ﺃﻱ ﺃﻨﻪ ‪ . hν ≥ φ‬ﺇﻥ ﺍﻗل ﻗﻴﻤﺔ ﻟـ‬



‫‪hν‬‬



‫‪hν − φ‬‬



‫ﻫـﻲ ﺍﻟﻁﺎﻗـﺔ ﺍﻟﻼﺯﻤـﺔ ﻟﺘﺤﺭﻴـﺭ‬



‫ﺍﻹﻟﻜﺘﺭﻭﻥ ﻤﻥ ﺭﺒﻁ ﺍﻟﻨﻭﺍﺓ ﻭﻫﺫﺍ ﻴﺤﺩﺙ ﻋﻥ ﻋﺘﺒﺔ ﺍﻟﺘﺭﺩﺩ‬ ‫)‪(1-6‬‬



‫ﻻ ﻴﻤﻜـﻥ ﺃﻥ ﻴﻜـﻭﻥ‬



‫‪ν°‬‬



‫ﺃﻱ ﺃﻥ‪:‬‬



‫‪hν ° = φ‬‬



‫ ‪- ١٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻴﻤﻜﻨﻨﺎ ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ )‪ (1-5‬ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ‪.‬‬ ‫‪1‬‬ ‫‪mc 2 = hv − hv °‬‬ ‫‪2‬‬



‫)‪(1-7‬‬



‫ﻭﻫﺫﻩ ﻤﻌﺎﺩﻟﺔ ﺨﻁ ﻤﺴﺘﻘﻴﻡ )ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ‪ (y = mx-c‬ﻭﻫﻭ ﺘﻤﺎﻤﺎﹰ ﻤﺎ ﻴﺸﺎﻫﺩ‬



‫ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺸﻜل ‪.1-5‬‬



‫‪Figure 1-5. Photoelectric effect data showing a plot of retarding‬‬ ‫‪potential necessary to stop electron flow from a metal (lithium), or‬‬ ‫‪equivalently, electron kinetic energy, as a function of frequency of the‬‬ ‫‪incident light, the slope of the line is h/e.‬‬



‫ﻭﻗﺒل ﺃﻥ ﻨﻨﺘﻘل ﻟﻤﻭﻀﻭﻉ ﺁﺨﺭ‪ ،‬ﻤﻥ ﺍﻟﻤﻬﻡ ﺃﻥ ﻨﻭﻀﺢ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﻤـﺴﺘﺨﺩﻤﺔ ﻓـﻲ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ‪ .‬ﺒﺎﻟﻨﺴﺒﺔ ﻟـ‬



‫‪φ‬‬



‫ﻋﺎﺩﺓ ﺘﻌﻁﻲ ﺒﻭﺤﺩﺓ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻓﻭﻟﺕ ‪ ،eV‬ﻭﻫـﺫﻩ ﻭﺤـﺩﺓ‬



‫ﻁﺎﻗﺔ‪ ،‬ﻭﻟﺤﺴﺎﺏ )ﻤﺜﻼﹰ( ﺴﺭﻋﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ ﺍﻟﻤﻨﺒﻌﺙ ﺒﻭﺤﺩﺓ ‪ m/s‬ﻓﻤـﻥ ﺍﻟﻤﻬـﻡ ﺃﻥ‬ ‫ﻴﻌﺭﻑ ﺍﻟﻁﺎﻟﺏ ﻜﻴﻑ ﻴﻘﻭﻡ ﺒﻌﻤﻠﻴﺔ ﺍﻟﺘﺤﻭﻴل ﺒﻁﺭﻴﻘﺔ ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪- ١٤ -‬‬



‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺃﻭﻻﹰ‪ :‬ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻓﻭﻟﺕ‬ ‫‪(1 coulomb) (1 volt) = 1 Joule‬‬



‫ﻭﺍﻟﺸﺤﻨﺔ ﺍﻷﻭﻟﻴﺔ ﻟﻠﺒﺭﻭﺘﻭﻥ ﺘﺴﺎﻭﻱ‬ ‫ﻭﺍﻟﺸﺤﻨﺔ ﺍﻷﻭﻟﻴﺔ ﻟﻠﺒﺭﻭﺘﻭﻥ ﺘﺴﺎﻭﻱ‬



‫‪1.6 ×10 −19 C‬‬



‫ﻋﻨﺩﺌﺫ‬



‫) ‪ J‬ﺘﺭﻤﺯ ﻟﻠﺠﻭل (‬



‫)‪1 eV = (1.6 × 10 −19 C) (1 V‬‬ ‫‪= 1.6 ×10 −19 J‬‬



‫ﻤﺜﺎل‪ :2‬ﺩﺍﻟﺔ ﺍﻟﺸﻐل ﻟﻠﺼﻭﺩﻴﻭﻡ ﺘﺴﺎﻭﻱ ‪ ،1.82 en‬ﺍﺤﺴﺏ ﻋﺘﺒﺔ ﺍﻟﺘـﺭﺩﺩ‬



‫‪ν°‬‬



‫ﻟﻠﺼﻭﺩﻴﻭﻡ؟‬ ‫ﺍﻟﺤل‪ :‬ﺃﻭﻻﹰ‪ :‬ﻴﻠﺯﻡ ﺘﺤﻭﻴل‬



‫‪φ‬‬



‫ﻤﻥ ‪ eV‬ﺇﻟﻰ ﺠﻭل‪:‬‬ ‫‪φ = 1.82 eV‬‬



‫‪J‬‬ ‫)‬ ‫‪eV‬‬



‫‪= (1.82 eV) (1.6 × 10 −19‬‬ ‫‪= 2.92 ×10 −19 J‬‬



‫ﻭﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪(1-6‬‬



‫]‪= φ‬‬



‫‪°‬‬



‫‪ [hν‬ﻴﻤﻜﻨﻨﺎ‬



‫ﺤﺴﺎﺏ ‪ν °‬‬



‫)‪φ (2.92 ×10 −19 J‬‬ ‫=‬ ‫)‪h (6.63×10 −3 J.S‬‬ ‫‪1‬‬ ‫‪= 4.40 ×1014 H 2‬‬ ‫‪5‬‬



‫ﺤﻴﺙ ‪ Hz‬ﺘﺭﻤﺯ ﻟﻠﻬﺭﺘﺯ ﻭﻫﻭ‬



‫= ‪ν°‬‬



‫‪= 4.40 ×1014‬‬



‫‪1 ec‬‬ ‫‪5‬‬



‫ﻤﺜﺎل‪:3‬‬ ‫ﺃﺸﻌﺔ ﻓﻭﻕ ﺒﻨﻔﺴﺠﻴﺔ ﻁﻭﻟﻬﺎ ﺍﻟﻤﻭﺠﻲ ‪ 3500 Å‬ﺘﺴﻘﻁ ﻋﻠﻰ ﺴﻁﺢ ﺒﻭﺘﺎﺴﻴﻭﻡ‪.‬‬ ‫ﺃﻗﺼﻰ ﻁﺎﻗﺔ ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻀﻭﺌﻴﺔ ﺘﺴﺎﻭﻱ ‪.1.6 eV‬‬



‫ ‪- ١٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﺤﺴﺏ ﺩﺍﻟﺔ ﺍﻟﺸﻐل ﻟﻠﺒﻭﺘﺎﺴﻴﻭﻡ؟‬ ‫ﺍﻟﺤل‪:‬‬ ‫ﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪(1-5‬‬ ‫‪K.E = hν − ο/‬‬ ‫‪∴φ = hν − k.E‬‬



‫ﻨﺤﺴﺏ ﺃﻭﻻﹰ ﻗﻴﻤﺔ‬



‫‪hν‬‬ ‫)‪hc (6.63×10 −34 J.s) (3 × 10 8 m/s‬‬ ‫= = ‪hν‬‬ ‫‪λ‬‬ ‫)‪(3500 × 10 −10 m‬‬



‫ﻭﻟﺘﺤﻭﻴل ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻤﻥ ﺍﻟﺠﻭل ﻟﻺﻟﻜﺘﺭﻭﻥ ﻓﻭﻟﺕ‬ ‫‪∴φ = 3. eV − 1.6 eV = 1.95 eV‬‬



‫ﻤﺜﺎل‪ :‬ﻋﻨﺩ ﺘﻌﺭﺽ ﺴﻁﺢ ﻤﺎﺩﺓ ﺍﻟﻠﻴﺜﻴﻭﻡ ﻟﻺﺸﻌﺎﻉ‪ ،‬ﻓﺈﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ‬ ‫ﺍﻟﻤﻨﺒﻌﺜﺔ‬



‫‪2.935 ×10 −19 J‬‬



‫ﻭﺫﻟﻙ ﺇﺫﺍ ﻜﺎﻨﺕ ‪. λ = 300.0nm‬‬ ‫=‬



‫ﺇﻤﺎ ﺇﺫﺍ ﻜﺎﻨﺕ‬



‫‪λ‬‬



‫ﻓﺈﻥ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﺘﺴﺎﻭﻱ‬



‫‪1.28 × 10 −19 J‬‬



‫ﺍﺤﺴﺏ )‪ (a‬ﺜﺎﺒﺕ ﺒﻼﻨﻙ؟‬ ‫)‪ (b‬ﻋﺘﺒﺔ ﺍﻟﺘﺭﺩﺩ؟‬ ‫)‪ (c‬ﺍﻟﺸﻐل؟‬ ‫ﺍﻟﺤل‪ :‬ﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪ (1-5‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﺍﻷﻭل ﻭﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ‬



‫ﺍﻟﺜﺎﻨﻲ ﻨﺘﺤﺼل ﻋﻠﻰ‬ ‫ﺒﺎﻟﺘﻌﻭﻴﺽ‪:‬‬



‫‪1 1‬‬ ‫) ‪−‬‬ ‫‪λ1 λ 2‬‬



‫( ‪(K.E)1 − (K.E) 2 = h (ν1 − ν 2 ) = hc‬‬



‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2.935×10 −19 J − 1.280 × 10 −19 J = h (3×10 8 m/s) ‬‬ ‫‪−‬‬ ‫‪‬‬ ‫‪−9‬‬ ‫‪−9‬‬ ‫‪ 3 ×10 m 400 ×10 m ‬‬



‫ ‪- ١٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪1.655 ×1019 J‬‬ ‫‪∴h‬‬ ‫‪= 6.625 ×10 −34 J.S‬‬ ‫‪14 −1‬‬ ‫‪2.498 ×10 s‬‬



‫)‪ (b‬ﻟﺤﺴﺎﺏ ﻋﺘﺒﺔ ﺍﻟﺘﺭﺩﺩ‪ ،‬ﻨﺄﺨﺫ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ )ﻤﺜﻼﹰ(‬



‫‪λ = 300 nm‬‬



‫‪∴ = hv − hv °‬‬



‫‪hc‬‬ ‫‪− hv °‬‬ ‫‪300 ×10 −9 m‬‬



‫= ‪∴ 2.935 ×10 −19 J‬‬



‫ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ ﻗﻴﻡ ‪ c,h‬ﻨﺠﺩ ﺃﻥ ﻗﻴﻤﺔ‬



‫‪v°‬‬



‫‪v ° = 5.564 × 1014 Hz‬‬



‫)‪ (٢‬ﺩﺍﻟﺔ ﺍﻟﺸﻐل ﺘﺤﺴﺏ ﻤﺒﺎﺸﺭﺓ ﻤﻥ ﺍﻟﻌﻼﻗﺔ‬



‫‪φ = hv°‬‬



‫‪= 3.687 ×10 −19 J‬‬ ‫‪3.687 ×1019 J/‬‬ ‫=‬ ‫‪= 2.30/eV‬‬ ‫‪J/‬‬ ‫‪1.6 ± ×10 −19‬‬ ‫‪eV‬‬



‫‪ 4-1‬ﺘﺄﺜﻴﺭ ﻜﻭﻤﺒﺘﻭﻥ‪:‬‬ ‫‪1-4 The Compton Effect‬‬ ‫ﺍﻟﺘﺠﺭﺒﺔ ﺍﻟﺘﻲ ﺘﺅﻜﺩ ﺒﻭﻀﻭﺡ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﺠـﺴﻴﻤﻴﺔ ﻟﻺﺸـﻌﺎﻉ ‪the particle‬‬



‫‪ nature of radiation‬ﺘﺴﻤﻰ ﺒﺘﺄﺜﻴﺭ )ﻅﺎﻫﺭﺓ( ﻜﻭﻤﺒﺘﻭﻥ ﻨﺴﺒﺔ ﻟﻠﻌـﺎﻟﻡ ﻜﻭﻤﺒﺘـﻭﻥ‬



‫‪ Arthur H. Compton‬ﻟﻘﺩ ﺍﻜﺘﺸﻑ ﻜﻭﻤﺒﺘﻭﻥ ﺃﻨﻪ ﺇﺫﺍ ﺍﺨﺘﺭﻕ ﺇﺸـﻌﺎﻉ ﺫﻭ ﻁـﻭل‬



‫ﻤﻭﺠﻲ )ﻓﻲ ﻤﻨﻁﻘﺔ ﺍﻷﺸﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ ‪ (X-ray‬ﺸﺭﻴﺤﺔ ﻤﻌﺩﻨﻴﺔ ﻓـﺴﻴﺘﺒﻌﺜﺭ ‪scattered‬‬



‫ﺒﻁﺭﻴﻘﺔ ﻻ ﻴﻤﻜﻥ ﺘﻔﺴﻴﺭﻫﺎ ﺤﺴﺏ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﻟﻺﺸﻌﺎﻉ‪.‬‬ ‫ﺍﻟﺫﻱ ﺘﺨﺒﺭﻨﺎ ﺒﻪ ﻗﻭﺍﻨﻴﻥ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﺃﻥ ﺸﺩﺓ ﺍﻹﺸﻌﺎﻉ ‪ I‬ﺍﻟﻤﻨﺒﻌﺙ ﻤـﻥ‬



‫ﻤﺎﺩﺓ ﻨﺘﻴﺠﺔ ﺘﺄﺜﺭﻫﺎ ﺒﺈﺸﻌﺎﻉ ﺴﻘﻁ ﻋﻠﻴﻬﺎ )ﻤﻤﺎ ﻴﺅﺩﻱ ﺇﻟﻰ ﺍﻫﺘﺯﺍﺯ ﺇﻟﻜﺘﺭﻭﻨﺎﺘﻬﺎ ﻭﺍﻟﺘـﻲ‬ ‫ﺒﺩﻭﺭﻫﺎ ﺴﺘﺒﻌﺙ ﺇﺸﻌﺎﻉ( ﻋﻨﺩﻤﺎ ﺘﻘﺎﺱ ﻋﻨﺩ ﺯﺍﻭﻴﺔ‬ ‫ﺍﻟﺴﺎﻗﻁﺔ( ﻓﺈﻥ ‪ I‬ﺘﺘﻐﻴﺭ ﻤﻊ‬



‫‪θ‬‬



‫ﺤﺴﺏ ﺍﻟﻌﻼﻗﺔ‬



‫‪θ‬‬



‫)ﺒﺎﻟﻨـﺴﺒﺔ ﻻﺘﺠـﺎﻩ ﺍﻷﺸـﻌﺔ‬



‫ ‪- ١٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫)‪Ι ≈ (1 + cos 2 θ‬‬



‫)‪(1-8‬‬



‫ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ‪ I‬ﻻ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻟﻸﺸﻌﺔ ﺍﻟـﺴﺎﻗﻁﺔ‪ ،‬ﻭﻫـﺫﺍ‬ ‫ﻴﺘﻌﺎﺭﺽ ﺒﻭﻀﻭﺡ ﻤﻊ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ )ﺸﻜل ‪ (1-6‬ﻭﺍﻟﺘﻲ ﻴﺘﺒﻴﻥ ﺒﻭﻀﻭﺡ ﺘﻐﻴﺭ ‪I‬‬



‫ﺒﺘﻐﻴﺭ ‪. λ‬‬



‫‪Figure 1-6. The spectrum of radiation scattered by carbon,‬‬ ‫‪showing the unmodified line at 0.7078 Å on the left and the shifted‬‬ ‫‪line at 0.7314 Å on the right. The former is the wave-length of the‬‬ ‫‪primary radiation.‬‬



‫ﻨﺘﺎﺌﺞ ﺘﺠﺭﺒﺔ ﻜﻭﻤﺒﺘﻭﻥ‪:‬‬ ‫ﻟﻘﺩ ﻭﺠﺩ ﻜﻭﻤﺒﺘﻭﻥ ﺃﻥ ﺍﻹﺸﻌﺎﻉ ﺍﻟﻤﺘﺒﻌﺜﺭ ﻟﻪ ﻤﺭﻜﺒﺘﻴﻥ؛ ﻤﺭﻜﺒﺔ ﻁﻭﻟﻬﺎ ﺍﻟﻤﻭﺠﻲ‬



‫ﻤﺴﺎﻭٍ ﻟﻁﻭل ﻤﻭﺠﺔ ﺍﻹﺸﻌﺎﻉ ﺍﻟﺴﺎﻗﻁ ﻭﻤﺭﻜﺒﺔ ﺃﺨﺭﻯ ﺘﺨﺘﻠﻑ ﻓﻲ ﻁﻭﻟﻬﺎ ﺍﻟﻤـﻭﺠﻲ‬ ‫ﻋﻥ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻟﻺﺸﻌﺎﻉ ﺍﻟﺴﺎﻗﻁ ﻭﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺯﺍﻭﻴﺔ ﺍﻟﺒﻌﺜـﺭﺓ ﻭﻗـﺩ ﺘﻤﻜـﻥ‬ ‫ﻜﻭﻤﺒﺘﻭﻥ ﻤﻥ ﺸﺭﺡ ﻭﺠﻭﺩ ﻤﺭﻜﺒﺔ ﺍﻹﺸـﻌﺎﻉ ﺍﻟﻤﺘﺒﻌﺜـﺭﺓ ﺫﺍﺕ ﺍﻟﻁـﻭل ﺍﻟﻤـﻭﺠﻲ‬



‫ﺍﻟﻤﺨﺘﻠﻑ ﻋﻥ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﺍﻟﺴﺎﻗﻁ ﻭﺫﻟﻙ ﺒﺎﻋﺘﺒﺎﺭ ﺍﻟﺸﻌﺎﻉ ﺍﻟﺴﺎﻗﻁ ﻋﺒﺎﺭﺓ ﻋـﻥ‬



‫ﺸﻌﺎﻉ ﻤﻥ ﺍﻟﻔﻭﺘﻭﻨﺎﺕ ﺒﻁﺎﻗﺔ‬



‫‪hv‬‬



‫ﺤﻴﺙ ﻴﻌﺎﻨﻲ ﻜل ﻓﻭﺘﻭﻥ ﻤﻥ ﺘﺒﻌﺜﺭ )ﺘﺸﺘﺕ( ﻤـﺭﻥ‬



‫‪ elastic scattering‬ﻤﻊ ﻜل ﺇﻟﻜﺘﺭﻭﻥ‪.‬‬



‫ﻭﻜﻤﺎ ﻫﻭ ﻤﻌﻠﻭﻡ‪ ،‬ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﺘﺸﺘﺕ ﺍﻟﻤﺭﻥ ﻓﺈﻥ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜـﺔ ‪momentum‬‬ ‫ﻭﺍﻟﻁﺎﻗﺔ ‪ energy‬ﻜﻤﻴﺎﺕ ﺘﺨﻀﻊ ﻟﻘﺎﻨﻭﻥ ﺍﻟﺤﻔﻅ )ﺍﻟﺒﻘﺎﺀ( ‪momentum and energy‬‬



‫‪.must be conserved‬‬



‫ ‪- ١٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻟﺘﻔﺴﻴﺭ ﻫﺫﻩ ﺍﻟﻅﺎﻫﺭﺓ ﺭﻴﺎﻀﻴﺎﹰ‪ ،‬ﺍﻓﺘﺭﺽ ﻜﻭﻤﺒﺘﻭﻥ ﺃﻥ ﺍﻟﻔﻭﺘﻭﻥ ﻟـﻪ ﻜﻤﻴـﺔ‬ ‫ﺤﺭﻜﺔ ‪ p‬ﺘﻌﻁﻲ ﺒﺎﻟﻌﻼﻗﺔ‬ ‫‪hv‬‬ ‫‪c‬‬



‫)‪(1-9‬‬



‫=‪p‬‬



‫ﺤﻴﺙ ﺘﻡ ﺍﻋﺘﺒﺎﺭ ﺍﻟﺤﺭﻜﺔ ﺍﻟﺩﻴﻨﺎﻤﻴﻜﻴﺔ ﻟﻠﻔﻭﺘﻭﻥ ﻜﺠﺴﻴﻡ ﻴﺨﻀﻊ ﻟﻘﻭﺍﻨﻴﻥ ﺍﻟﻨﻅﺭﻴﺔ‬ ‫ﺍﻟﻨﺴﺒﻴﺔ ﻭﺍﻟﺘﻲ ﺘﻭﻀﺢ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻁﺎﻗﺔ ﻭﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ‪.‬‬



‫)‪] (1-10‬‬ ‫‪2‬‬



‫‪1‬‬



‫[‬



‫‪E = (m o c 2 ) 2 + (pc) 2‬‬



‫ﺤﻴﺙ ‪ mo‬ﻫﻲ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺴﻜﻭﻨﻴﺔ ‪ rest mass‬ﻟﻠﺠﺴﻴﻡ‪ ،‬ﻭﺴﺭﻋﺔ ﺍﻟﺠﺴﻴﻡ ‪ v‬ﻋﻨﺩ‬



‫ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ‪ p‬ﺘﻌﻁﻰ ﺒﺎﻟﻌﻼﻗﺔ‬ ‫‪2‬‬



‫]‬



‫‪1‬‬



‫[‬



‫‪aE d‬‬ ‫=‬ ‫‪(m ο c 2 ) 2 + (pc) 2‬‬ ‫‪ap dp‬‬



‫‪d‬‬ ‫)‪(pc‬‬ ‫‪ap‬‬



‫‪1‬‬ ‫‪2‬‬



‫‪−‬‬



‫‪(pc)c‬‬ ‫‪2‬‬



‫)‪(1-11‬‬



‫]‬



‫[‬



‫‪1‬‬ ‫‪= = (m ο c 2 ) 2 + (pc) 2‬‬ ‫‪2‬‬



‫]‬



‫‪1‬‬



‫=‪v‬‬



‫‪1‬‬ ‫‪1‬‬ ‫‪2 (m c 2 ) 2 + (pc) 2‬‬ ‫‪°‬‬



‫[‬



‫‪pc 2‬‬ ‫‪pc 2‬‬ ‫=‬ ‫‪E (m 2 c 4 + p 2 C 2 ) 12‬‬ ‫‪°‬‬



‫ﻭ‬



‫ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻔﻭﺘﻭﻥ‪ ،‬ﻨﻌﻭﺽ ﻋﻥ‬



‫‪m° = o‬‬



‫)‪(1-12‬‬



‫‪pc 2‬‬ ‫‪⇒E=pc‬‬ ‫‪E‬‬



‫‪v= c‬‬



‫=‬



‫= ‪∴v‬‬



‫ﻓﻲ ﻤﻌﺎﺩﻟﺔ )‪(1-11‬‬



‫= ‪∴C/‬‬



‫ﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪ (1-12‬ﻨﺘﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻟﺔ )‪ (1-9‬ﺤﻴﺙ‬ ‫‪E hv‬‬ ‫=‬ ‫‪C C‬‬



‫‪E = hv‬‬



‫=‪p‬‬



‫ﺩﻋﻨﺎ ﻨﻔﺘﺭﺽ ﺍﻵﻥ ﻭﺠﻭﺩ ﻓﻭﺘﻭﻥ ﺒﻜﻤﻴﺔ ﺤﺭﻜﺔ ﺍﺒﺘﺩﺍﺌﻴـﺔ‬



‫‪p°‬‬



‫ﺴـﺎﻗﻁ ﻋﻠـﻰ‬



‫ﺇﻟﻜﺘﺭﻭﻥ ﺴﺎﻜﻥ‪ .‬ﻭﺒﻌﺩ ﺍﻟﺘﺼﺎﺩﻡ‪ ،‬ﻨﻔﺘﺭﺽ ﺃﻥ ﻜﻤﻴـﺔ ﺍﻟﺤﺭﻜـﺔ ﻟﻠﻔﻭﺘـﻭﻥ‬



‫‪p‬‬



‫ﺃﻤـﺎ‬



‫ ‪- ١٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻹﻟﻜﺘﺭﻭﻥ ﻓﻴﺤﺩﺙ ﻟﻪ ﺍﺭﺘﺩﺍﺩ ‪ recoil‬ﺒﻜﻤﻴﺔ ﺤﺭﻜﺔ ‪ . p‬ﻭﺒﺘﻁﺒﻴﻕ ﻗﺎﻨﻭﻥ ﺒﻘﺎﺀ ﻜﻤﻴـﺔ‬ ‫‪e‬‬



‫ﺍﻟﺤﺭﻜﺔ )ﺍﻨﻅﺭ ﺸﻜل ‪.(1-7‬‬ ‫)‪(1-13‬‬



‫‪pe = p ° + p‬‬



‫ﺒﺘﺭﺒﻴﻊ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪.‬‬



‫‪2‬‬ ‫‪2‬‬ ‫‪r r‬‬ ‫‪2‬‬ ‫‪p e = p ° − p − 2p ° p‬‬



‫)‪(1-14‬‬



‫ﻨﻁﺒﻕ ﺍﻵﻥ ﻗﺎﻨﻭﻥ ﺒﻘﺎﺀ ﺍﻟﻁﺎﻗﺔ‬



‫ﺃﻭﻻﹰ‪ ،‬ﻁﺎﻗﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ ‪ E‬ﻗﺒل ﺍﻟﺘﺼﺎﺩﻡ ]‬ ‫‪2‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ‬



‫‪m° = 0‬‬



‫ﺘﺴﺎﻭﻱ ﺼﻔﺭ(‪.‬‬



‫‪1‬‬



‫[‬



‫‪E = (m ° c 2 ) 2 + (pc) 2‬‬



‫ﻷﻥ ﺍﻹﻟﻜﺘﺭﻭﻥ ﺴـﺎﻜﻥ ﻗﺒـل ﺍﻟﺘـﺼﺎﺩﻡ )ﻷﻥ ﺃﻥ ‪P‬‬ ‫‪∴E = m ° c = mc 2‬‬



‫)‪(1-15‬‬



‫ﻗﺎﻨﻭﻥ ﺒﻘﺎﺀ ﺍﻟﻁﺎﻗﺔ‪ :‬ﻁﺎﻗﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻭﺍﻟﻔﻭﺘﻭﻥ ﺍﻟﺴﺎﻗﻁ ﻗﺒل ﺍﻟﺘﺼﺎﺩﻡ = ﻁﺎﻗﺔ‬



‫ﺍﻹﻟﻜﺘﺭﻭﻥ ﻭﺍﻟﻔﻭﺘﻭﻥ ﺒﻌﺩ ﺍﻟﺘﺼﺎﺩﻡ‬ ‫‪2‬‬



‫‪1‬‬



‫) ‪hv ° + mc 2 = hv + (m 2 c 4 + p e c 2‬‬ ‫‪2‬‬



‫ ‪- ٢٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺒﻨﻘل ‪ hv‬ﻟﻠﻁﺭﻑ ﺍﻷﻴﺴﺭ ﻭﺘﺭﺒﻴﻊ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‬ ‫) ‪(hv ° + mc 2 − hv) 2 = (m 2c 4 + pe c 2‬‬ ‫‪2‬‬



‫‪or‬‬ ‫‪m 2c 4 + pe c 2 = (hv ° − hv + mc 2 )2‬‬ ‫‪2‬‬



‫‪= (hν ° − hv) 2 + 2m c 2 (hv ° − hv) + m 2c 4‬‬



‫)‪(1-16‬‬



‫ﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪ ،(1-14‬ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ‬



‫‪hv‬‬ ‫‪hv‬‬ ‫‪, p° = °‬‬ ‫‪c‬‬ ‫‪c‬‬



‫‪hv ° 2 hv 2‬‬ ‫‪hv hv‬‬ ‫‪) + ( ) − 2 ( ° ) ( ) cosθ‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬



‫ﺤﻴﺙ‬



‫‪θ‬‬



‫=‪p‬‬



‫( = ‪∴p e‬‬ ‫‪2‬‬



‫ﻫﻲ ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ ﺍﺘﺠﺎﻩ ﺍﻟـﺸﻌﺎﻉ ﺍﻟﻤـﺸﺘﺕ ﻭﺍﻟـﺸﻌﺎﻉ‬



‫ﺍﻟﺴﺎﻗﻁ‪ .‬ﺒﻀﺭﺏ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ‪C2‬‬



‫‪pe c 2 = (hv° )2 + (hv)2 − 2 (hv ° ) (hv) cosθ‬‬ ‫‪2‬‬



‫)‪(1-17‬‬



‫ﻭﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺭﺒﻊ ﻜﺎﻤل‪ ،‬ﻨﻀﻴﻑ ﻭﻨﻁﺭﺡ ]‪ [2hv° hv‬ﻟﻤﻌﺎﺩﻟﺔ )‪(1-17‬‬ ‫‪pe c 2 (hv ° ) 2 + (hv) 2 − 2hv °hv + 2(hv ° ) (hv) − 2(hv° ) (hv) cosθ‬‬ ‫‪1444‬‬ ‫‪424444‬‬ ‫‪3 14444‬‬ ‫‪4244444‬‬ ‫‪3‬‬ ‫‪2‬‬



‫)‪2hv ° hv (1− cos θ‬‬



‫)‪∴pe c 2 = (hv° − hv) 2 + 2hv °hv (1 − cos θ‬‬ ‫‪2‬‬



‫)‪(1-18‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ ﻗﻴﻤﺔ‬



‫ﻋﻠﻰ‬



‫‪(hv ° − hv) 2‬‬



‫‪(hv ° − hv) 2‬‬



‫ﻤﻥ ﻤﻌﺎﺩﻟﺔ )‪ (1-18‬ﻓﻲ ﻤﻌﺎﺩﻟﺔ )‪ (1-18‬ﻨﺘﺤـﺼل‬



‫‪m 2 c 4 + pe c 2 = p e c 2 − 2hv °hv (1 − cos θ) + 2mc 2 (hv ° − hv) + m 2c 4‬‬ ‫‪2‬‬



‫‪2‬‬



‫)‪ ..(1-19‬ﺒﺤﺫﻑ ﺍﻟﺤﺩﻭﺩ ﺍﻟﻤﺘﺸﺎﺒﻬﺔ ﻤﻥ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪:‬‬



‫ ‪- ٢١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪2hv °hv (1 − cos θ) = 2mc 2 (hv ° − hv) −‬‬ ‫)‪= 2mc 2 h (v° − v‬‬ ‫‪1 1‬‬ ‫‪c c‬‬ ‫) ‪− ) 2mc 2 hc ( −‬‬ ‫‪λ° λ‬‬ ‫‪λ° λ‬‬



‫( ‪= 2mc 2 h‬‬



‫‪λ − λ°‬‬ ‫‪c c‬‬ ‫‪h (1 − cos θ) = 2mc 2 h‬‬ ‫‪λ°λ‬‬ ‫‪λ° λ‬‬



‫‪2h‬‬ ‫‪or‬‬



‫‪λ − λ°‬‬ ‫‪c/ 2‬‬ ‫‪(1 − cos θ) 2/ mc 3/ h/‬‬ ‫‪2/ h‬‬ ‫‪λ/ °λ/‬‬ ‫‪λ °λ‬‬ ‫‪2/‬‬



‫) ‪h (1 − cos θ) = mc (λ − λ °‬‬



‫)‪...(1-20‬‬ ‫ﻻﺤﻅ ﺃﻥ‬



‫‪h‬‬ ‫)‪(1 − cos θ‬‬ ‫‪cm‬‬ ‫‪h‬‬ ‫‪mc‬‬



‫= ‪or λ − λ °‬‬



‫ﻓﻲ ﻤﻌﺎﺩﻟﺔ )‪ (1-20‬ﻟﻪ ﺒ‪‬ﻌﺩ ﺍﻟﻁﻭل ﻭﻫﺫﺍ ﺍﻟﺤﺩ ﻴ‪‬ـﺴﻤﻰ ﻁـﻭل‬



‫ﻤﻭﺠﺔ ﻜﻭﻤﺒﺘﻭﻥ ‪ Compton wavelength‬ﻟﻼﻟﻜﺘﺭﻭﻥ ﻭﻤﻘﺩﺍﺭﻩ‬ ‫‪h‬‬ ‫‪≅ 2.4 × 10 −10 cm‬‬ ‫‪mc‬‬



‫)‪(1-21‬‬



‫ﻭﻗﺩ ﺘﺒﻴﻥ ﻤﻥ ﺍﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﻤﻌﻤﻠﻴﺔ ﺃﻥ ﻁﻭل ﻤﻭﺠﺔ ﺍﻟﻔﻭﺘـﻭﻥ ﻭﺍﻟﻤﺘـﺸﺘﺕ‬ ‫ﺘﺘﻁﺎﺒﻕ ﻤﻊ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻨﻅﺭﻴﺔ‪ .‬ﺃﻤ‪‬ﺎ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻟـ‬



‫ﻴﺒﻴﻥ ﻤﺭﻜﺒﺘﻴﻥ ﻟـ‬



‫‪λ‬‬



‫ﺇﺤﺩﺍﻫﻤﺎ ﺘﺨﺘﻠﻑ ﻋﻥ‬



‫‪λ°‬‬



‫‪λ‬‬



‫)ﺍﻨﻅﺭ ﺸﻜل‬



‫‪λ‬‬



‫ﻭﺍﻟـﺫﻱ‬



‫ﻭﺍﻷﺨﺭﻯ ﻤﺴﺎﻭﻴﺔ ﻟـ ‪ ( λ‬ﻭﺍﻟﺘﻲ ﻻ‬ ‫‪°‬‬



‫ﺘﺘﻐﻴﺭ ﺒﺎﻟﻨﺴﺒﺔ ﻓﺈﻥ ﻤﻨﺸﺄﻫﺎ ﻫﻭ ﺘﺼﺎﺩﻡ ﺍﻟﻔﻭﺘﻭﻥ ﺍﻟﺴﺎﻗﻁ ﻤﻊ ﺍﻟﺫﺭﺓ ﻜﻜل‪ ،‬ﻓﻠﻭ ﻋﻭﻀﻨﺎ‬



‫ﻋﻥ ‪ m‬ﺒﻜﺘﻠﺔ ﺍﻟﺫﺭﺓ )ﺒﺩﻻﹰ ﻤﻥ ﻜﺘﻠﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ( ﻭﺤﻴﺙ ﺃﻥ ﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻓـﻲ ﺍﻟﻤﻘـﺎﻡ‬ ‫)ﻭﻫﻲ ﻜﺒﻴﺭﺓ ﺠﺩﺍﹰ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻜﺘﻠﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ( ﻓﺈﻥ ﺍﻟﺤﺩ‬ ‫ﺠﺩﺍﹰ ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺼﻔﺭ‪ ،‬ﺃﻱ ﺃﻥ‬



‫‪λ − λ° ≅ ο‬‬



‫ﻭﻫﺫﺍ ﻴﻌﻨﻲ‬



‫‪h‬‬ ‫‪mc‬‬



‫ﺴﺘﻜﻭﻥ ﻗﻴﻤﺘﻪ ﺼـﻐﻴﺭﺓ‬



‫‪λ ≈ λ°‬‬



‫ﻭﺃﺨﻴـﺭﺍﹰ ﻤـﺎ ﺍﻟـﺫﻱ‬



‫ﻨﺴﺘﻨﺘﺠﻪ ﻤﻥ ﺘﺄﺜﻴﺭ ﻜﻭﻤﺒﺘﻭﻥ؟‬ ‫ﺇﻥ ﺍﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﺘﻲ ﺃﺠﺭﻴﺕ ﻋﻠﻰ ﺍﻹﻟﻜﺘﺭﻭﻥ ﺍﻟﻤﺭﺘﺩ ﻭﺍﻟﻔﻭﺘﻭﻥ ﺍﻟﻤﺘﺒﻌﺜﺭ ﻤﻨـﻪ‬



‫ﺘﺅﻜﺩ‪ -‬ﺒﻤﺎ ﻻ ﻴﺩﻉ ﻤﺠﺎﻻﹰ ﻟﻠﺸﻙ – ﺒﺄﻥ ﻫﺫﺍ ﺍﻟﺘﺼﺎﺩﻡ ﻤﻤﺎﺜل ﻟﻠﺘﺼﺎﺩﻡ ﺍﻟﺫﻱ ﻴﺤـﺩﺙ‬



‫ ‪- ٢٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺒﻴﻥ ﻜﹸﺭﺘﻲ ﺒﻠﻴﺎﺭﺩﻭ‪ ،‬ﺃﻱ ﺃﻥ ﺍﻟﻔﻭﺘﻭﻥ )ﺃﻭ ﺍﻟﺸﻌﺎﻉ ﺍﻟﺴﺎﻗﻁ( ﻴﺠﺏ ﺃﻥ ﺘﺘﻌﺎﻤـل ﻤﻌـﻪ‬ ‫ﻋﻠﻰ ﺃﺴﺎﺱ ﺃﻨﻪ ﺠﺴﻴﻡ‪ ،‬ﻭﻫﺫﺍ ﻴﺅﻜﺩ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﺠﺴﻴﻤﻴﺔ ﻟﻺﺸﻌﺎﻉ‪.‬‬ ‫‪ 1-5‬ﺍﻟﺨﺼﺎﺌﺹ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﻤﺎﺩﺓ ﻭﺤﻴﻭﺩ ﺍﻹﻟﻜﺘﺭﻭﻥ‬ ‫‪1-5 Wave Prosperities and Electron Diffraction‬‬



‫ﻭﺍﺠﻪ ﺍﻟﻌﻠﻤﺎﺀ ﻜﺜﻴﺭﺍﹰ ﻤﻥ ﺍﻟﺼﻌﻭﺒﺎﺕ ﻓﻲ ﻭﺼﻑ ﻁﺒﻴﻌـﺔ ﺍﻟـﻀﻭﺀ‪ .‬ﺒﻌـﺽ‬ ‫ﺍﻟﺘﺠﺎﺭﺏ ﺘﺒﻴﻥ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﻀﻭﺀ )ﻤﺜـل؟ ‪ dispersion‬ﺍﻟـﻀﻭﺀ ﺍﻷﺒـﻴﺽ‬



‫ﻟﻤﺭﻜﺒﺎﺕ ﻁﻴﻔﻪ ﻋﻨﺩ ﻤﺭﻭﺭﻩ ﺩﺍﺨل ﻤﻨﺸﻭﺭ ‪ (prism‬ﻭﺍﻟﺒﻌﺽ ﺍﻵﺨﺭ ﻤﻥ ﺍﻟﺘﺠـﺎﺭﺏ‬



‫ﻴﺜﺒﺕ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﺠﺴﻴﻤﻴﺔ ﻟﻠﻀﻭﺀ )ﻤﺜل ﺍﻟﺘﺄﺜﻴﺭ ﺍﻟﻜﻬﺭﻭﻀﻭﺌﻲ(‪..‬‬



‫ﻭﻫﺫﺍ ﻤﺎ ﻴ‪‬ﻌﺭﻑ ﺒﺎﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﺯﺩﻭﺠﺔ ﻟﻠـﻀﻭﺀ ‪ware- particle duality of‬‬



‫‪.lights‬‬



‫ﻓﻲ ﻋﺎﻡ ‪ ،1924‬ﻗﺩ‪‬ﻡ ﻋﺎﻟﻡ ﻓﺭﻨﺴﻲ ﻴﺩﻋﻰ ﺩﻴﺒﺭﻭﻟـﻲ ‪– Louis de Broglie‬‬ ‫ﻭﺒﻨﺎﺀﺍﹰ ﻋﻠﻰ ﻤﺎ ﺴﺒﻕ ﺫﻜﺭﻩ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻀﻭﺀ‪ -‬ﻨﻤﻭﺫﺠﺎﹰ ﻴﺒﻴﻥ ﻓﻴﻪ ﺍﻟﻁﺒﻴﻌـﺔ ﺍﻟﻤﻭﺠﻴـﺔ‬ ‫ﻟﻠﻤﺎﺩﺓ؛ ﻓﺈﺫﺍ ﻜﺎﻥ ﺍﻟﻀﻭﺀ‪ -‬ﺫﻭ ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﻭﺠﻴﺔ – ﻴﺴﻠﻙ ﺃﺤﻴﺎﻨﺎﹰ ﻜﻤـﺎ ﻟـﻭ ﻜـﺎﻥ‬



‫ﺠﺴﻴﻤﺎﺕ‪ ،‬ﻓﻠﻤﺎﺫﺍ ﻻ ﻴﻜﻭﻥ ﻟﻠﻤﺎﺩﺓ ﻁﺒﻴﻌﺔ ﻤﻭﺠﻴﺔ؟!! ﻭﻗﺩ ﺼﺎﻍ ﺩﻴﺒﺭﻭﻟﻲ ﻓﻜﺭﺘﻪ ﻫﺫﻩ‬ ‫ﺒﺼﻴﻐﺔ ﺭﻴﺎﻀﻴﺔ‪ -‬ﺍﻗﺘﺒﺴﻬﺎ ﻤﻥ ﻋﻼﻗﺔ ﺍﻴﻨﺸﺘﺎﻴﻥ ﺍﻟﺘﻲ ﺘﺭﺘﺒﻁ ﺒـﻴﻥ ﻁـﻭل ﻤﻭﺠـﺔ‬ ‫ﺍﻟﻔﻭﺘﻭﻥ‬



‫ﺤﺭﻜﺘﻪ‬ ‫ﻤﻭﺠﻲ‬



‫‪λ‬‬



‫ﻭﻜﻤﻴﺔ ﺤﺭﻜﺘﻪ ‪P‬‬



‫‪p = mv‬‬



‫‪λ‬‬



‫)‪...(1-22‬‬



‫)‪(١‬‬



‫‪ ،‬ﻓﺈﺫﺍ ﻜﺎﻥ ﺠﺴﻴﻡ ﻜﺘﻠﺘﻪ ‪ m‬ﻭﺴﺭﻋﺘﻪ ‪ v‬ﻓﺈﻥ ﻜﻤﻴﺔ‬



‫ﻋﻨﺩﺌﺫ ﻓﺈﻥ ﺍﻟﺠﺴﻴﻡ – ﻭﺤﺴﺏ ﻨﻤﻭﺫﺝ ﺩﻴﺒﺭﻭﻟﻲ – ﺴﻴﻜﻭﻥ ﻟﻪ ﻁـﻭل‬



‫ﻴﻌﻁﻲ ﺒﺎﻟﻌﻼﻗﺔ‪.‬‬ ‫‪h‬‬ ‫‪p‬‬



‫‪λ‬‬



‫)‪ (١‬ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﻲ ﻗﺩﻤﻬﺎ ﺍﻴﻨﺸﺘﺎﻴﻥ ﻟﻠﻔﻭﺘﻭﻥ ﺍﻟﺫﻱ ﺘﺭﺩﺩﻩ ‪ v‬ﻭﻁﻭل ﻤﻭﺠﺘﻪ ‪ λ‬ﻭﻜﻤﻴﺔ ﺤﺭﻜﺘﻪ ‪p‬‬ ‫‪c hc hc h h‬‬ ‫= = =‬ ‫=‬ ‫‪v hv E E p‬‬ ‫) (‬ ‫‪c‬‬



‫=‪λ‬‬



‫ ‪- ٢٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺤﻴﺙ ‪ h‬ﻫﻭ ﺜﺎﺒﺕ ﺒﻼﻨﻙ‪.‬‬ ‫ﻤﺜﺎل ‪:5‬‬ ‫ﺍﺤﺴﺏ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻟﻜﺭﺓ ﻜﺘﻠﺘﻬﺎ ‪ 0.14 kg‬ﻭﺴﺭﻋﺘﻬﺎ ‪ 40 m/s‬ﻭﻗﺎﺭﻥ ﻫﺫﺍ‬ ‫ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻤﻊ ﻁﻭل ﻤﻭﺠﺔ ﺇﻟﻜﺘﺭﻭﻥ ﺴﺭﻋﺘﻪ ‪ 1.00%‬ﻤﻥ ﺴﺭﻋﺔ ﺍﻟﻀﻭﺀ؟‬ ‫ﺍﻟﺤل‪:‬‬ ‫ﻨﻭﺠﺩ ﺃﻭﻻﹰ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻟﻠﻜﺭﺓ‬ ‫)‪p = mco = (0.14kg) (40m/s‬‬ ‫‪= 5.6 kg.m.s -1‬‬



‫ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ‬



‫‪λ‬‬



‫ﺤﺴﺏ ﻤﻌﺎﺩﻟﺔ ﺩﻴﺒﺭﻭﻟﻲ‬ ‫‪h 6.63×10 −34 J.s‬‬ ‫= =‪λ‬‬ ‫‪= 1.2 × 10 −34 m‬‬ ‫‪−1‬‬ ‫‪p‬‬ ‫‪5.6 kg ms‬‬



‫!!!‬



‫ﻻﺤﻅ ﺃﻥ ﻫﺫﺍ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻤﺘﻨﺎﻫﻲ ﻓﻲ ﺍﻟﺼﻐﺭ‬ ‫ﻨﻭﺠﺩ ﺍﻵﻥ ﻜﻤﻴﺔ ﺤﺭﻜﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ‬ ‫) ‪p = m e v = (9.1× 10 −31 kg) (2.998× 10 6 ms −1‬‬



‫)ﻻﺤﻅ ﺃﻥ ﺍﻟﺴﺭﻋﺔ ‪ v‬ﻟﻺﻟﻜﺘﺭﻭﻥ ﻫﻲ ‪ 1%‬ﻤﻥ ﺴﺭﻋﺔ ﺍﻟـﻀﻭﺀ ﻜﻤـﺎ ﻫـﻭ‬ ‫ﻤﻌﻁﻰ ﻓﻲ ﺍﻟﺴﺅﺍل(‪.‬‬ ‫‪∴ p = 2.73× 10 −24 kg.m.s −1‬‬



‫ﻁﻭل ﻤﻭﺠﺔ ﺩﻴﺒﺭﻭﻟﻲ ﻟﻺﻟﻜﺘﺭﻭﻥ‪.‬‬ ‫‪h‬‬ ‫‪6.63 ×10 −34 J.s‬‬ ‫= =‪λ‬‬ ‫‪= 2.43× 10 −10 m‬‬ ‫‪p 2.73× 10 − 24 kg.m.s −1‬‬ ‫‪= 243 pm‬‬



‫)ﺤﻴﺙ ‪ pm‬ﻴﺴﺎﻭﻱ‬



‫‪m‬‬



‫‪−12‬‬



‫‪ ..(10‬ﻭﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ‪ 243‬ﻤﻘﺎﺭﻨﺔ ﻟﻸﺒﻌﺎﺩ ﺍﻟﺫﺭﻴﺔ‪..‬‬



‫ ‪- ٢٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻤﻥ ﺨﻼل ﻫﺫﻩ ﺍﻟﻘﻴﻡ‪ ،‬ﻴﺘﻀﺢ ﻟﻨﺎ ﺃﻥ ﻁﻭل ﻤﻭﺠﺔ ﺩﻴﺒﺭﻭﻟﻲ ﻟﻺﻟﻜﺘﺭﻭﻥ ﻤﻘﺎﺭﺒﺔ‬ ‫ﻟﻁﻭل ﻤﻭﺠﺔ ﺍﻷﺸﻌﺔ ﺍﻟﺴﻴﻨﻴﺔ‪ .‬ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﺍﻹﻟﻜﺘﺭﻭﻥ ﺴﻴﺴﻠﻙ ﻜﻤﺎ ﻟﻭ ﻜﺎﻥ ﺃﺸﻌﺔ‬



‫ﺴﻴﻨﻴﺔ!!‪.‬‬



‫ﺃﻤﺎ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻜﺭﺓ ﻓﺈﻥ ﻁﻭل ﻤﻭﺠﺔ ﺩﻴﺒﺭﻭﻟﻲ ﻟﻬﺎ ﻗﺼﻴﺭ ﺠﺩﺍﹰ ﻤﻘﺎﺭﻨﺔ ﺒﺎﻷﺒﻌﺎﺩ‬ ‫ﺍﻟﺫﺭﻴﺔ‪...‬‬ ‫ﻤﻭﺠﺎﺕ ﺩﻴﺒﺭﻭﻟﻲ ﻴﻤﻜﻥ ﻤﺸﺎﻫﺩﺘﻬﺎ ﺘﺠﺭﻴﺒﻴﺎﹰ‬ ‫‪de Broglie Waves are observed Experimentally‬‬



‫ﻋﻨﺩ ﺍﺼﻁﺩﺍﻡ ﺃﺸﻌﺔ ‪ X‬ﺒﻤﺎﺩﺓ ﺒﻠﻭﺭﻴﺔ ﻓﺈﻨﻪ ﻴﺘﺸﺘﺕ ﺒﻁﺭﻴﻘـﺔ ﻤﻌﻴﻨـﺔ ﺘﻌﻜـﺱ‬ ‫ﻁﺒﻴﻌﺔ ﺍﻟﺘﺭﺘﻴﺏ ﺍﻟﺩﻭﺭﻱ ﺍﻟﺒﻠﻭﺭﻱ ﻟﻠﻤﺎﺩﺓ ﻫﺫﻩ ﺍﻟﻅﺎﻫﺭﺓ ﺘﹲﻌﺭﻑ ﺒﺤﻴـﻭﺩ ﺃﺸـﻌﺔ ‪.X‬‬



‫‪ X-ray diffraction‬ﻭﺴﺒﺏ ﺤﺩﻭﺙ ﻫﺫﻩ ﺍﻟﻅﺎﻫﺭﺓ ﻫﻭ ﺃﻥ ﺍﻷﺒﻌﺎﺩ ﺍﻟﺒﻠﻭﺭﻴﺔ )ﺍﻟﻤﺴﺎﻓﺔ‬



‫ﺒﻴﻥ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﺒﻠﻭﺭﻴﺔ( ﻤﺘﻘﺎﺭﺒﺔ ﻤﻊ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻷﺸﻌﺔ ‪.X‬‬



‫ﻭﻤﻥ ﺍﻟﻨﺎﺤﻴﺔ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ‪ ،‬ﻓﻘﺩ ﻭ‪‬ﺠﺩ ﺃﻥ ﺘﺒﻌﺜﺭ ﺸﻌﺎﻉ ﻤﻥ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺒﻤـﺎﺩﺓ‬



‫ﺒﻠﻭﺭﻴﺔ ﻴﻨﺸﺄ ﻋﻨﻪ ﺤﻴﻭﺩ ﻤﺸﺎﺒﻪ ﻟﺤﻴﻭﺩ ﺃﺸﻌﺔ ‪ X‬ﻤﻤﺎ ﺒﻴﻥ‪ -‬ﺒﻤﺎ ﻻ ﻴﺩﻉ ﻤﺠﺎﻻﹰ ﻟﻠﺸﻙ‪-‬‬ ‫ﺍﻟﻁﺒﻴﻌﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﺠﺴﻴﻤﺎﺕ‪.‬‬



‫ﺸﻜل ‪ 1-8‬ﻴﻭﻀﺢ ﺘﺸﺘﺕ ﻤﻭﺠـﺎﺕ ﻨﺘﻴﺠـﺔ ﺍﺼـﻁﺩﺍﻤﻬﺎ ﺒﺘﺭﻜﻴـﺏ ﺩﻭﺭﻱ‬



‫‪) periodic Structure‬ﻤﺜﻼﹰ ﺸﻜل ﺒﻠﻭﺭﻱ(‪ .‬ﻭﻤﻥ ﺍﻟﺸﻜل ﻴﺘﻀﺢ ﺃﻨﻪ ﺴﻴﻜﻭﻥ ﻓـﺭﻕ‬ ‫ﻓﻲ ﺍﻟﻁﻭﺭ ‪ phase difference‬ﺒﻴﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻤﻨﻌﻜﺴﺔ ﻤﻥ ﻤـﺴﺘﻭﻴﺎﺕ ﺒﻠﻭﺭﻴـﺔ‬ ‫ﻤﺘﺠﺎﻭﺭﺓ ﻭﻤﻘﺩﺍﺭ ﻓﺭﻕ ﺍﻟﻁﻭﺭ ‪. ( 2D ) 2a sin θ‬‬ ‫‪λ‬‬



‫ﻭﻋﻨﺩﻤﺎ ﻴﺴﺎﻭﻱ ﻓﺭﻕ ﺍﻟﻁﻭﺭ‬



‫‪2 Dn‬‬



‫)ﺤﻴﺙ ‪ n‬ﻫﻭ ﺭﻗﻡ ﺼـﺤﻴﺢ( ﻓـﺴﻴﺘﺤﻘﻕ‬



‫ﺸﺭﻁ ﺍﻟﺘﺩﺍﺨل ﺍﻟﺒ‪‬ﻨﱠﺎﺀ‪ ،‬ﺃﻱ ﺃﻥ‪.‬‬ ‫‪2D‬‬ ‫‪2a sinθ = 2D n‬‬ ‫‪λ‬‬



‫ ‪- ٢٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



Figure 1-8 the scattering of X-rays by crystal planes when the angle 0 between the scattered X-rays and the crystal plane equals the angle between the incident X-rays and the plane. λ=



2a sin θ n



... (1-23)



‫ﺇﻥ ﺸﻜل ﺍﻟﺘﺩﺍﺨل ﺍﻟﻤﺸﺎﻫﺩ ﺘﺠﺭﻴﺒﻴﺎﹰ ﻤﻥ ﺘﺸﺘﺕ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻨﺘﻴﺠﺔ ﺍﺴـﺘﺩﺍﻤﻬﺎ‬ (Davisson and ‫ﺒﺒﻠﻭﺭﺓ )ﻜﻤﺎ ﺘﺤﻘﻕ ﻋﻠﻰ ﻴﺩﻱ ﺍﻟﻌـﺎﻟﻤﻴﻥ ﺩﺍﻓﻴـﺴﻭﻥ ﻭ ﺠﻴﺭﻤـﺭ‬ (1- ‫ﺘﻌﻁﻲ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ‬



λ



‫( ﻭﺫﻟﻙ ﺒﺸﺭﻁ ﺃﻥ‬1-23) ‫ ﻴﻤﻜﻥ ﺘﻔﺴﻴﺭﻩ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ‬Germer



‫ ﺇﻥ ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﺴﺎﻫﻤﺕ ﺒﺨﻁـﻭﺓ‬.1-9 ‫ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺸﻜل‬22) .Wave mechanics ‫ﻜﺒﻴﺭﺓ ﻓﻲ ﺘﻁﻭﻴﺭ ﻋﻠﻡ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻤﻭﺠﺎﺕ‬



FIGURE 1.9 (a) the X-ray diffraction pattern of aluminum foil. (b) the electron diffraction pattern of aluminum foil. The similarity of these two patterns shows that electrons can behave like X-rays and display wavelike properties.



- ٢٦ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫‪ 1-6‬ﺫﺭﺓ ﺒﻭﺭ‬ ‫‪1-6 The Bohr Atom‬‬ ‫‪"The Bohr Theory of the Hydrogen Atom Can be Used‬‬ ‫"‪Drive the Rydberg For mole‬‬



‫ﻓﻲ ﻋﺎﻡ ‪ ،1911‬ﻗﺩﻡ ﺍﻟﻌﺎﻟﻡ ﺍﻟﺩﻨﻤﺎﺭﻜﻲ ﻨﻴﻠﺱ ﺒـﻭﺭ ‪ Niels Bohr‬ﻨﻅﺭﻴﺘـﻪ‬



‫ﺍﻟﺸﻬﻴﺭﺓ ﻟﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ﻭﺍﻟﺘﻲ ﺘﺸﺭﺡ ﻭﺘﻔﺴﺭ ﺒﺒﺴﺎﻁﺔ ﺍﻟﻁﻴـﻑ ﺍﻟﻤﻨﺒﻌـﺙ ﻤـﻥ‬ ‫ﺍﻟﺫﺭﺓ‪.‬‬ ‫ﻁﺒﻘﺎﹰ ﻟﻠﻨﻤﻭﺫﺝ ﺍﻟﻨﻭﻭﻱ ﻟﻠﺫﺭﺓ‪ ،‬ﻭﺍﻟﺫﻱ ﻴﻘﻭﻡ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ ﻟﺘﻁـﺎﻴﺭ‬



‫ﺠﺴﻴﻤﺎﺕ ‪ ، α‬ﻴﻤﻜﻥ ﺍﻋﺘﺒﺎﺭ ﺃﻥ ﻜﺘﻠﺔ ﺍﻟﺫﺭﺓ ﻤﺘﺭﻜﺯﺓ ﻓﻲ ﺍﻟﻨﻭﺍﺓ ﻭﺍﻟﺘﻲ ﺘﻌﺘﺒـﺭ ﺜﺎﺒﺘـﺔ‬ ‫ﻭﻴﺩﻭﺭ ﺤﻭﻟﻬﺎ ﺇﻟﻜﺘﺭﻭﻥ‪ .‬ﺍﻟﻘﻭﺓ ‪ F‬ﺍﻟﺘﻲ ﻴﺭﺘﺒﻁ ﺒﻬﺎ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻓﻲ ﻤﺩﺍﺭ ﺩﺍﺌﺭﻱ ﻫـﻲ‬ ‫ﻗﻭﺓ ﻜﻭﻟﻭﻡ ﺤﺴﺏ ﻗﺎﻨﻭﻥ ﻜﻭﻟﻭﻡ‪.‬‬



‫)‪... (1-24‬‬



‫)‪1 (Ze) (e‬‬ ‫‪4Dε ° r 2‬‬



‫=‪F‬‬



‫ﺤﻴﺙ )‪ (Ze‬ﻫﻲ ﺸﺤﻨﺔ ﺍﻟﻨﻭﺍﺓ )ﻟﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ‪ ( Z =1‬ﻭ )‪ (e‬ﻫﻲ ﺸﺤﻨﺔ‬



‫ﺍﻹﻟﻜﺘﺭﻭﻥ‪.‬‬



‫‪ε ° = 8.85× 10 −12 c 2 N −1 m −2‬‬



‫‪,‬‬



‫‪r‬‬



‫ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺫﺭﺓ‪ .‬ﺘﺘﻭﺍﺯﻥ ﻗﻭﺓ ﻜﻭﻟﻭﻡ ﻤﻊ ﺍﻟﻘﻭﺓ‬



‫ﺍﻟﻁﺎﺭﻗﺔ ﺍﻟﻤﺭﻜﺯﻴﺔ‪.‬‬ ‫)‪...(1-25‬‬



‫‪mv 2‬‬ ‫‪r‬‬



‫=‪F‬‬



‫ﺤﻴﺙ ‪ v‬ﻫﻲ ﺍﻟﺴﺭﻋﺔ ﺍﻟﺨﻁﻴﺔ ﻟﻺﻟﻜﺘﺭﻭﻥ‪.‬‬ ‫ﺒﻤﺴﺎﻭﺍﺓ ﺍﻟﻘﻭﺘﺎﻥ ﻨﺠﺩ‪:‬‬ ‫)‪...(1-26‬‬



‫‪1 e 2 mv 2‬‬ ‫=‬ ‫‪4Dε ° r 2‬‬ ‫‪r‬‬



‫ ‪- ٢٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻁﺒﻘﺎﹰ ﻟﻘﻭﺍﻨﻴﻥ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﻜﻼﺴﻴﻜﻴﺔ‪ ،‬ﻓﺈﻥ ﺍﻟﺠﺴﻡ ﺍﻟﻤﺸﺤﻭﻥ ﺍﻟﻤﺘﺴﺎﺭﻉ‪ .‬ﻴ‪‬ﺼﺩﺭ‬ ‫ﺇﺸﻌﺎﻉ ﻤﻤﺎ ﻴﺅﺩﻱ ﺇﻟﻰ ﻓﻘﺩﺍﻥ ﻟﻁﺎﻗﺘﻪ‪ ،‬ﻭﻟﻬﺫﺍ ﺍﻟﺴﺒﺏ ﻓﺈﻥ ﺍﻹﻟﻜﺘﺭﻭﻥ ﺴـﻴﻔﻘﺩ ﻁﺎﻗﺘـﻪ‬



‫ﺨﻼل ﺩﻭﺭﺍﻨﻪ ﺤﻭل ﺍﻟﻨﻭﺍﺓ ﻭﺴﻴﺩﻭﺭ ﻓﻲ ﺸﻜل ﺤﻠﺯﻭﻨﻲ ﻭﻴﺘﻼﺸﻰ ﺩﺍﺨـل ﺍﻟﻨـﻭﺍﺓ‪،‬‬



‫ﻭﻋﻠﻴﻪ ﻓﻼ ﻴﻤﻜﻥ ﺃﻥ ﻴﻭﺠﺩ ﻤﺩﺍﺭ ﻤﺴﺘﻘﺭ ‪ stable orbit‬ﻟﻼﻟﻜﺘﺭﻭﻥ‪ .‬ﻭﻟﻠﺨﺭﻭﺝ ﻤـﻥ‬ ‫ﻫﺫﺍ ﺍﻹﺸﻜﺎل ﺍﻗﺘﺭﺡ ﺒﻭﺭ ﻓﺭﻀﻴﺎﺘﻪ ﺍﻟﺘﻲ ﺘﺨﺎﻟﻑ ﻗﻭﺍﻨﻴﻥ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪.‬‬ ‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻷﻭﻟﻰ‪:‬‬ ‫ﺍﻟﻤﺩﺍﺭﺍﺕ ﺍﻹﻟﻜﺘﺭﻭﻨﻴﺔ ﺍﻟﻤﺴﺘﻘﺭﺓ )ﺍﻟﺜﺎﺒﺘﺔ(‬ ‫‪Stationary electron orbits‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻔﺭﻀﻴﺔ ﻫﻲ ﺘﹶﺤﺩٍ ﺒﺎﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﻟﻠﻔﻴﺯﻴﺎﺀ‪ .‬ﻭﻟﻘﺩ ﺤﺩﺩ ﺒـﻭﺭ ﻫـﺫﻩ‬



‫ﺍﻟﻤﺩﺍﺭﺍﺕ ﺒﺎﺴﺘﺤﺩﺍﺙ ﺸﺭﻁ ﺍﻟﺘﻜﻤﻴﻡ ‪ quantization condition‬ﻭﺍﻓﺘﺭﺽ ﺃﻥ ﻜﻤﻴﺔ‬ ‫ﺍﻟﺤﺭﻜﺔ ﺍﻟﺯﺍﻭﻴﺔ ‪ angular momentum L‬ﻤﻜﻤﻠﺔ ﺤﺴﺏ ﺍﻟﻌﻼﻗﺔ‪.‬‬ ‫‪L = mvr = nh , n = 1, 2, ........‬‬



‫)‪...(1-27‬‬ ‫ﻤﻥ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﻨﺠﺩ ﺃﻥ‬



‫‪hh‬‬ ‫‪mr‬‬



‫=‪v‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪(1-26‬‬ ‫‪1 e 2 m nh 2 m n 2 h 2‬‬ ‫) ( =‬ ‫‪4Dε ° r 2 r mr‬‬ ‫‪m2 r3‬‬



‫ﻭﻓﻴﻬﺎ ﻨﺠﺩ ﺃﻥ‪.‬‬ ‫)‪...(1-28‬‬



‫‪4D ε ° h 2 2‬‬ ‫‪n2 h2‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪.n‬‬ ‫= ‪e‬‬ ‫=‪⇒ r‬‬ ‫‪4Dε °‬‬ ‫‪mr‬‬ ‫‪me 2‬‬



‫ﻭﻤﻥ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﻨﺠﺩ ﺃﻥ ﺃﻨﺼﺎﻑ ﺃﻗﻁﺎﺭ ﺍﻟﻤﺩﺍﺭﺍﺕ ﻟﻬﺎ ﻤﻘﺎﺩﻴﺭ ﻤﺤـﺩﺩﺓ ﺃﻭ‬ ‫ﻤﻜﻤﻤﺔ‪ .‬ﺇﻥ ﺃﻗل ﻨﺼﻑ ﻗﻁﺭ ﻟﻺﻟﻜﺘﺭﻭﻥ ﻴﻭﺠﺩ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ ‪.n = 1‬‬ ‫ ‪- ٢٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪( u D ) ( 8.85×10−12 c 2 N −1 m −2 ) (1.055× 10−34 J.s) 2‬‬ ‫=‪r‬‬ ‫‪(9.11× 10 − 31 kg) (1.602 × 10 −19 c) 2‬‬ ‫‪°‬‬



‫‪= 5.29 ×10 −11 m = 52.9 pm ≈ 0.53 A‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻴﺭﻤﺯ ﻟﻬﺎ ﻋﺎﺩﺓ ﺒـ‬



‫‪a°‬‬



‫ﺍﻟﻁﺎﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻺﻟﻜﺘﺭﻭﻥ ‪ E‬ﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻥ ﻤﺠﻤﻭﻉ ﻁـﺎﻗﺘﻲ ﺍﻟﺤﺭﻜـﺔ ‪k.E‬‬



‫ﻭﺍﻟﺘﻲ ﺘﺴﺎﻭﻱ‬ ‫)‪...(1-29‬‬



‫‪1‬‬ ‫‪mv 2‬‬ ‫‪2‬‬



‫‪e2 1‬‬ ‫‪4D ε ° r‬‬



‫ﻭﻁﺎﻗﺔ ﺍﻟﻭﻀﻊ )‪ V(r‬ﻭﺼﻴﻐﺘﻬﺎ‪.‬‬



‫‪V (r) = −‬‬



‫ﺍﻹﺸﺎﺭﺓ ﺍﻟﺴﺎﻟﺒﺔ ﻓﻲ )‪ (1-29‬ﺘﻌﻨﻲ ﺃﻥ ﺍﻟﺒﺭﻭﺘﻭﻥ ﻭﺍﻹﻟﻜﺘﺭﻭﻥ ﻴﺠـﺫﺏ ﻜـل‬



‫ﻤﻨﻬﻤﺎ ﺍﻵﺨﺭ‪.‬‬



‫ﻻﺤﻅ ﺃﻥ ﻁﺎﻗﺔ ﺍﻟﺘﺠﺎﺫﺏ ﺒﻴﻥ ﺍﻟﺒﺭﻭﺘﻭﻥ ﻭﺍﻹﻟﻜﺘﺭﻭﻥ ﺘﻘل ﻜﻠﻤﺎ ﺯﺍﺩﺕ ﺍﻟﻤﺴﺎﻓﺔ‬



‫ﺒﻴﻨﻬﻤﺎ ﻭﻋﻨﺩ‬ ‫)‪...(1-30‬‬



‫∞= ‪r‬‬



‫ﻓﺈﻥ‬



‫‪V (∞ ) = 0‬‬



‫‪1‬‬ ‫‪e2 1‬‬ ‫‪mv 2 + (−‬‬ ‫)‬ ‫‪2‬‬ ‫‪4Dε ° r‬‬



‫ﻤﻥ ﺍﻟﻌﻼﻗﺔ )‪(1-26‬‬



‫= )‪E = KE + V (r‬‬



‫‪ 1 e 2 mv 2 ‬‬ ‫=‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪r ‬‬ ‫‪ 4Dε ° r‬‬



‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ‪ mv2‬ﺒﺎﻟﺼﻴﻐﺔ‬



‫‪1 e2‬‬ ‫‪4Dε ° r‬‬



‫= ‪mv 2‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪(1-30‬‬ ‫‪1 1 e2‬‬ ‫‪1 e2‬‬ ‫( = ‪∴E‬‬ ‫‪)−‬‬ ‫‪2 4D ε ° r‬‬ ‫‪4Dε ° r‬‬ ‫)‪......(1 − 3‬‬



‫‪1 1 e2‬‬ ‫‪1 e2‬‬ ‫‪=−‬‬ ‫‪2 4Dε ° r‬‬ ‫‪8Dε ° r‬‬



‫‪=−‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ ‪ r‬ﻤﻥ )‪ (1-28‬ﻓﻲ )‪ (1-31‬ﻨﺠﺩ‪:‬‬ ‫‪h‬‬ ‫‪2D‬‬ ‫‪me 4‬‬ ‫‪1‬‬ ‫‪2 2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪32 D ε ° h n‬‬



‫‪=−‬‬ ‫‪n2‬‬



‫‪1‬‬ ‫‪e2‬‬ ‫‪8Dε ° 4Dε ° h 2‬‬ ‫‪2‬‬



‫=‪h‬‬



‫‪E=−‬‬



‫‪me‬‬



‫ ‪- ٢٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻻﺨﺘﺼﺎﺭ‬



‫‪h‬‬ ‫‪2h‬‬



‫=‪h‬‬ ‫‪1‬‬ ‫‪n2‬‬ ‫‪n =1,2,.............‬‬



‫‪me 4‬‬



‫‪E=−‬‬



‫‪2‬‬



‫‪h‬‬ ‫‪4D 2‬‬ ‫‪me 4 1‬‬ ‫‪∴E n = − 2 2 2‬‬ ‫‪8ε ° h n‬‬ ‫‪2‬‬



‫‪(32)D 2 ε °‬‬



‫)‪...(1-32‬‬ ‫ﺍﻹﺸﺎﺭﺓ ﺍﻟﺴﺎﻟﺒﺔ ﻓﻲ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﺩل ﻋﻠﻰ ﺃﻥ ﺤﺎﻻﺕ ﺍﻟﻁﺎﻗﺔ ﺤﺎﻻﺕ ﻤﻘﻴﺩﺓ‬



‫‪.bound states‬‬



‫ﻻﺤﻅ ﺃﻥ ﻓﻲ ﺤﺎﻟﺔ ‪ n = 1‬ﻓﺈﻥ ﻤﻌﺎﺩﻟﺔ )‪ (1- 32‬ﺘﻌﻁﻴﻨﺎ ﺍﻟﺤﺎﻟﺔ ﺫﺍﺕ ﺃﻗل ﻁﺎﻗﺔ‬ ‫‪ state of lowest energy‬ﻭﺘﺴﻤﻰ ﻫﺫﻩ ﺍﻟﻁﺎﻗﺔ ﺒﺎﻟﻁﺎﻗﺔ ﺍﻷﺭﻀﻴﺔ ﺃﻭ ﻁﺎﻗﺔ ﺍﻟﺤﺎﻟـﺔ‬



‫ﺍﻷﺭﻀﻴﺔ ‪ .ground-state energy‬ﺃﻤﺎ ﺤﺎﻻﺕ ﺍﻟﻁﺎﻗﺔ ﺍﻷﻋﻠﻰ ﺘـﺴﻤﻰ ﺍﻟﺤـﺎﻻﺕ‬ ‫ﺍﻟﻤﺴﺘﺜﺎﺭﺓ ‪ excited states‬ﻭﻋﺎﺩﺓ ﻤﺎ ﺘﻜﻭﻥ ﻏﻴﺭ ﻤﺴﺘﻘﺭﺓ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﺤﺎﻟﺔ ﺍﻷﺭﻀﻴﺔ‪،‬‬



‫ﻭﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﺫﺭﺓ )ﺃﻭ ﺍﻟﺠﺯﻱﺀ( ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻤﺴﺘﺜﺎﺭﺓ ﻓﺈﻨﻬﺎ ﺘـﺴﺘﺭﺨﻲ ﻭﺘﺭﺠـﻊ‬



‫ﻟﻠﺤﺎﻟﺔ ﺍﻷﺭﻀﻴﺔ ﻭﺘﻌﻁـﻲ ﺃﻭ ﺘـﺘﺨﻠﺹ ﻤـﻥ ﻁﺎﻗﺘﻬـﺎ ﻓـﻲ ﺼـﻭﺭﺓ ﻤﻭﺠـﺎﺕ‬



‫ﻜﻬﺭﻭﻤﻐﻨﺎﻁﻴﺴﻴﺔ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺍﻟﺸﻜل )‪.(1-10‬‬



‫ﺍﻟﻔﺭﻀﻴﺔ ﺍﻟﺜﺎﻨﻴﺔ‪ :‬ﻴﻤﻜﻥ ﻟﻼﻟﻜﺘﺭﻭﻨﺎﺕ ﺃﻥ ﺘﻨﺘﻘل )ﺃﻭ ﺘﻘﻔـﺯ( ﻤـﻥ ﻤـﺩﺍﺭﺍﺘﻬﺎ‬



‫ﺒﻁﺭﻴﻘﺔ ﻏﻴﺭ ﻤﺘﺼﻠﺔ ‪ discontinuous transitions‬ﻭﺃﻥ ﺍﻟﺘﻐﻴﺭ ﻓـﻲ ﺍﻟﻁﺎﻗـﺔ ‪ΔE‬‬



‫ﻴﺅﺩﻱ ﻻﻨﺒﻌﺎﺙ ﺇﺸﻌﺎﻉ ﻟﻪ ﺘﺭﺩﺩ ‪ . hv‬ﻭﻟﻬﺫﺍ ﺍﻟﺴﺒﺏ ﻟﻭ ﺍﻨﺘﻘل ﺇﻟﻜﺘﺭﻭﻥ ﻤـﻥ ﺍﻟﻤـﺩﺍﺭ‬ ‫ﺍﻟﺫﻱ ﻟﻪ ‪ n2 =1‬ﺇﻟﻰ ﺍﻟﻤﺩﺍﺭ ﺫﻭ ‪ n1 = 2‬ﻓﺈﻥ ﺍﻟﻔﺭﻕ ﻓﻲ ﺍﻟﻁﺎﻗﺔ‪.‬‬ ‫‪me 4 1‬‬ ‫‪me 4 1‬‬ ‫‪−‬‬ ‫‪−‬‬ ‫(‬ ‫)‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪8ε ° h 2 n 2‬‬ ‫‪8 ε ° h 2 n1‬‬ ‫)‪...............(1 − 33‬‬



‫‪ΔE = E 2 − E 1 = −‬‬



‫‪me 4‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ΔE = 2 2 ( 2 − 2 ) = hv‬‬ ‫‪8ε ° h n 1 n 2‬‬



‫ ‪- ٣٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



FIGURE 1.10 The energy level diagram for the hydrogen atom, showing how transitions from higher states into some particular state lead to the observed spectral series for hydrogen.



‫( ﻴﻤﻜﻨﻨﺎ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﻟﻠﻌﻼﻗﺔ ﺍﻟﻌﺩﺩﻴﺔ‬1-33) ‫ﻤﻥ ﻤﻌﺎﺩﻟﺔ‬



.‫ﺍﻟﻤﻌﺭﻭﻓﺔ ﺒﻤﻌﺎﺩﻟﺔ ﺭﻴﺩﺒﺭﺝ ﻭﺍﻟﺘﻲ ﺘﺼﻑ ﺠﻤﻴﻊ ﺨﻁﻭﻁ ﺍﻟﻁﻴﻑ ﻟﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ‬ .‫( ﻨﺠﺩ‬1-33) ‫ﻓﻲ‬



hc λ



‫ ﺒـ‬hv ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻋﻥ‬



hc me 4 1 1 = 2 2 ( 2 − 2) λ 8ε ° h n 1 n 2 1 λ 1 me 4 1 1 = 2 3 ( 2 − 2) λ 8ε ° h c n 1 n 2 1 1 1 = R H ( 2 − 2 ) ..............(1 − 34) λ n1 n2



- ٣١ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﻭﻓﻴﻬﺎ ﻨﺠﺩ‬



‫ﺤﻴﺙ ‪ RH‬ﻫﻭ ﺜﺎﺒﺕ ﺭﻴﺩﺒﺭﺝ ‪Rydberg constant‬‬ ‫‪me 4‬‬ ‫‪(9.11× 10 −31 kg) (1.60× 10−19 c)4‬‬ ‫=‬ ‫‪2‬‬ ‫)‪8ε ° h 3c (8) (8.85× 10 −12 c 2 N −1m − 2 ) (6.63 × 10 − 34 J.s)3 (2.0 × 108 m/s‬‬



‫= ‪RH‬‬



‫‪R H =1.089 × 107 m −1‬‬ ‫)‪(1‬‬



‫ﺒﺎﻟﻨﻅﺭ ﻟﺨﻁﻭﻁ ﺍﻟﻁﻴﻑ ﻓﻲ ﺸﻜل ‪ 1-10‬ﻴﻤﻜﻥ ﺃﻥ ﻨﻼﺤﻅ ﺍﻟﺘﻭﺍﻓﻕ ﺒﻴﻥ ﻨﻤﻭﺫﺝ‬ ‫ﺒﻭﺭ ﻭﻫﺫﻩ ﺍﻟﺨﻁﻭﻁ ﺍﻟﻤﺘﻔﻘﺔ ﻤﻊ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﻴﺒﻴﺔ‪ .‬ﻓﻤﺜﻼﹰ ﺨﻁﻭﻁ ﺴﻠـﺴﻠﺔ ﻟﻴﻤـﺎﻥ‬ ‫‪ Lyman‬ﺘﻨﺸﺄ ﻤﻥ ﺭﺠﻭﻉ )ﺍﺴﺘﺭﺨﺎﺀ( ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﺴﺘﺜﺎﺭﺓ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﻌﻠﻴﺎ‬



‫ﻟﻠﻤﺩﺍﺭ ﺍﻷﻭل )‪ ،(n = 1‬ﻭﻜﺫﻟﻙ ﺨﻁﻭﻁ ﺴﻠﺴﻠﺔ ﺒﺎﻟﻤﺭ ‪ Balmer series‬ﺘﺤﺩﺙ ﻤـﻥ‬ ‫ﺍﺴﺘﺭﺨﺎﺀ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﺴﺘﺜﺎﺭﺓ ﻤﻥ ﻜل ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﻌﻠﻴـﺎ ﻟﻠﻤـﺴﺘﻭﻯ ﺍﻟﺜـﺎﻨﻲ‬



‫)‪.(n=2‬‬



‫‪٢‬‬



‫ﻤﺜﺎل ‪6‬‬



‫ﺍﺤﺴﺏ ﻁﺎﻗﺔ ﺍﻟﺘﺄﻴﻥ ﻟﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ؟‬ ‫?‪Calculate the ionization energy of the hydrogen atom‬‬



‫ﺍﻟﺤل‪:‬‬ ‫ﻁﺎﻗﺔ ﺍﻟﺘﺄﻴﻥ ﻫﻲ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻼﺯﻤﺔ ﻹﺯﺍﻟﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻤـﻥ ﻤـﺴﺘﻭﻯ ﺍﻟﺤﺎﻟـﺔ‬



‫ﺍﻷﺭﻀﻴﺔ ‪ n1 = 1‬ﺇﻟﻰ ﺍﻟﺤﺎﻟﺔ ﻏﻴﺭ ﺍﻟﻤﻘﻴﺩﺓ ﺃﻱ‬



‫∞= ‪n2‬‬



‫‪me 4‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫)‪( 2 − 2‬‬ ‫‪2 2‬‬ ‫‪8ε ° h n 1 n 2‬‬



‫= ‪ΔE‬‬



‫‪(9.1 × 10 - 34 kg) (1.9 × 10 −19 c) 4‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫=‬ ‫)‪( 2 − 2‬‬ ‫‪− 12 2‬‬ ‫‪−1‬‬ ‫‪−2‬‬ ‫‪− 34‬‬ ‫‪2‬‬ ‫∞ ‪(8) (8.85 × 10 c N m ) (6.63 × 10 J.s) 1‬‬ ‫‪= 2.18 × 10 -18 J = 13.6 eV‬‬



‫ﻓﻲ ﻋﺎﻡ ‪ ،1925‬ﻅﻬﺭﺕ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﺤﺩﻴﺜﺔ ﻟﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ ﻭﺫﻟﻙ ﺒﻨﺎﺀﺍﹰ ﻋﻠـﻰ‬ ‫ﺍﻷﺒﺤﺎﺙ ﺍﻟﺘﻲ ﺭﺴﺦ ﺩﻋﺎﺌﻤﻬﺎ ﻜل ﻤﻥ ﺍﻟﻌﺎﻟﻡ ﻫﻴﺯﻨﺒﺭﺝ ‪ W. Heisenberg‬ﻭﺍﻟﻌـﺎﻟﻡ‬ ‫‪(2 ) The exact value of RH = 1.09736 × 107 m-1 = 109.736 cm-1‬‬



‫ ‪- ٣٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻤﺎﻜﺱ ﺒﻭﺭﻥ ‪ ،M. Born‬ﻭﺍﻟﻌﺎﻟﻡ ﺸـﺭﻭﺩﻨﺠﺭ ‪ E. Shrödinger‬ﻭﺍﻟﻌـﺎﻟﻡ ﺩﻴـﺭﺍﻙ‬ ‫‪.P. Dirac‬‬ ‫ﻭﺘﺸﺭﺡ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻜﻤﻴﺔ ﺍﻟﺤﺩﻴﺜﺔ ﺍﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﻤﺤﻴﺭﺓ ﺒﺸﺭﻁ ﺃﻥ ﻨﺘﺨﻠـﻰ ﻋـﻥ‬



‫ﺒﻌﺽ ﺍﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﺘﻲ ﺘﺭﺴﺨﺕ ﻓﻲ ﺃﺫﻫﺎﻨﻨﺎ ﻤﻥ ﻋﻠﻡ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ!‪.‬‬ ‫‪ (Q1‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻜﺜﺎﻓﺔ ﺍﻹﺸﻌﺎﻉ ﺘﻌﻁﻰ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ‬



‫‪8Dh‬‬ ‫‪v3‬‬ ‫‪c 3 e hv/KT − 1‬‬



‫)‪ (a‬ﺍﺤﺴﺏ ﻜﺜﺎﻓﺔ ﺍﻟﻁﺎﻗﺔ ﻓﻲ ﻤﺩﻯ ﻁﻭل ﻤﻭﺠﻲ ‪ ، Δλ‬ﺃﻱ‬ ‫)‪ (b‬ﺍﺴﺘﺨﺩﻡ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺠﺯﺀ )‪ (a‬ﻹﻴﺠﺎﺩ ﻗﻴﻤﺔ‬



‫‪max‬‬



‫‪λ =λ‬‬



‫ﺍﻹﺸﻌﺎﻉ ﺃﻗﺼﻰ ﻤﺎ ﻴﻤﻜﻥ؟‬



‫)‪ (c‬ﻭﻀﺢ ﺃﻥ‬



‫‪λ max‬‬



‫ﻴﻤﻜﻨﻨﺎ ﻜﺘﺎﺒﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺼﻴﻐﺔ‬



‫‪b‬‬ ‫‪T‬‬



‫‪max‬‬



‫‪, T)dλ‬‬



‫= )‪u (v, T‬‬



‫‪ u (λ‬؟‬



‫ﻭﺍﻟﺘﻲ ﻋﻨﺩﻫﺎ ﺘﻜﻭﻥ ﻜﺜﺎﻓﺔ‬



‫‪ ، λ‬ﻭﺍﺤﺴﺏ ﻗﻴﻤـﺔ ‪ b‬ﻓـﻲ‬



‫ﺤﺎﻟﺔ ﺴﻁﺢ ﺍﻟﺸﻤﺱ ﻋﻠﻤﺎﹰ ﺒﺄﻥ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺴﻁﺢ ﺍﻟﺸﻤﺱ ﺘﺴﺎﻭﻱ ‪5620k‬؟‬ ‫)ﺘﻨﺒﻴﻪ‪ :‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ s-x = se-x‬ﺒﺎﻟﺭﺴﻡ ﺍﻟﺒﻴﺎﻨﻲ(‪.‬‬ ‫)‪ (d‬ﻴﻨﺒﻌﺙ ﻤﻥ ﺃﺸﺩ ﺍﻟﻨﺠﻭﻡ ﺤﺭﺍﺭﺓ )ﻨﺠﻡ ﺍﻟﺸﹼﻌﺭﻱ ‪ (Sirius‬ﻁﻴﻑ ﺇﺸﻌﺎﻉ ﺍﻟﺠـﺴﻡ‬ ‫ﺍﻷﺴﻭﺩ ﻭﺍﻟﺫﻱ ﻟﻪ‬



‫‪= 260nm‬‬



‫‪max‬‬



‫‪ . λ‬ﺍﺤﺴﺏ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺴﻁﺢ ﻫﺫﺍ ﺍﻟﻨﺠﻡ؟‬



‫)‪ (e‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻤﺘﻭﺴﻁ ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺴﻁﺢ ﺍﻷﺭﺽ ‪ .288 k‬ﺍﺴﺤﺏ ﺍﻟﻁـﻭل‬ ‫ﺍﻟﻤﻭﺠﻲ ﻷﻗﺼﻰ ﻜﺜﺎﻓﺔ ﺇﺸﻌﺎﻉ ﻟﻠﺠﺴﻡ ﺍﻷﺴﻭﺩ ﻟﻸﺭﺽ‪ .‬ﺤﺩﺩ ﻷﻱ ﺠﺯﺉ ﻤـﻥ‬



‫ﺍﻟﻁﻴﻑ ﻴﻘﺎﺒل ﻫﺫﺍ ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ؟‬ ‫‪ (Q2‬ﺃﻗﺼﻰ ﻁﺎﻗﺔ ﺤﺭﻜﻴﺔ ﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻤﻨﺒﻌﺜﺔ ﻤﻥ ﺴﻁﺢ ﺃﻟﻭﻤﻨﻴﻭﻡ ﺘﺴﺎﻭﻱ ‪2.3 eV‬‬



‫ﻭﺫﻟﻙ ﻋﻨﺩ ﺘﻌﺭﺽ ﻫﺫﺍ ﺍﻟﺴﻁﺢ ﻷﺸﻌﺔ ﺫﺍﺕ ﻁﻭل ﻤﻭﺠﻲ ‪ .2000Å‬ﺃﻤﺎ ﻋﻨـﺩ‬ ‫ﺘﻌﺭﺽ ﺍﻟﺴﻁﺢ ﻷﺸﻌﺔ ﻁﻭﻟﻬﺎ ﺍﻟﻤﻭﺠﻲ ‪ 2580 Å‬ﻓـﺈﻥ ﺍﻟﻁﺎﻗـﺔ ﺍﻟﺤﺭﻜﻴـﺔ‬



‫ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﻟﻤﻨﺒﻌﺜﺔ ﺘﺴﺎﻭﻱ ‪ .0.9 eV‬ﺍﺤﺴﺏ ﻗﻴﻤﺔ ﺜﺎﺒـﺕ ﺒﻼﻨـﻙ ﻭﺩﺍﻟـﺔ‬ ‫ﺍﻟﺸﻐل ﻟﻸﻟﻤﻭﻨﻴﻭﻡ؟‬



‫ ‪- ٣٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪ (Q3‬ﺍﺤﺴﺏ )‪ (a‬ﺍﻟﻁﻭل ﺍﻟﻤﻭﺠﻲ ﻭﺍﻟﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﻴﺔ ﻹﻟﻜﺘﺭﻭﻥ ﻤ‪‬ﻌ‪‬ﺠ‪‬ل ﺘﺤﺕ ﺘـﺄﺜﻴﺭ‬ ‫ﻓﺭﻕ ﺠﻬﺩ ‪ 100 V‬ﻭ )‪ (b‬ﻁﺎﻗﺔ ﺍﻟﺤﺭﻜﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻟﻪ ﻁﻭل ﻤﻭﺠﻲ ﺩﻴﺒﺭﻭﻟﻲ‬



‫‪) 200 pm‬ﺤﻴﺙ ‪(1 pm = 10-12 m‬؟‬



‫‪ (Q4‬ﺃﺸﻌﺔ ‪ X‬ﺍﺴﺘﻁﺎﺭﺕ ﺒﺈﻟﻜﺘﺭﻭﻥ ﺴﺎﻜﻥ‪ .‬ﺍﺤﺴﺏ ﻁﺎﻗﺔ ﺃﺸـﻌﺔ ‪ X‬ﺍﻟـﺴﺎﻗﻁﺔ ﺇﺫﺍ‬ ‫ﻋﻠﻤﺕ ﺃﻥ ﻁﻭل ﻤﻭﺠﺔ ﺍﻷﺸﻌﺔ ﺍﻟﻤﺴﺘﻁﺎﺭﺓ ﻋﻨﺩ ﺯﺍﻭﻴﺔ‬



‫‪60°‬‬



‫ﺘﺴﺎﻭﻱ ‪ 0.035 A‬؟‬ ‫‪°‬‬



‫‪ (Q5‬ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻤﺴﺘﻭﻴﻴﻥ ﻤﺘﺠﺎﻭﺭﻴﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﺒﻠﻭﺭﻴـﺔ ﻴـﺭﺍﺩ ﻗﻴﺎﺴـﻬﺎ‬ ‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﺃﺸﻌﺔ ‪ X‬ﻁﻭﻟﻬﺎ ﺍﻟﻤﻭﺠﻲ ‪ 0.5 Å‬ﻭﺍﻟﺘﻲ ﺘﻡ ﻗﻴﺎﺴﻬﺎ ﻋﻨﺩ ﺯﺍﻭﻴـﺔ ‪. 5‬‬ ‫‪°‬‬



‫ﺍﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻫﺫﻴﻥ ﺍﻟﻤﺴﺘﻭﻴﻴﻥ؟ ﻋﻨﺩ ﺃﻱ ﺯﺍﻭﻴﺔ ﻴﻤﻜﻨﻨـﺎ ﻗﻴـﺎﺱ‬



‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﺜﺎﻨﻴﺔ؟‬



‫ﺇﺠﺎﺒﺎﺕ ﺍﻷﺴﺌﻠﺔ‪ :‬ﺍﻹﺠﺎﺒﺔ ﺍﻷﺨﻴﺭﺓ ﻤﻥ ﻜل ﺴﺅﺍل‪:‬‬ ‫‪8Dhc hc/λc/‬‬ ‫‪(e‬‬ ‫‪− T) −1‬‬ ‫‪λs‬‬



‫= )‪u (λ , T‬‬



‫)‪Q1) (a‬‬



‫ﻨﻅﺭﻱ ‪ λ max = b / T‬ﺍﻟﻤﻁﻠﻭﺏ ﺇﺜﺒﺎﺕ ﺍﻟﻘﺎﻨﻭﻥ )‪(b‬‬ ‫‪°‬‬



‫‪λ mex = 5160 A‬‬



‫)‪(c‬‬



‫‪T = 1.12 ×10 4 k 1‬‬



‫)‪(d‬‬



‫‪λ = 1.01× 10 −5 m‬‬



‫)‪(e‬‬



‫‪W = 3.92 eV‬‬



‫)‪(Q2‬‬



‫‪K.E = 6.02 × 10-18 J‬‬



‫)‪(Q3‬‬



‫‪E = 5.4× 105 eV‬‬



‫)‪(Q4‬‬



‫‪θ =10 °‬‬



‫)‪(Q5‬‬



‫ ‪- ٣٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻟﺤﺯﻡ ﺍﻟﻤﻭﺠﻴﺔ ﻭﻋﻼﻗﺎﺕ ﺍﻟﻼﺘﺤﺩﻴﺩ‬ ‫‪WAVE PACKETS AND THE UNCERTAINTY RELATIONS‬‬



‫ﺇﻥ ﻋﻠﻡ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ ﻴﺯﻭﺩﻨﺎ ﺒﻔﻬﻡ ﺼﺤﻴﺢ ﻟﻜل ﺍﻟﻅﻭﺍﻫﺭ ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺍﻟﺘﻲ ﺘـﻡ‬



‫ﻤﻨﺎﻗﺸﺘﻬﺎ ﻓﻲ ﺍﻟﻔﺼل ﺍﻷﻭل‪ .‬ﻭﻫﺫﺍ ﺍﻟﻌﻠﻡ ﻀﺭﻭﺭﻱ ﻟﻔﻬﻡ ﺴﻠﻭﻙ ﺍﻟﺫﺭﺍﺕ‪ ،‬ﺍﻟﺠﺯﻴﺌﺎﺕ‪،‬‬ ‫ﺃﻨﻭﻴﺔ ﺍﻟﺫﺭﺍﺕ ﻭﺘﺠﻤﻌﺎﺕ ﻤﻥ ﻫﺫﻩ ﻭﺘﻠﻙ‪ .‬ﻭﻋﺎﺩﺓ ﻤﺎ ﺘﺘﻡ ﺍﻟﺩﺭﺍﺴﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟـﺔ‬



‫ﺸﺭﻭﺩﻨﺠﺭ ‪ Shrodinger equation‬ﻭﺍﻟﺘﺄﻭﻴﻼﺕ ﺍﻟﺼﺤﻴﺤﺔ ﻟﺤﻠﻭﻟﻬﺎ‪ .‬ﻭﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ‬ ‫ﻻ ﻴﻭﺠﺩ ﻟﻬﺎ ﺇﺜﺒﺎﺕ! ﻭﻟﻜﻥ ﺍﺴﺘﻁﺎﻉ ﺸﺭﻭﺩﻨﺠﺭ ﺍﻟﺘﻭﺼل ﺇﻟﻴﻬﺎ ﻋﻥ ﻁﺭﻴـﻕ ﺇﺘﺒـﺎﻉ‬



‫ﺘﻭﺠﻴﻬﺎﺕ )ﺃﻭ ﻓﺭﺍﺴﺎﺕ ‪ (insight‬ﺍﻟﻌﺎﻟﻡ ﺍﻟﻔﺭﻨﺴﻲ ﺩﻴﺒﺭﻭﻟﻲ‪ .‬ﻭﻤﻥ ﺍﻟﺠﺩﻴﺭ ﺒﺎﻟﺫﻜﺭ ﺃﻥ‬ ‫ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻭﺠﺩ ﺨﺎﺭﺝ ﻨﻁﺎﻕ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ ،‬ﺍﻷﻤﺭ ﺍﻟﺫﻱ ﻴﺠﻌل ﺍﺴـﺘﻨﺒﺎﻁﻬﺎ‬



‫ﺼﻌﺏ‪ .‬ﻭﺨﻼل ﺍﻟﻤﻨﺎﻗﺸﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺴﻨﺤﺎﻭل ﺍﻟﺘﻭﻓﻴﻕ ﺒﻴﻥ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺠﺴﻴﻤﻴﺔ‬ ‫ﻭﺍﻟﻤﻭﺠﻴﺔ ﻟﻼﻟﻜﺘﺭﻭﻨﺎﺕ‪.‬‬



‫ﺇﻨﻪ ﻤﻥ ﺍﻟﺼﻌﺏ ﺘﺨﻴل ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻋﻠﻰ ﺃﺴﺎﺱ ﺃﻥ ﻟﻬﺎ ﺴـﻠﻭﻙ ﺍﻟﻤﻭﺠـﺎﺕ‬



‫ﻭﻟﻜﻥ ﺘﺠﺎﺭﺏ ﺍﻟﺤﻴﻭﺩ ﺍﻟﺘﻲ ﺃﺠﺭﺍﻫﺎ ﻜـل ﻤـﻥ ‪ Freshet and Young‬ﺃﺩ‪‬ﺕ ﺇﻟـﻰ‬ ‫ﺍﻹﺠﻤﺎﻉ )ﺃﻭ ﺍﺘﺤﺎﺩ ﺍﻵﺭﺍﺀ( ﺒﻘﺒﻭل ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻠﻀﻭﺀ‪ .‬ﻭﻤﻥ ﺠﺎﻨـﺏ ﺁﺨـﺭ‬



‫ﺒﺎﻹﻤﻜﺎﻥ ﺃﻥ ﻨﺘﺼﻭﺭ ﺘﺠﻤﻌﺎﺕ )ﺃﻭ ﻫﻴﺌﺎﺕ( ﻟﻠﻤﻭﺠﺎﺕ ﺍﻟﻤﺤﺼﻭﺭﺓ ﺃﻭ ﺍﻟﻤﺘﺤﻴﺯﺓ )ﺃﻭ‬



‫ﺍﻟﻤﺘﻤﺭﻜﺯﺓ ﺠﺩﺍﹰ( ‪ Very localized‬ﻓﻌﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺘﻌﺘﺒﺭ ﻗﺭﻗﻌﺔ ﺍﻟﺭﻋﺩ ‪a clap‬‬



‫‪ of thunder‬ﻤﺜﺎل ﻟﺘﺩﺍﺨل ﺍﻟﻤﻭﺠﺎﺕ ﻭﺘﺭﺍﻜﺒﻬﺎ ﻤﻤﺎ ﻴﺅﺩﻱ ﺇﻟﻰ ﺘﺄﺜﻴﺭ ﻤﺘﻤﺭﻜﺯ ﻤـﻊ‬



‫ﺍﻟﺯﻤﻥ ‪ .localized in time‬ﻤﺜل ﻫﺫﻩ ﺍﻟﺤ‪‬ﺯﻡ ﺍﻟﻤﻭﺠﻴـﺔ ﺍﻟﻤﺘﻤﺭﻜـﺯﺓ ‪localized‬‬



‫"‪ "wane packets‬ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻴﻬـﺎ ﻋـﻥ ﻁﺭﻴـﻕ ﺘﺭﺍﻜـﺏ ﺍﻟﻤﻭﺠـﺎﺕ‬ ‫‪ superposing waves‬ﺒﺘﺭﺩﺩﺍﺕ ﻤﺨﺘﻠﻔﺔ ﺒﺤﻴﺙ ﻴﺘﻡ ﺘﺩﺍﺨل ﻜل ﻤﻭﺠﺔ ﻤﻊ ﺍﻷﺨـﺭﻯ‬ ‫ﺨﺎﺭﺝ ﻤﻨﻁﻘﺔ ﻤﻜﺎﻨﻴﺔ‪.‬‬ ‫‪They interfere with each other almost completely outside of a‬‬ ‫‪given spatial region.‬‬



‫ ‪- ٣٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺇﺘﺒﺎﻋﻬﺎ )ﺃﻭ ﺍﻷﺩﻭﺍﺕ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ( ﻫﻲ ﻋﻤل‬ ‫ﺘﻜﺎﻤﻼﺕ ﻓﻭﺭﻴﺭ ‪.Fourier integrals‬‬ ‫ﻭﻗﺒل ﺍﻟﺒﺩﺀ ﻓﻲ ﺍﻟﻤﻌﺎﻟﺠﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﻟﻠﺤﺯﻡ ﺍﻟﻤﻭﺠﻴﺔ‪ ،‬ﻟﻌﻠﻪ ﻤﻥ ﺍﻟﻤﻔﻴﺩ ﻤﺭﺍﺠﻌﺔ‬



‫ﺒﻌﺽ ﺃﺴﺎﺴﻴﺎﺕ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺭﻜﺒﺔ ﻭﺘﻜﺎﻤﻼﺕ ﻓﻭﺭﻴﺭ ﻭﻜﻴﻔﻴﺔ ﺇﻴﺠﺎﺩ ﻋﺭﺽ ﺍﻟـﺩﻭﺍل‬ ‫ﻭﻜﺫﻟﻙ ﻤﺭﺍﺠﻌﺔ ﺒﻌﺽ ﺍﻟﺘﻜﺎﻤﻼﺕ‪.‬‬ ‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺃﻱ ﺭﻗﻡ ﻤﺭﻜﺏ ‪ z‬ﺒﺎﻟﺼﻴﻐﺔ‪.‬‬ ‫‪z= x+i y‬‬



‫)‪......(A : 2 − 1‬‬



‫ﺤﻴﺙ ‪ x‬ﺘﻤﺜل ﺍﻟﺠﺯﺀ ﺍﻟﺤﻘﻴﻘﻲ ﻟـ ‪ z‬ﺃﻱ‬



‫‪z‬‬



‫) ‪Re ( z‬‬



‫ﺍﻟﻭﺤﺩﺓ ﺍﻟﺘﺨﻴﻠﻴﺔ ‪ I‬ﻭﻫﻲ‪:‬‬



‫)‪(A : 2 − 2‬‬



‫ﻭ ‪ y‬ﺘﻤﺜل ﺍﻟﺠﺯﺀ ﺍﻟﺘﺨﻴﻠﻲ ‪Im‬‬



‫‪i = −1 ⇒ i2 = −1‬‬



‫ﻟﻘﺴﻤﺔ ﺩﻭﺍل ﺘﺨﻴﻠﻴﺔ )ﺃﻭ ﺃﺭﻗﺎﻡ ﺘﺨﻴﻠﻴﺔ( ﻴﺤﺴﻥ ﺒﻨﺎ ﺍﺴﺘﺤﺩﺍﺙ ﺍﻟﻤﺭﺍﻓﻕ ﺍﻟﻤﺭﻜﺏ‬



‫‪ complex conjugate‬ﻭﻴﺭﻤﺯ ﻟﻪ *‪ z‬ﺤﻴﺙ‪:‬‬



‫‪z * = v − iy‬‬



‫)‪(A : 2 − 3‬‬



‫ﻻﺤﻅ ﺃﻨﻨﺎ ﺍﺴﺘﺒﺩﻟﻨﺎ ‪ i‬ﺏ ‪ –i‬ﺍﻟﺭﻗﻡ ﺍﻟﺘﺨﻴﻠﻲ ﻤﻀﺭﻭﺏ ﻓﻲ ﻤﺭﺍﻓﻘﻪ ﺃﻱ *‪ zz‬ﻴﻌﻁﻴﻨﺎ‬ ‫)‪........... (A : 2 − 4‬‬



‫ﻻﺤﻅ ﺃﻥ‬



‫*‪z z‬‬



‫‪zz * = (x + iy) (x − iy) = x 2 − i 2 y 2 = x 2 + y 2‬‬



‫ﺘﺴﺎﻭﻱ ﻤﺭﺒﻊ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ‬



‫‪2‬‬



‫‪z‬‬



‫ﻭﺍﻵﻥ ﻹﻴﺠﺎﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻭﺍﻟﺘﺨﻴﻠﻴﺔ ﻟـ‬



‫‪1‬‬ ‫‪1‬‬ ‫=‬ ‫‪z x + iy‬‬



‫‪1‬‬ ‫‪1 x − iy x − iy‬‬ ‫‪x‬‬ ‫‪y‬‬ ‫=‬ ‫‪= 2 2 = 2 2 −i 2 2‬‬ ‫‪z x + iy x − iy x + y x + y‬‬ ‫‪x +y‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪y‬‬ ‫‪⇒ Re ( ) = 2 2 and In ( ) = 2 2‬‬ ‫‪z x +y‬‬ ‫‪z x +y‬‬



‫ﻤﻥ ﺍﻟﻤﻔﻴﺩ ﻜﺘﺎﺒﺔ‬



‫‪z‬‬



‫ﺒﺩﻻﻟﺔ‬



‫‪θ, r‬‬



‫ﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﻌﺎﺩﻟﺔ ‪Euler‬‬



‫ ‪- ٣٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



eiθ = cos θ + i sin θ



(A : 1 − 5)



x = r cos θ and y = r sin θ ⇒ z = x + iy = r cos θ + i r sin θ = r (cos θ + i sin θ ) = reiθ



‫ﻫﻭ‬



e iθ . e − iθ = e ° = 1⇐ e − iθ



e iθ



‫ﻻﺤﻅ ﺃﻥ ﺍﻟﻤﺭﺍﻓﻕ ﻟـ‬ ‫ﻭﻜﺫﻟﻙ‬



z* = r e − iθ



‫ﻭﻤﻨﻬﺎ ﻨﺠﺩ‬



zz * = (re−iθ ) (re−iθ ) = r 2



‫ﻭﻤﻥ ﺍﻟﻤﻔﻴﺩ ﺘﺫﻜﺭ ﺃﻥ‬ e iθ + e − iθ 2



(A : 2 − 6)



eiθ − e − iθ sinθ = 2i



............ (A : 2 − 7)



cos θ = and



ϕ (θ ) = 0 ≤ θ ≤ 2D



1 imθ e 2D



‫ﻫﻲ‬



ϕ ( θ) θ



‫ﻭ ﺤﺩﻭﺩ‬



‫ﺇﺫﺍ ﻜﺎﻨﺕ ﻟﺩﻴﻨﺎ ﺩﺍﻟﺔ‬



m = 0 ± 1 ± 2 .......



:‫ﻓﺈﻥ‬ 1 imθ 1  eimθ  dθ (θ ) dθ e ϕ = =   ∫° ∫° 2D 2D  im  ° let m ≠ o 1 1 i2 Dm ° = e −e 2D im 2D



2D



[



2D



]



 1 1  cos 2Dm + i sin 2Dm − 1  424 3 1 424 3  2D im  1 1 0  1 1 = [1 − 1]= 0 2D im =



let m = 0 2D



2D



°



°



2D



2D 1 i(0) θ 1 1 e = dθ [ θ ] = ° 2D 2D ∫° 2D 1 2D . (2D − 0) = = 2D 2D 2D



∫ dθ ϕ (θ ) = ∫ dθ =



- ٣٧ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﺤﻴﺙ‬



‫ﻴﻤﻜﻥ ﺇﺠﺭﺍﺀ ﺍﻟﺘﻜﺎﻤل ﺍﻷﻭل ﺒﺼﻭﺭﺓ ﺃﺴﻬل ﻜﺎﻟﺘﺎﻟﻲ‪:‬‬ ‫‪2D‬‬



‫‪2D‬‬



‫‪2D‬‬



‫‪i‬‬ ‫‪1‬‬ ‫‪1 imθ‬‬ ‫‪sin mθ dθ = 0‬‬ ‫∫ ‪cos m θ dθ +‬‬ ‫∫ = ‪e dθ‬‬ ‫‪2D‬‬ ‫‪2D‬‬ ‫‪2D‬‬ ‫‪°‬‬ ‫‪°‬‬



‫∫‬ ‫‪°‬‬



‫ﻜل ﺤﺩ ﻤﻥ ﺍﻟﺘﻜﺎﻤل ﻴﺴﺎﻭﻱ ﺼﻔﺭ ﻷﻨﻨﺎ ﻨﺠﺭﻱ ﺤﺩﻭﺩ ﺍﻟﺘﻜﺎﻤـل ﻋﺒـﺭ ﺩﻭﺭﺓ‬



‫ﻜﺎﻤﻠﺔ ﻭﻨﺭﺠﻊ ﻟﻨﻔﺱ ﺍﻟﺒﺩﺍﻴﺔ ﻭﻟﻬﺫﺍ ﻨﺴﺘﺨﻠﺹ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ ‪ m = 0‬ﻓـﺈﻥ ﺍﻟﺘﻜﺎﻤـل‬



‫ﻴﺴﺎﻭﻱ‬



‫‪2D‬‬



‫ﺃﻤﺎ ﻟﻠﻘﻴﻡ ﺍﻷﺨﺭﻯ ﻟـ ‪ m‬ﻓﺈﻥ ﺍﻟﺘﻜﺎﻤل ﻴﺴﺎﻭﻱ ﺼﻔﺭ ﻭﻴﻤﻜﻥ ﺼـﻴﺎﻏﺔ‬



‫ﺍﻟﻨﺘﻴﺠﺔ ﺒﻬﺫﻩ ﺍﻟﺼﻭﺭﺓ‪.‬‬ ‫‪2D‬‬



‫‪∫ dθϕ (θ ) = 0‬‬



‫)‪for all values of m ≠ 0 ..................(A : 2 - 8‬‬



‫‪°‬‬



‫‪for m = 0‬‬



‫)‪(A : 2 - 9‬‬



‫‪= 2D‬‬



‫ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻌﻼﻗﺔ‬ ‫‪2D‬‬



‫)‪..................(A : 2 - 10‬‬



‫‪m≠n‬‬



‫‪(θ )ϕ n (θ ) = 0‬‬



‫)‪(A : 2 -11‬‬



‫‪m= n‬‬



‫‪=1‬‬



‫*‬ ‫‪m‬‬



‫‪∫ dθϕ‬‬ ‫‪°‬‬



‫‪1 − imθ 1 inθ‬‬ ‫‪e .‬‬ ‫‪e‬‬ ‫‪2D‬‬ ‫‪2D‬‬ ‫‪2D‬‬



‫‪∫ dθ‬‬ ‫‪°‬‬



‫‪2D‬‬



‫‪2D‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪i (n − m)θ‬‬ ‫‪°‬‬ ‫[‬ ‫]‬ ‫⇒‪m=n‬‬ ‫‪dθ e‬‬ ‫= ‪dθ e‬‬ ‫‪θ°‬‬ ‫=‬ ‫‪2D ∫°‬‬ ‫‪2D ∫°‬‬ ‫‪2D‬‬



‫‪1‬‬ ‫‪(2D − 0) = 1‬‬ ‫‪2D‬‬



‫‪2D‬‬



‫‪Now, Let‬‬



‫=‬ ‫‪2D‬‬



‫‪1‬‬ ‫‪dθ ei (n − m) θ‬‬ ‫‪2D ∫°‬‬



‫⇒ ‪Let m ≠ n‬‬



‫‪2D‬‬



‫‪1‬‬ ‫] ‪dθ [cos ( n − m ) θ + i sin ( n − m ) θ‬‬ ‫=‬ ‫‪2D ∫°‬‬



‫ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﺘﻜﺎﻤل ﺘﺴﺎﻭﻱ ﺼﻔﺭ ﻭﺫﻟﻙ ﻷﻥ ﺍﻟﺘﻜﺎﻤل ﻴﺠﺭﻱ ﻋﻠﻰ ﺩﻭﺭﺓ ﻜﺎﻤﻠﺔ‬



‫ﻟﻠﺩﺍﻟﺔ )ﺃﻱ ﺃﻨﻪ ﻴﺒﺩﺃ ﺜﻡ ﻴﻨﺘﻬﻲ ﻋﻨﺩ ﻨﻔﺱ ﺍﻟﻘﻴﻤﺔ(‪.‬‬



‫ﻭﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﻤﻬﻤﺔ‪ sin h x :‬ﻭ ‪ cos h x‬ﻭﺘﻌﺭﻑ ﺒـ‬ ‫)‪..................(A : 2 - 12‬‬ ‫)‪(A : 2 - 13‬‬



‫‪ex − e− x‬‬ ‫‪⇒ sin h i x = i sin x‬‬ ‫‪2‬‬ ‫‪ex + e− x‬‬ ‫‪cos h x‬‬ ‫‪⇒ cos h i x = cos x‬‬ ‫‪2‬‬



‫= ‪sin h x‬‬



‫ ‪- ٣٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻨﺒﺫﺓ ﻤﺨﺘﺼﺭﺓ ﻋﻥ ﺘﺤﻠﻴﻼﺕ ﻓﻭﺭﻴﺭ ﻭﺘﻜﺎﻤﻼﺘﻪ‬ ‫‪Short Introduction about Fourier Series and its integral.‬‬



‫ﺇﻥ ﺃﻱ ﺩﺍﻟﺔ ﻟﻬﺎ ﺼﻭﺭﺓ ﻤﻭﺠﻴﺔ ﺃﻭ ﺘﻜﺭﺭ ﻨﻔﺴﻬﺎ ﺒﺩﻭﺭﺓ ﻤﻌﻴﻨﺔ‪ ،‬ﻤﺜل ﺍﻟـﺩﻭﺍل‬



‫ﺍﻟﻤﻭﺠﻴﺔ ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺸﻜل ‪ ،A:2.1‬ﻴﻤﻜﻥ ﻭﺼﻔﻬﺎ ﺭﻴﺎﻀـﻴﺎﹰ ﺒﺎﺴـﺘﺨﺩﺍﻡ ﻤﺒـﺩﺃ‬ ‫ﺍﻟﺘﺭﺍﻜﺏ ‪ ،Principle of super position‬ﺃﻱ ﻴﻤﻜﻥ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻨﻬﺎ ﻋﻥ ﻁﺭﻴﻕ ﺠﻤﻊ‬



‫)ﺃﻭ ﺘﺭﺍﻜﺏ( ﻤﻭﺠﺎﺕ ﺘﻜﺘﺏ ﺭﻴﺎﻀﻴﺎﹰ ﺒﺩﻻﻟﺔ ﺍﻟـ‪ :‬ﺠﺎ ‪ sin‬ﻭﺍﻟـ ﺠﺘـﺎ ‪ .cos‬ﻫـﺫﻩ‬



‫ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺘﹸﻌﺭﻑ ﺒﺘﺤﻠﻴل ﻓﻭﺭﻴﺭ ‪ Fourier analysis‬ﻨﺴﺒﺔ ﻟﻠﻌﺎﻟﻡ ﻓـﻭﺭﻴﺭ‪.‬‬



‫ﻭﺘﻌﺘﻤﺩ ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻋﻠﻰ ﺃﺴﺎﺱ ﺃﻨﻬﺎ ﻴﻤﻜﻥ ﺼﻴﺎﻏﺔ ﺃﻱ ﺩﺍﻟﺔ )‪) f (x‬ﺤﻴﺙ ‪ x‬ﻴﻤﻜﻥ‬ ‫ﺃﻥ ﺘﻤﺜل ﺍﻟﻤﻭﻗﻊ ﺃﻭ ﺍﻟﺯﻤﻥ( ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﺘﺏ ﻓﻲ ﺼﻭﺭﺓ ﻤﺘﺴﻠﺴﻠﺔ ﻤﻥ ﺩﻭﺍل ﺩﻭﺭﻴﺔ‬



‫)ﺘﻌﺭﻑ ﺒﺴﻠﺴﻠﺔ ﻓﻭﺭﻴﺭ( ‪.Fourier series‬‬



‫‪1‬‬ ‫‪f (x) = a ° + a 1 cos x + a 2 cos 2x + .....+ a n cos n x + b1 sin x + b 2 sin 2x + .....+ b n sin n x + ........‬‬ ‫‪2‬‬ ‫∞‬ ‫∞‬ ‫‪1‬‬ ‫)‪= a ° + ∑ a u cos n x + ∑ b n sin v x ..............(A : 2 − 14‬‬ ‫‪2‬‬ ‫‪n =1‬‬ ‫‪n =1‬‬



‫ﺘﺘﻜﻭﻥ ﻫﺫﻩ ﺍﻟﻤﺘﺴﻠﺴﻠﺔ ﻤﻥ ﺤﺩ ﺜﺎﺒﺕ‬ ‫ﻭﺠﻴﻭﺏ ﺍﻟﺘﻤﺎﻡ‬



‫‪1‬‬ ‫‪a‬‬ ‫‪2 °‬‬



‫ﺒﺎﻹﻀﺎﻓﺔ ﺇﻟﻰ ﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺠﻴـﺏ‬



‫‪ (sine and cosine terms‬ﻟﻬـﺎ ﺴـﻌﺎﺕ ﻤﺨﺘﻠﻔـﺔ ‪a1, a2, ….‬‬



‫‪ .b1, b2, ……… Different amplitudes‬ﺘﺭﺩﺩﺍﺕ ﺍﻟﺠﺎ ﻭﺍﻟﺠﺘﺎ ﻓﻲ ﻜل ﺤﺩ ﻤـﻥ‬ ‫ﺍﻟﺤﺩﻭﺩ ﻋﺒﺎﺭﺓ ﻋﻥ ‪ harmonics‬ﻭ ﻤﻀﺭﻭﺒﺎﺕ ‪ multiples‬ﺍﻟﺘﺭﺩﺩ ﺍﻷﺴﺎﺴﻲ ‪.x‬‬



‫‪ .Fundamental frequency x‬ﻟﻠﺘﻌﺒﻴﺭ ﻋﻥ ﻤﻌﻴﻨﺔ ﻤﻥ ﺨﻼل ﺘﺤﻠﻴل ﻓﻭﺭﻴﺭ ﻓـﺈﻥ‬



‫ﺍﻟﻤﻌﺎﻤﻼﺕ ……… ‪ a1, a2,‬ﻭ ‪ b1, b2, ……..‬ﻴﻠﺯﻡ ﺘﺤﺩﻴﺩﻫﺎ ﻭﺫﻟﻙ ﺒﺘﻜﺎﻤل ﺍﻟﺩﺍﻟﺔ‬



‫)‪ f(x‬ﺨﻼل ﺩﻭﺭﺓ ﻜﺎﻤﻠﺔ ﺃﻱ ﻤﻥ ﺼﻔﺭ ﺇﻟﻰ‬



‫‪2D‬‬



‫ﻜﻤﺎ ﻴﻠﻲ‪:‬‬



‫‪2D‬‬



‫‪1‬‬ ‫)‪b n = ∫ f (x) sin n x dx .....................(A : 2 − 15‬‬ ‫‪D °‬‬



‫‪2D‬‬



‫‪,‬‬



‫‪1‬‬ ‫‪a n = ∫ f (x) cos n x dx‬‬ ‫‪D °‬‬



‫ﺍﻟﺸﻜل ﻴﻭﻀﺢ ﺃﻥ ﺘﻭﻟﻴﺩ ﺩﺍﻟﺔ ﻤﻭﺠﻴﺔ ﻤﺭﺒﻌﺔ‪:‬‬ ‫ ‪- ٣٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻴﺘﻡ ﻋﻥ ﻁﺭﻴﻕ ﺘﺩﺍﺨل )ﺃﻭ ﺘﺭﺍﻜﺏ( ﺜﻼﺙ ﻤﻭﺠﺎﺕ ﺠﻴﺒﻴﺔ ﻫﻲ‬ ‫ﺃﻭل ﺍﻟﺤﺩﻭﺩ ﻓﻲ ﻤﺘﺴﻠﺴﻠﺔ ﻓﻭﺭﻴﺭ‬ ‫ﺒﺎﻟﺼﻭﺭﺓ‪.‬‬



‫‪1‬‬ ‫‪a‬‬ ‫‪2 °‬‬



‫‪1‬‬ ‫‪1‬‬ ‫‪sin 2x , sin 3x , sinx‬‬ ‫‪2‬‬ ‫‪3‬‬



‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺘﻪ )ﻤﻥ ﻤﻌﺎﺩﻟـﺔ ‪(A: 2-15‬‬



‫‪2D‬‬



‫‪1‬‬ ‫‪f (x) dx‬‬ ‫‪2D ∫°‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻤﺜل ﺒﺒﺴﺎﻁﺔ ﻤﺘﻭﺴﻁ ﺍﻟﺩﺍﻟﺔ )‪ f(x‬ﻋﺒﺭ ﺍﻟﻔﺘﺭﺓ ‪. 2D‬‬



‫ﺘﺤﻠﻴل ﻓﻭﺭﻴﺭ ﻭﺍﻟﺤ‪‬ﺯ‪‬ﻡ ﺍﻟﻤﻭﺠﻴﺔ‪:‬‬ ‫ﻴﻤﻜﻥ ﺍﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺘﺤﻠﻴل ﻓﻭﺭﻴﺭ ﻟﺘﻤﺜﻴل ﺍﻟﺤﺯﻡ ﺍﻟﻤﻭﺠﻴـﺔ ‪Wave packets‬‬



‫ﻭﻫﻲ ﻋﺒﺎﺭﺓ ﻋﻥ ﻨﺒﻀﺎﺕ ﻤﻭﺠﻴﺔ ‪ Wave pulses‬ﻋﻨﺩ ﺩﺭﺍﺴﺔ ﺍﻟﺤﺭﻜـﺔ ﺍﻟﻤﻭﺠﻴـﺔ‬ ‫ﻟﻨﺘﺤﺼل ﻋﻠﻰ ﻨﺒﻀﺔ ﻤﻭﺠﻴﺔ ﻴﻠﺯﻡ ﺘﺭﺍﻜﺏ ﻤﻭﺠﺎﺕ ﺠﻴﺒﻴﺔ ﻋﻠﻰ ﻤﺩﻯ ﻤﺘﺼل ﻤـﻥ‬



‫ﺍﻷﺭﻗﺎﻡ ﺍﻟﻤﻭﺠﻴﺔ ‪ k‬ﻓﻲ ﻤﺩﻯ ﻗﺩﺭﺘﻪ ‪ . Δk‬ﻴﻤﻜﻨﻨﺎ ﻓﻬﻡ ﻜﻴﻔﻴﺔ ﺘﻜﻭﻥ ﺤﺯﻤﺔ ﻤﻭﺠﻴـﺔ‪،‬‬



‫ ‪- ٤٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل‪ ،‬ﺨﺫ ﺘﺭﺍﻜﺏ ﻋﺩﺩ ﺴﺒﻌﺔ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﺠﻴﺒﻴﺔ ﺍﻟﺘﻲ ﻟﻜـل ﻤﻨﻬـﺎ‬ ‫ﺍﻟﺼﻴﻐﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ‪.‬‬ ‫)‪.......... .......... .(A : 2 − 16‬‬



‫)‪y = A k cos ( k x − ω t‬‬



‫ﻭﻋﻨــﺩ ‪ ،t = 0‬ﺍﻷﺭﻗــﺎﻡ ﺍﻟﻤﻭﺠﻴــﺔ )‪ k (Wave umbers‬ﺘــﺴﺎﻭﻱ‬ ‫‪ 45, 42, 39, 36, 33, 30 , 27‬ﻭﻜل ﻤﻥ ﻫﺫﻩ ﺍﻷﺭﻗﺎﻡ ﻴﻘﺎﺒﻠﻬﺎ ﺴـﻌﺔ ‪ Ak‬ﺘـﺴﺎﻭﻱ‬



‫‪ 0.25 , 0.33 , 0.5 , 1.0, 0.5 , 0.33 , 0. 25‬ﺸﻜل ‪ A: 2-3‬ﻴﻭﻀﺢ ﺘﻐﻴﺭ ﺍﻟﺴﻌﺔ‬



‫‪ Ak‬ﻤﻊ ‪ k‬ﻭﻫﻲ ﻤﺎ ﻴﺴﻤﻰ ﺒﻁﻴﻑ ﺍﻟﺭﻗﻡ ﺍﻟﻤﻭﺠﻲ ‪.Wave umber spectrum‬‬



‫‪Figure A:2-3 the frequency spectrum used to generate the we‬‬ ‫‪packet shown in Figure 12.84.‬‬



‫ﺍﻟﺸﻜل ﺍﻟﻤﻭﺠﻲ ﻟﻜل ﻤﻭﺠﺔ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﺴﺒﻌﺔ ﻭﺤﺎﺼـل ﺘﺭﺍﻜﺒﻬـﺎ )ﺃﻭ‬



‫ﻤﺤﺼﻠﺔ ﺘﺭﺍﻜﺒﻬﺎ( ﻤﻭﻀﺤﺔ ﻓﻲ ﺸﻜل )‪.(A: 2-4‬‬



‫ ‪- ٤١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺸﻜل )‪ (A: 2-4‬ﻜﻴﻔﻴﺔ ﺘﺅﻜﺩ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ )ﺃﺴﻔل ﺍﻟﺸﻜل( ﻤﻥ ﺘﺩﺍﺨل ﺴـﺒﻌﺔ‬



‫ﻤﻭﺠﺎﺕ ﻜﺎﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺃﻋﻠﻰ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ‪.‬‬



‫ﺃﻤﺎ ﻓﻲ ﺤﺎﻟﺔ ﺘﺭﺍﻜﺏ ﻋﺩﺩ ﻜﺒﻴﺭ ﺠﺩﺍﹰ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺒﺤﻴﺙ ﻴﻤﺘﺩ ﺘﻐﻴﺭ ﺍﻷﺭﻗﺎﻡ‬ ‫ﺍﻟﻤﻭﺠﻴﺔ ﻋﺒﺭ ﻋﺭﺽ ﻗﺩﺭﻩ‬



‫ﻤﻭﻀﺢ ﻓﻲ ﺍﻟﺸﻜل ‪.A: 2-5‬‬



‫‪ΔK‬‬



‫ﺴﻨﺘﺤﺼل ﻋﻠﻰ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﻭﺍﺤﺩﺓ ﻜﻤـﺎ ﻫـﻭ‬



‫ﻻﺤﻅ ﺃﻥ ﻋﺭﺽ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ ‪...... ΔK‬‬



‫ ‪- ٤٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻴﻤﻜﻥ ﺃﻥ ﻨﻼﺤﻅ ﻨﻘﻁﺔ ﻫﺎﻤﺔ ﺠﺩﺍﹰ ﻭﻫﻲ ﺃﻨﻪ ﻜﻠﻤﺎ ﺍﺯﺩﺍﺩﺕ‬ ‫ﺍﻟﺤﺯﻤﺔ‬



‫‪ΔK‬‬



‫‪ΔK‬‬



‫ﻓﺈﻥ ﻋﺭﺽ‬



‫ﻴﻘل‪ .‬ﻭﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﻫﺎﻤﺔ ﻷﻨﻬﺎ ﺍﻷﺴﺎﺱ ﺍﻟﺫﻱ ﻴﺒﻨﻰ ﻋﻠﻴﻪ ﻤﺒﺩﺃ ﺍﻟﻼﺘﺤﺩﻴﺩ‬



‫ﻓﻲ ﻋﻠﻡ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪.‬‬



‫‪Figure A: 2-5 (a) the wave number spectrum and (b) the wave‬‬ ‫‪packet. Produced when ∆k the wave number spread shown in Figure‬‬ ‫‪A:2-4 becomes broader.‬‬



‫ﺇﻥ ﺘﺭﺍﻜﺏ ﻋﺩﺩ ﻻﻨﻬﺎﺌﻲ ‪ infinite number‬ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﻴﻤﻜﻥ ﺼـﻴﺎﻏﺘﻪ‬



‫ﺭﻴﺎﻀﻴﺎﹰ ﺒﺘﻜﺎﻤل ﻓﻭﺭﻴﺭ ‪ Fourier integral‬ﺒﺩﻻﹰ ﻤﻥ ﻤﺘﺴﻠﺴﻠﺔ ﻓﻭﺭﻴﺭ‪ .‬ﻭﻫﻜﺫﺍ‪ ،‬ﻓﻌﻨﺩ‬ ‫ﺯﻤﻥ ﺜﺎﺒﺕ‪ ،‬ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺘﻌﻁﻲ ﺒـ‪:‬‬ ‫)‪..........(A : 2 − 17‬‬



‫∞‬



‫‪y (x) ∫ A (k) cos k x dk‬‬ ‫‪°‬‬



‫ﺤﻴﺙ )‪ A(k‬ﻫﻲ ﺍﻟﺴﻌﺔ ﻭﺍﻟﺘﻲ ﺘﺘﻐﻴﺭ ﻤﻊ ‪ .k‬ﻭﺴﻨﻨﺎﻗﺵ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺒﻌـﺩ‬



‫ﻫﺫﻩ ﺍﻟﻤﻘﺩﻤﺔ‪ ،‬ﻜﻴﻑ ﻴﻤﻜﻨﻨﺎ‪ ،‬ﺒﺎﺴﺘﺨﺩﺍﻡ ﺘﻜﺎﻤﻼﺕ ﻓـﻭﺭﻴﺭ‪ ،‬ﺃﻥ ﻨﻭﻀـﺢ ﺃﻥ‬



‫‪Δx , Δk‬‬



‫ﻤﺭﺘﺒﻁﺘﺎﻥ ﺒﺎﻟﺩﺍﻟﺔ‪.‬‬



‫)‪....................(A : 2 − 18‬‬



‫‪(Δ x) (Δ k) = constant‬‬



‫ ‪- ٤٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻟﻌﻠﻪ ﻤﻥ ﺍﻟﻤﻔﻴﺩ ﺼﻴﺎﻏﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (A: 2-17‬ﻟﻠﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺒﺩﻻﻟﺔ ﺍﻟﺩﺍﻟﺔ‬ ‫ﺍﻟﻤﺭﻜﺒﺔ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﺍﻟﻌﺎﻤﺔ‪.‬‬ ‫∞‬



‫)‪.............(A : 2 − 19‬‬



‫‪ikx‬‬



‫‪∫ dk A (k) e‬‬



‫∞‪−‬‬



‫‪1‬‬ ‫‪2D‬‬



‫=)‪f (x‬‬



‫ﻭﺇﺫﺍ ﺃﺩﺨﻠﻨﺎ ﺍﻟﺯﻤﻥ ﻜﻤﺘﻐﻴﺭ ﻟﺩﺭﺍﺴﺔ ﺘﺄﺜﻴﺭ ﺍﻟﺯﻤﻥ ﻋﻠـﻰ ﺍﻨﺘـﺸﺎﺭ ﺍﻟﺤﺯﻤـﺔ‬



‫ﺍﻟﻤﻭﺠﻴﺔ ﻴﻤﻜﻥ ﺼﻴﺎﻏﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (A:2-19‬ﺒﺎﻟﺼﻭﺭﺓ‪.‬‬



‫∞‬



‫)‪.............(A : 2 − 20‬‬



‫‪ikx - ω (k) t‬‬



‫‪∫ dk A (k) e‬‬



‫= ) ‪f ( x, t‬‬



‫∞‪−‬‬



‫ﻋﻨﺩ ﺘﺩﺍﺨل ﻤﻭﺠﺎﺕ ﺴﺭﻋﺔ ﻜل ﻤﻨﻬﺎ ‪ v‬ﻓﺈﻥ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺍﻟﻤﺘﻜﻭﻨﺔ ﺘﻜﻭﻥ‬



‫ﺴﺭﻋﺘﻬﺎ ﺘﻤﺜل ﺴﺭﻋﺔ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻤﻜﻭﻨﺔ ﻟﻠﺤﺯﻤﺔ ﻭﺘـﺴﻤﻰ ﺒـﺴﺭﻋﺔ‬ ‫ﺍﻟﻤﺠﻤﻭﻋﺔ ‪ group velocity‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒـ ‪ vg‬ﻭﺘﻌﻁﻰ ﺒﺎﻟﻌﻼﻗﺔ‪.‬‬ ‫)‪...................... (A : 2 − 21‬‬



‫‪dω‬‬ ‫‪dk‬‬



‫= ‪vg‬‬



‫ﻜﻴﻔﻴﺔ ﺇﻴﺠﺎﺩ ﻋﺭﺽ ﺩﺍﻟﺔ‪:‬‬ ‫ﻤﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺘﻬﻤﻨﺎ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺇﻴﺠﺎﺩ ﻋﺭﺽ ﺩﺍﻟـﺔ ﻭﺫﻟـﻙ ﻷﻫﻤﻴـﺔ‬



‫ﺍﻟﻤﻭﻀﻭﻉ ﺒﻤﺒﺩﺃ ﺍﻟﻼﺘﺤﺩﻴﺩ ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪.‬‬



‫ﺨﺫ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺍﻟﺸﻜل ‪A: 2-6‬‬



‫ ‪- ٤٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻜﻠﺘﺎ ﺍﻟﺩﺍﻟﺘﺎﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻌﺭﺽ‪ ،‬ﻭﻟﻜﻥ ﺇﺤﺩﺍﻫﻤﺎ ﻤﺘﻤﺎﺜﻠﺔ ﺤﻭل ‪ x = o‬ﻭﺍﻷﺨـﺭﻯ‬ ‫ﻤﺘﻤﺎﺜﻠﺔ ﺤﻭل ‪ .xo‬ﺍﻷﻭل ﻓﻲ ﺍﻟﺸﻜل )‪ (a‬ﻴﻤﻜﻥ ﻜﺘﺎﺒﺘﻬﺎ ﺭﻴﺎﻀﻴﺎﹰ ﺒﺎﻟﺼﻴﻐﺔ‬



‫‪2‬‬



‫‪y = A e− α x‬‬



‫ﺤﻴﺙ ‪ α‬ﺜﺎﺒﺕ ﻭﻤﺭﺘﺒﻁ ﺒﻌﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻭ ‪ A‬ﻴﻤﺜل ﺴﻌﺔ ﺍﻟﺩﺍﻟـﺔ ﺃﻱ ﻗﻴﻤـﺔ ‪y‬‬



‫ﻋﻨﺩﻤﺎ ‪.x = o‬‬



‫ﺇﺤﺩﻯ ﺍﻟﻁﺭﻕ ﻹﻴﺠﺎﺩ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ﺃﻥ ﻨﺄﺨﺫ ﺍﻟﻌﺭﺽ ﻋﻨﺩﻤﺎ ﺘﻘل ﺍﻟﺩﺍﻟﺔ )ﺃﻱ‬



‫ﻋﻨﺩﻤﺎ ﺘﻘل ﻗﻴﻤﺔ ‪ .y‬ﻤﻥ ﺃﻗﺼﻰ ﻗﻴﻤﺔ )ﻋﻨﺩﻤﺎ ‪ (y = A‬ﺇﻟﻰ ﺃﻥ ﺘـﺼل ﺇﻟـﻰ ‪، y = A‬‬ ‫‪2‬‬



‫ﻋﻨﺩﻫﺎ ﻨﺄﺨﺫ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ‪. ∆x‬‬ ‫ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﺒﺎﻟﺸﻜل‪.‬‬ ‫‪ln y = ln A − α x 2‬‬ ‫‪⇒ α x 2 = ln A − ln y‬‬ ‫ﻧﻌﻮض ﻋﻦ‬



‫‪1‬‬ ‫‪A‬‬ ‫‪2‬‬



‫=‪y‬‬



‫‪A‬‬ ‫‪= ln 2 = 0.693‬‬ ‫‪A/2‬‬ ‫‪0.693‬‬ ‫‪0.693‬‬ ‫= ‪⇒ Δx °‬‬ ‫‪⇒ Δx = 2‬‬ ‫‪α‬‬ ‫‪α‬‬



‫‪1‬‬ ‫‪α x 2 = ln A − ln A‬‬ ‫‪2‬‬ ‫‪= ln‬‬ ‫‪1‬‬ ‫‪⇒ x 2 = 0.693‬‬ ‫‪α‬‬



‫ ‪- ٤٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩ ﺘﻌﺭﻴﻑ ﺁﺨﺭ ﻟﻌﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻭﻫﻭ ﺃﺴﻬل ﻤﻥ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟـﺴﺎﺒﻘﺔ‪.‬‬ ‫ﻨﺄﺨﺫ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻋﻨﺩﻤﺎ ﺘﻘل ﻗﻴﻤﺔ ‪ y‬ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻭﻯ ﺇﻟﻰ ﺃﻥ ﺘﺼل ﺇﻟـﻰ‬ ‫ﺤﻴﺙ ‪ e = 2.718‬ﻭﻋﻠﻴﻪ‬



‫‪1‬‬ ‫‪= 0.368‬‬ ‫‪e‬‬



‫‪1‬‬ ‫‪e‬‬



‫ﺃﻱ ﺒﺩل ﺃﻥ ﻨﺄﺨﺫ ﺍﻟﻌﺭﺽ ﻋﻨﺩﻤﺎ ﺘﻘـل ‪ y‬ﺇﻟـﻰ‬



‫ﺍﻟﻨﺼﻑ )ﻜﻤﺎ ﻓﻲ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺴﺎﺒﻘﺔ( ﻨﺄﺨﺫ ﺍﻟﻌﺭﺽ ﻋﻨﺩﻤﺎ ﺘﻘل ‪ y‬ﺇﻟﻰ ‪ 0.368‬ﻤـﻥ‬



‫ﻗﻴﻤﺘﻬﺎ ﺍﻟﻘﺼﻭﻯ‪ ..‬ﻭﺴﻬﻭﻟﺔ ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻤﻥ ﺍﻟﻨﺎﺤﻴﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ‪.‬‬



‫‪2‬‬



‫‪y = A e− α x‬‬



‫ﺨﺫ ﻤﺜﻼﹰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ‬



‫ﻗﻴﻤﺔ ‪ y‬ﺍﻟﻘﺼﻭﻯ ﻫﻲ ‪ y = A‬ﻟﻜﻲ ﺘﻘل ‪ y‬ﺇﻟﻰ‬ ‫ﻫﻲ ﻗﻴﻤﺔ ‪ x2‬ﺍﻟﺘﻲ ﺘﺠﻌل ﺍﻷﺱ‬



‫ﻭﺍﺤﺩ ﻓﺈﻥ‬



‫) ‪(α x 2‬‬



‫‪1‬‬ ‫‪e‬‬



‫ﻤﻥ ﻗﻴﻤﺘﻬﺎ ﺍﻟﻘﺼﻭﻯ‪ ،‬ﺃﻱ ﻤﺎ‬



‫ﻴﺴﺎﻭﻱ ﺍﻟﻭﺍﺤﺩ‪ .‬ﻋﻨﺩﻤﺎ ﻴﺴﺎﻭﻱ ﺍﻷﺱ ﻗﻴﻤـﺔ‬



‫‪1‬‬ ‫‪y = ( ) A ⇐ y = A e −1‬‬ ‫‪e‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫= ‪⇒ Δx = 2Δ x °‬‬ ‫‪α‬‬ ‫‪α‬‬



‫= ‪⇒ α x 2 =1 ⇒ Δ x °‬‬



‫ﻭﻫﺫﻩ ﻫﻲ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﺴﻨﺴﺘﺨﺩﻤﻬﺎ ﻹﻴﺠﺎﺩ ﻋﺭﺽ ﺍﻟﺩﻭﺍل ﺍﻟﺘﻲ ﻟﻬﺎ ﺍﻟﺼﻴﻐﺔ‬



‫ﺍﻷﺴﻴﺔ‪ .‬ﻭﻫﻨﺎﻙ ﻁﺭﻕ ﺃﺨﺭﻯ ﻹﻴﺠﺎﺩ ﻋﺭﺽ ﺍﻟﺩﻭﺍل ﺍﻟﺠﻴﺒﻴﺔ‪.‬‬



‫ﻭﺒﻌﺩ ﻫﺫﺍ ﺍﻻﺴﺘﻁﺭﺍﺩ ﻨﻌﻭﺩ ﻟﻤﻨﺎﻗﺸﺔ ﻤﻭﻀﻭﻉ ﻫﺫﺍ ﺍﻟﻔـﺼل ﻭﻫـﻭ ﺍﻟﺤـﺯﻡ‬



‫ﺍﻟﻤﻭﺠﻴﺔ ﻭﻋﻼﻗﺎﺕ ﺍﻟﻼﺘﺤﺩﻴﺩ‪..‬‬



‫ﺨﺫ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل ﺍﻟﺩﺍﻟﺔ )‪ f (x‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ‪.‬‬ ‫ ‪- ٤٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫∞‬



‫‪f (x) = ∫ dk g (k) e ikv‬‬



‫)‪....(2 − 1‬‬



‫∞‪−‬‬



‫ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﺘﹸﻌﺒ‪‬ﺭ ﻋﻥ ﺘﺭﺍﻜﺏ ﺨﻁﻲ ﻤﻥ ﻤﻭﺠﺎﺕ ﺫﺍﺕ ﻁﻭل ﻤﻭﺠﻲ ‪، λ = 2D‬‬ ‫‪k‬‬



‫ﻭﻟﻜل ﻗﻴﻤﺔ ﻟـ ‪ k‬ﻓﻜل ﻤﻭﺠﺔ ﺘﻜﺭﺭ ﻨﻔﺴﻬﺎ ﻋﻨﺩﻤﺎ ﺘﺘﻐﻴﺭ ‪ x‬ﺇﻟﻰ ‪. v + 2D‬‬ ‫‪k‬‬



‫ﻭﻟﺘﻭﻀﻴﺢ ﻁﺒﻴﻌﺔ ﻫﺫﻩ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ‪ ،‬ﺩﻋﻨﺎ ﻨﺨﺘﺎﺭ ﺼـﻴﻐﺔ ﻟﻠﺩﺍﻟـﺔ )‪g (k‬‬



‫ﺤﻴﺙ‪.‬‬



‫‪2‬‬



‫) ‪g (k) = e −α (k − k °‬‬



‫)‪...(2-2‬‬ ‫‪Let k 1 = k − k °‬‬ ‫‪⇒ k = k1 + k °‬‬ ‫‪⇒ dk = dk 1‬‬ ‫‪i (u1 + k ° )v‬‬



‫‪12‬‬



‫‪⇒ g (k) → g (k 1 ) = e −αk and e ikv = e‬‬



‫ﺒﻌﺩ ﻫﺫﻩ ﺍﻟﺘﻌﻭﻴﻀﺎﺕ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ )‪ (2-1‬ﺒﺎﻟﺼﻴﻐﺔ‬ ‫‪i (k1 + k ° )v‬‬



‫∞‬



‫‪⇒ f (x) = ∫ dk 1 e −αk . e‬‬ ‫‪12‬‬



‫∞‪−‬‬



‫‪1‬‬



‫∞‬



‫‪°‬‬ ‫{‪= ∫ dk e − αk e ik v . e‬‬ ‫‪ik v‬‬



‫‪1‬‬



‫‪12‬‬



‫ﺛﺎﺑﺖ‬



‫‪1‬‬



‫∞‪−‬‬



‫‪12‬‬



‫‪e − αk e ik v‬‬



‫∞‬



‫‪1‬‬



‫‪∫ dk‬‬



‫‪= e ikov‬‬



‫∞‪−‬‬



‫ﻟﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺘﻜﺎﻤل ﻴﺠﺏ ﺘﺤﻭﻴﺭ ﺼﻴﻐﺘﻪ ﺍﻟﺭﻴﺎﻀﻴﺔ ﻟﻠـﺼﻭﺭﺓ‬ ‫ﻭﺫﻟﻙ ﻷﻥ ﻗﻴﻤﺔ ﺍﻟﺘﻜﺎﻤل‬



‫‪D‬‬ ‫‪α‬‬



‫)‪.................(2 − 3‬‬



‫‪1‬‬



‫‪dk 1‬‬



‫‪−αk − 2‬‬



‫∞‬



‫‪∫e‬‬



‫∞‪−‬‬



‫∞‬



‫‪− αk‬‬ ‫‪1‬‬ ‫‪∫ e dk = 2‬‬ ‫‪12‬‬



‫‪°‬‬



‫ﻭﻟﻠﻭﺼﻭل ﻟﻬﺫﻩ ﺍﻟﺼﻭﺭﺓ ﻴﻠﺯﻡ ﺃﻥ ﻨﺠﻌل ﺍﻷﺱ ﻤﺭﺒﻊ ﻜﺎﻤل ﺤﺴﺏ ﺍﻟﺨﻁﻭﺍﺕ‬ ‫ﺍﻟﺘﺎﻟﻴﺔ‪.‬‬ ‫‪12 + ik iv‬‬



‫∞‬



‫‪1 − αk‬‬ ‫‪ik v‬‬ ‫‪1 − αk‬‬ ‫‪∫ dk e . e = ∫ dk e‬‬ ‫‪1‬‬



‫∞‪−‬‬



‫ﺨﺫ‬



‫) ‪( −α‬‬



‫∞‬



‫‪12‬‬



‫∞‪−‬‬



‫ﻋﺎﻤل ﻤﺸﺘﺭﻙ ﻓﻲ ﺍﻷﺱ‪.‬‬ ‫ ‪- ٤٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪i‬‬ ‫)‪− α(k12 − k1v‬‬ ‫‪α‬‬



‫∞‬



‫‪= ∫ dk e‬‬



‫‪− αk12 + ik1v‬‬



‫‪1‬‬



‫∞‬



‫‪1‬‬



‫‪e‬‬



‫‪∫ dk‬‬



‫∞‪−‬‬



‫∞‪−‬‬



‫ﻟﻜﻲ ﻨﺘﺤﺼل ﻋﻠﻰ ﻤﺭﺒﻊ ﻜﺎﻤل ﻟﻸﺱ‬



‫ﻨﻁﺭﺡ ﻭﻨـﻀﻴﻑ ﺍﻟﺤـﺩ‬



‫‪i‬‬ ‫)‪(k 12 − u 1 v‬‬ ‫‪α‬‬



‫‪v2‬‬ ‫‪4α 2‬‬ ‫‪v2‬‬ ‫‪v2‬‬ ‫‪i‬‬ ‫‪i‬‬ ‫‪u 12 − k 1 v = k 12 − 2 − k 1 v + 2‬‬ ‫‪α‬‬ ‫‪4α‬‬ ‫‪4α‬‬ ‫{‬ ‫‪1‬‬ ‫‪23 α‬‬ ‫‪v2‬‬ ‫‪v2 i 1‬‬ ‫‪k‬‬ ‫)‪v‬‬ ‫‪−‬‬ ‫‪+‬‬ ‫‪4α 2‬‬ ‫‪4α 2 α‬‬



‫‪= (k 12 −‬‬



‫‪2‬‬



‫‪v2‬‬ ‫‪iv ‬‬ ‫‪‬‬ ‫‪= k 1 − ( )  + 2‬‬ ‫‪2α  4α‬‬ ‫‪‬‬



‫ﻓﻴﺼﺒﺢ ﺍﻟﺘﻜﺎﻤل ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪v 2 ‬‬ ‫‪  1 iv ‬‬ ‫‪−α  k − ( ) +‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪4α 2 ‬‬ ‫‪  1422α‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫‪q‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫∞‬



‫‪1‬‬



‫‪e‬‬



‫‪∫ dk‬‬



‫∞‪−‬‬



‫∞ ‪v2‬‬ ‫‪4α‬‬



‫‪1 − αq‬‬ ‫‪∫−∞dk e‬‬ ‫‪14243‬‬ ‫‪2‬‬



‫‪−‬‬



‫‪=e‬‬



‫‪v2‬‬ ‫‪4α 2‬‬



‫‪−α‬‬



‫‪− αq 2‬‬



‫‪.e‬‬



‫‪= ∫ dk e‬‬ ‫‪1‬‬



‫∞‪−‬‬



‫ﺍﻟﺩﺍﻟﺔ ﺯﻭﺠﻴﺔ ﻭﻋﻠﻴﻪ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺍﻟﺘﻜﺎﻤل‬ ‫ﻭﻗﻴﻤﺔ ﺍﻟﺘﻜﺎﻤل ﻴﺴﺎﻭﻱ‬



‫∞‬



‫‪2‬‬



‫∞‬



‫‪2∫ du 1 e −αq‬‬ ‫‪°‬‬



‫∫ ‪1‬‬ ‫‪2 α‬‬



‫)‪..............(2 − 4‬‬



‫‪v2‬‬ ‫‪4α‬‬



‫‪−‬‬



‫‪.e‬‬



‫‪D‬‬ ‫‪∴f (x) = e{ .‬‬ ‫‪α‬‬ ‫‪phase factor‬‬ ‫‪ikov‬‬



‫ﻻﺤﻅ ﺃﻥ ﺍﻟﺩﺍﻟﺔ )‪ f (x‬ﻓﻲ )‪ (2-4‬ﺩﺍﻟﺔ ﺘﺨﻴﻠﻴﺔ‪ .‬ﻭﻟﻜﻲ ﺘﺒﻌﺩ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻋﻠـﻰ‬ ‫ﺠﺴﻡ ﻴﻠﺯﻡ ﺃﻥ ﺘﻜﻭﻥ ﺤﻘﻴﻘﻴﺔ‪ .‬ﻭﻟﻬﺫﺍ ﺍﻟﺴﺒﺏ ﻓﺎﻟﺫﻱ ﻴﻬﻤﻨﺎ ﻟﻴﺱ )‪ f (x‬ﺒل ﻤﺭﺒﻊ ﺍﻟﻘﻴﻤﺔ‬ ‫ﺍﻟﻤﻁﻠﻘﺔ ﻷﻨﻬﺎ ﺤﻘﻴﻘﻴﺔ‪.‬‬



‫ ‪- ٤٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫)‪f (x) = f * (x) f (x‬‬ ‫‪2‬‬



‫‪x2‬‬



‫‪x2‬‬



‫‪D − 4α‬‬ ‫‪D − 4α‬‬ ‫‪e ) (e +ikox‬‬ ‫) ‪e‬‬ ‫‪α‬‬ ‫‪α‬‬



‫‪− kox‬‬



‫‪= (e‬‬



‫‪v2‬‬



‫‪D −‬‬ ‫‪f ( x ) = e 2α‬‬ ‫‪α‬‬



‫)‪........... (2 − 5‬‬



‫‪2‬‬



‫ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﺘﻤﺜل ﺠﺴﻴﻡ‪.‬‬ ‫ﺍﻟﺩﺍﻟﺔ )‪ (2-5‬ﻟﻬﺎ ﻗﻴﻤﺔ ﻗﺼﻭﻯ )ﺃﻭ ﻗﻴﻤﺔ( ﻋﻨﺩ ‪ v = 0‬ﻭﺘﻌﺘﻤﺩ ﻋﻠـﻰ ﻗﻴﻤـﺔ‬ ‫ﺍﻟﺜﺎﺒﺕ ‪ ، α‬ﺇﺫﺍ ﻜﺎﻨﺕ‬



‫‪α‬‬



‫ﻜﺒﻴﺭﺓ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ ﻋﺭﻴﻀﺔ ﻭﺍﻟﻌﻜﺱ ﺼﺤﻴﺢ ﺇﺫﺍ ﻜﺎﻨﺕ‬



‫‪α‬‬



‫ﺼﻐﻴﺭﺓ ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ﺘﻌﺒﺭ ﻋﻥ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﻀـﻴﻘﺔ ‪ harrow‬ﻭﻜﻤـﺎ ﻗﻠﻨـﺎ ﻓـﺈﻥ‬ ‫‪2‬‬



‫)‪f (x‬‬



‫ﺘﻌﺒﺭ ﻋﻥ ﺠﺴﻴﻡ‪.‬‬



‫ﺒﺈﻤﻜﺎﻨﻨﺎ ﺃﻥ ﻨﻭﺠﺩ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ‬



‫)ﻤﻠﺤﻕ ‪ (A‬ﻨﺄﺨﺫ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ‬



‫‪∆v‬‬



‫ﻟﻜﻲ ﺘﻨﺫل ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺇﻟﻰ‬



‫‪1‬‬



‫‪e‬‬



‫‪2‬‬



‫)‪f (x‬‬



‫‪ ،‬ﻜﻤﺎ ﺸﺭﺤﻨﺎ ﻓﻲ ﺍﻟﺠـﺯﺀ ﺍﻟـﺴﺎﺒﻕ‬



‫ﻋﻨﺩﻤﺎ ﺘﻘل ﻗﻴﻤﺘﻬﺎ ﺇﻟﻰ‬



‫‪e‬‬



‫‪1‬‬



‫ﻋﻥ ﺃﻗﺼﻰ ﻗﻴﻤﺔ ﻟﻬﺎ‬



‫ﻫﺫﺍ ﻴﺤﺩﺙ ﻋﻨـﺩﻤﺎ ﻴـﺴﺎﻭﻱ ﺍﻷﺱ ﻭﺍﺤـﺩ ﺃﻱ‬



‫‪v2‬‬ ‫ﻋﻨﺩﻤﺎ ‪. =1‬‬ ‫‪2α‬‬



‫‪⇒ v 2 = 2α ⇒ Δv ° = ± 2α‬‬ ‫)‪................(2 − 6‬‬



‫‪⇒ Δv = 2 2α‬‬



‫ﻨﻭﺠﺩ ﺍﻵﻥ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ )‪ g (k‬ﻭﺍﻟﺘﻲ ﺘﻌﻁﻲ ﺒــ‬



‫ﻴﻬﻤﻨﺎ ﻫﻭ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ )‪ g2 (k‬ﻭﻟـﻴﺱ ﺍﻟﺩﺍﻟـﺔ‬



‫)‪2 g (k‬‬



‫‪2‬‬



‫) ‪g (k) = e − α (k − k °‬‬



‫) ‪g 2 (k) = e − 2 α (k − k °‬‬



‫ﻭﺍﻟـﺫﻱ‬



‫ﻫـﺫﻩ ﺍﻟﺩﺍﻟـﺔ‬



‫ ‪- ٤٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻤﺘﻤﺭﻜﺯﺓ ﺤﻭل‬



‫‪k°‬‬



‫ﻭﻟﻴﺱ ﺤﻭل ‪ k = 0‬ﺒل ﺤﻭل‬



‫ﺍﻟﻁﺭﻴﻘﺔ‪ ،‬ﻨﻭﺠﺩ ﺍﻟﻌﺭﺽ ﻋﻨﺩﻤﺎ ﺘﻘل ﺍﻟﺩﺍﻟﺔ ﺇﻟﻰ‬ ‫)‪...................(2 − 7‬‬



‫)‬



‫‪1‬‬ ‫‪2α‬‬



‫‪e‬‬



‫‪1‬‬



‫‪k =k°‬‬



‫ﻤﻥ ﻗﺴﻤﺘﻬﺎ ﺍﻟﻘﺼﻭﻯ‪.‬‬



‫( )‪Δk = 2ΔΔ° = (2‬‬



‫ﻻﺤﻅ ﺍﻟﺘﻨﺎﺴﺏ ﺍﻟﻌﻜﺴﻲ ﻓﻲ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ‬



‫ﻓﻲ )‪ (2-6‬ﻭﺍﻟﻌﺭﺽ ﻓﻲ‬



‫‪∆v‬‬



‫ﻓﻲ ﺍﻟﻌﻼﻗﺔ )‪ (2-7‬ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻪ ﻜﻠﻤﺎ ﺘﻤﻴﺯﺕ ﺍﻟﺩﺍﻟﺔ‬



‫)‪f (x‬‬



‫ﺍﻨﺒﺴﻁﺕ ﻭﺍﺴﺘﻌﺭﻀﺕ ﻓﻲ ﻓﻀﺎﺀ ‪ k‬ﻭﺍﻟﻌﻜﺱ ﺼﺤﻴﺢ‪.‬‬ ‫ﻭﻤﻥ ﺍﻟﻤﻬﻡ ﺃﻥ ﻨﻨﻅﺭ ﺇﻟﻰ ﺤﺎﺼل ﻀﺭﺏ ﺍﻟﻌﺭﻀﻴﻥ‬ ‫)‪...............(2 − 8‬‬



‫‪2 2α = 4‬‬



‫ﻋﺭﻀﻬﺎ ﻴﻭﺠـﺩ ﺒـﻨﻔﺱ‬



‫‪.‬‬



‫‪1‬‬ ‫‪2α‬‬



‫‪∆k‬‬



‫ﻓـﻲ ﻓـﻀﺎﺀ ‪ x‬ﻜﻠﻤـﺎ‬ ‫‪∆ u , ∆v‬‬



‫‪Δ u . Δv = 2‬‬



‫ﺍﻟﺫﻱ ﻴﻬﻤﻨﺎ ﻓﻲ ﺍﻟﻌﻼﻗﺔ )‪ (2-8‬ﻟﻴﺱ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺩﺩﻴﺔ‪ ،‬ﺍﻟﺫﻱ ﻴﻬﻡ ﻫﻭ ﺃﻥ ﺤﺎﺼل‬



‫ﺍﻟﻀﺭﺏ‬



‫‪∆ u , ∆v‬‬



‫ﻻ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻗﻴﻤﺔ ﺍﻟﺜﺎﺒﺕ ‪ .α‬ﻫﺫﻩ ﺨﺎﺼﻴﺔ ﻋﺎﻤﺔ ﻟﻜـل ﺍﻟـﺩﻭﺍل‬



‫ﺘﺭﺘﺒﻁ ﺒﺒﻌﻀﻬﺎ ﺒﺘﺤﻭﻴﻼﺕ ﻓﻭﺭﻴﺭ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﻓﻲ ﺸﻜل ‪.2-1‬‬ ‫‪This is a general property of functions that are Fourier trans forms of‬‬ ‫‪each other.‬‬



‫ ‪- ٥٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻨﺨﻠﺹ ﻤﻥ ﻫﺫﺍ ﺍﻟﺠﺯﺀ ﺒﺎﻻﺴﺘﻨﺘﺎﺝ ﺃﻨﻪ ﻤﻥ ﺍﻟﻤﺴﺘﺤﻴل ﺃﻥ ﻨﺠﻌل ﻜـﻼﹰ ﻤـﻥ‬ ‫ ﺍﻷﻤﺭ ﺍﻟـﺫﻱ‬،‫ ﻭﻫﺫﻩ ﺨﺎﺼﻴﺔ ﻋﺎﻤﺔ ﻟﻠﺤﺯﻡ ﺍﻟﻤﻭﺠﻴﺔ‬.‫ﺫﺍﺕ ﻗﻴﻡ ﺼﻐﻴﺭﺓ‬



∆k



‫ﻭ‬



∆v



.‫ﻴﺘﺭﺘﺏ ﻋﻠﻴﻪ ﻨﺘﺎﺌﺞ ﻫﺎﻤﺔ ﺠﺩﺍﹰ ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‬



It is impossible to make both Δ v and Δk small. This is a general feature of wouae packets, but we shall soon see rat it has some very deep implications for quantum mechanics.



Figure 2-4 Relation between wave packet and its Fourier transform for a square-shaped wave packet.



- ٥١ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﺍﻨﺘﺸﺎﺭ ﺍﻟﺤﺯﻡ ﺍﻟﻤﻭﺠﻴﺔ‬ ‫‪THE PROPAGATION OF WAVE PACKETS‬‬



‫ﺒﻌﺩﻤﺎ ﺩﺭﺴﻨﺎ ﺘﺭﺍﻜﺏ ﻤﻭﺠﺎﺕ ﻤﻥ ﻨﻭﻉ‬



‫‪e ikx‬‬



‫ﻟﻨﺘﺤﺼل ﻋﻠﻰ ﺩﺍﻟﺔ )‪ ،f (x‬ﻨـﻭﺩ‬



‫ﺍﻵﻥ ﻤﻨﺎﻗﺸﺔ ﻜﻴﻔﻴﺔ ﺇﻨﺘﺸﺎﺭ ﻫﺫﻩ ﺍﻟﻤﻭﺠﺎﺕ؟ ﺒﻼ ﺸﻙ ﺇﻥ ﺍﻨﺘﺸﺎﺭ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﻴﻌﺘﻤﺩ‬



‫ﻋﻠﻰ ﺇﻨﺘﺸﺎﺭ ﻜل ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ ﺍﻟﻤﻜﻭﻨﺔ ﻟﻬﺎ‪ .‬ﻓﻠﻭ ﺃﺨﺫﻨﺎ ﻤﻭﺠﺔ ﺘﺘﻐﻴﺭ ﻤﻜﺎﻨﻴﺎﹰ ﻋﻠـﻰ‬



‫ﻤﺤﻭﺭ ‪) X‬ﺒﻴﻨﻤﺎ ﻻ ﺘﻌﺘﻤﺩ ﺍﻟﻤﻭﺠﺔ ﻤﻥ ﺤﻴﺙ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ‪ t , y‬ﻋﻠﻰ ﺍﻟﺯﻤﻥ(‪ .‬ﻫـﺫﻩ‬ ‫ﺍﻟﻤﻭﺠﺎﺕ ﺘﺴﻤﻰ ﻤﻭﺠﺎﺕ ﻤﺴﺘﻭﻴﺔ ‪ ،plane wanes‬ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﻫﺫﻩ ﺍﻟﻤﻭﺠﺎﺕ ﻜﺩﺍﻟﺔ‬



‫ﻓﻲ ﺍﻟﺯﻤﻥ ‪ t‬ﻭﺍﻟﻤﻭﺠﺔ ‪ X‬ﺒﺎﻟﺼﻴﻐﺔ‪.‬‬ ‫)‪...... (2-9‬‬ ‫ﺤﻴﺙ‬



‫‪e iuv − iwt‬‬



‫‪w = 2Dv‬‬ ‫‪2D‬‬ ‫=‪k‬‬ ‫‪λ‬‬



‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪(2-9‬‬ ‫)‪................(2 − 10‬‬



‫‪v‬‬ ‫) ‪2 Di ( − vt‬‬ ‫‪D‬‬



‫‪=e‬‬



‫‪2D‬‬ ‫‪v − i 2 Dvt‬‬ ‫‪λ‬‬



‫‪ei‬‬



‫ﻟﻭ ﺃﺨﺫﻨﺎ ﻜﺤﺎﻟﺔ ﺨﺎﺼﺔ؛ ﺇﻨﺘﺸﺎﺭ ﻤﻭﺠﺎﺕ ﺍﻟﻀﻭﺀ ﻓﻲ ﺍﻟﻔـﻀﺎﺀ ﺤﻴـﺙ‬ ‫ﻟﻠﻀﻭﺀ‪ ،‬ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ )‪.(2-10‬‬ ‫)‪.................(2 − 12‬‬



‫) ‪= e ik ( v − ct‬‬



‫‪2D‬‬ ‫) ‪i ( v − ct‬‬ ‫‪λ‬‬



‫‪=e‬‬



‫‪v c‬‬ ‫)‪− t‬‬ ‫‪λ λ‬‬



‫( ‪2 Di‬‬



‫‪c‬‬ ‫‪λ‬‬



‫=‪v‬‬



‫‪e‬‬



‫ﺨﺫ ﺍﻵﻥ ﺘﺭﺍﻜﺏ ﺍﻟﻤﻭﺠﺎﺕ ﺴﻌﺘﻬﺎ )‪ g (k‬ﻤﻥ ﻫﺫﺍ ﺍﻟﻨﻭﻉ ﻤﻥ ﺍﻟﻤﻭﺠﺎﺕ‪ ،‬ﻓﺒﻌﺩ‬



‫ﻤﺭﻭﺭ ﺯﻤﻥ ﻗﺩﺭﻩ ‪t‬‬



‫∞‬



‫)‪f (x 1 t) = ∫ du g (u) e iu (v −ct) = eik (v − ct‬‬ ‫∞‪−‬‬



‫ ‪- ٥٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺇﻥ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ )‪ f (x – ct‬ﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺸﻜل ﺍﻟﺫﻱ ﺒﺩﺃﺕ ﺒﻪ ﻗﺒل ﺍﻻﻨﺘﺸﺎﺭ ﻤـﺎ‬ ‫ﻋﺩﺍ ﺃﻥ ﻤﻭﻗﻌﻬﺎ ﺒﺩﻻﹰ ﻤﻥ ﺃﻥ ﻴﻜﻭﻥ ‪ X‬ﺃﺼـﺒﺢ ﺍﻵﻥ ﻤﺘﺭﻜـﺯ )ﺃﻭ ﻤﺘﺤﻴـﺯ( ﻋﻨـﺩ‬ ‫‪v = ct ⇐ v − ct = o‬‬



‫ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﺤﺯﻡ ﺍﻟﻀﻭﺀ ﺍﻟﻤﻭﺠﻴﺔ ﺘﻨﺘﺸﺭ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺒﻼ ﺘﺸﻭﻴﻪ‪.‬‬ ‫‪Thus the wave packet go light waves propagates, without any‬‬ ‫‪distortion, with velocity, the velsal'y of light.‬‬



‫ﻭﻟﻜﻥ ﺍﻟﺫﻱ ﻴﻌﻨﻴﻨﺎ ﻫﻨﺎ ﺍﻨﺘﺸﺎﺭ ﻤﻭﺠﺎﺕ‪ ،‬ﻴﻔﺘﺭﺽ ﺃﻨﻬﺎ ﺘﹸﻌﺒﺭ ﻋﻥ ﺠﺴﻴﻤﺎﺕ‪ ،‬ﻓﻲ‬



‫ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻟﻥ ﻨﺴﺘﻁﻴﻊ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻟﻌﻼﻗﺔ‪.‬‬ ‫)‪... (2-13‬‬



‫‪w = kc‬‬ ‫‪W (k) = kc‬‬



‫ﻻﺤﻅ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﺼﺤﻴﺤﺔ ﻓﻘﻁ ﻓﻲ ﺤﺎﻟﺔ ﺍﻨﺘﺸﺎﺭ ﺤﺯﻤﺔ ﻀﻭﺀ ﻤﻭﺠﻴﺔ ﻓـﻲ‬



‫ﺍﻟﻔﻀﺎﺀ‪ .‬ﻭﻟﻜﻲ ﺘﻨﻁﺒﻕ ﺩﺭﺍﺴﺘﻨﺎ ﻋﻠﻰ ﺍﻨﺘﺸﺎﺭ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ )ﺠﺴﻴﻡ( ﻴﻠﺯﻡ ﺍﺴـﺘﺨﺩﺍﻡ‬



‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻌﻼﻤﺔ ﻟـ )‪ w (k‬ﺤﻴﺙ‬



‫‪w = (k) ≠ kc or kv‬‬



‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻨﻌﻴﺩ ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ )‪ (2-11‬ﺒﺎﻟﺼﻴﻐﺔ‪.‬‬ ‫)‪ik (v − ct‬‬ ‫)‪f (x 1 t) = ∫ dk g (k) e ik (v − ct‬‬



‫ﻟﺘﺼﺒﺢ ﻓﻲ ﺤﺎﻟﺔ ﺠﺴﻡ ﺤﺭ ﺍﻟﺤﺭﻜﺔ‬ ‫‪= dk g(k) e ikv − iw (k)t‬‬



‫)‪..........(2 − 14‬‬



‫ﻻﺤﻅ ﺃﻨﻨﺎ ﻟﻡ ﻨﻌﺭﻑ ﺒﻌﺩ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻁﺒﻴﻌﺔ ﺍﻟﺩﺍﻟﺔ )‪ ،w (k‬ﻭﻟﻜﻥ ﺨـﺫ‬ ‫ﺍﻵﻥ ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﻤﺘﻤﺭﻜﺯﺓ ﻭﻤﺘﺤﺒﺯﺓ ﺠﺩﺍﹰ ﺤﻭل‬ ‫ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ‪ α‬ﻓﻲ ﺍﻟﻌﻼﻗﺔ‬



‫‪2‬‬



‫) ‪g (k) = e −α(k − k °‬‬



‫‪k°‬‬



‫ﻓﻲ ﻓﻀﺎﺀ ‪.u‬‬



‫ﺴﺘﻜﻭﻥ ﻜﺒﻴﺭﺓ‪ .‬ﻫﺫﺍ ﻗﺩ ﻻ ﻴﻌﻨﻲ ﺃﻥ‬



‫)‪ f (x‬ﺴﺘﻜﻭﻥ ﻤﺘﺤﺒﺯﺓ ﻓﻲ ﻓﻀﺎﺀ ‪ v‬ﻭﻟﻜﻥ ﻫﺫﺍ ﺍﻟﺘﻘﺭﻴﺏ ﺴﻴﺴﻬل ﺤﺴﺎﺒﺎﺘﻨﺎ‪.‬‬ ‫‪- ٥٣ -‬‬



‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺒﻤﺎ ﺃﻥ ﺍﻟﺘﻜﺎﻤل ﻓﻲ )‪ (2- 14‬ﻤﺘﻤﺭﻜﺯ ﺤﻭل‬



‫ﻤﻊ ﺍﻓﺘـﺭﺍﺽ ﺃﻥ‬



‫‪k°‬‬



‫)‪w (k‬‬



‫ﻻ‬



‫ﺘﺘﻐﻴﺭﻩ ﺒﺸﺩﺓ ﻤﻊ ﺘﻐﻴﺭ ‪.k‬‬ ‫)‪............(2 − 15‬‬



‫ﺍﻟﺤﺩ ﺍﻷﻭل‬



‫) ‪w (k °‬‬



‫)‪dw(k‬‬ ‫‪1‬‬ ‫)‪d 2 w (k‬‬ ‫( ‪) k + (k − k ° ) 2‬‬ ‫)‬ ‫‪°‬‬ ‫‪dk‬‬ ‫‪2‬‬ ‫‪dk 2 k°‬‬



‫( ) ‪w (k) ≅ w (k ° ) + (k − k °‬‬



‫ﺜﺎﺒﺕ ﻷﻨﻪ ﻻ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ‪ .k‬ﺍﻟﺤﺩ ﺍﻟﺜﺎﻨﻲ‬



‫‪dw‬‬ ‫)‬ ‫‪dk k = k °‬‬



‫(‬



‫ﻴﻤﺜل ﺴﺭﻋﺔ‬



‫ﺍﻟﻤﺠﻤﻭﻋﺔ ‪ -group velocity‬ﻜﻤﺎ ﺸﺭﺤﻨﺎ ﻓﻲ ﺍﻟﺘﻤﻬﻴﺩ‪ -‬ﻫﻲ ﺍﻟﺴﺭﻋﺔ ﺍﻟﺘﻲ ﺘـﺴﻴﺭ‬



‫ﺒﻬﺎ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ‪.‬‬



‫‪dw‬‬ ‫)‬ ‫‪= vg‬‬ ‫‪dk k = k°‬‬



‫⇒‬



‫(‬



‫)‪(2-16‬‬



‫‪and‬‬ ‫‪1 d2w‬‬ ‫)‬ ‫‪=β‬‬ ‫(‬ ‫‪2 dk 2 k = k °‬‬



‫ﺒﺎﻓﺘﺭﺍﺽ ﺃﻥ‪:‬‬ ‫‪k1 = k − k °‬‬ ‫‪⇒ dk 1 = dk‬‬



‫ﻓﺈﻥ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﺯﻤﻥ ﺒﺎﻟﺼﻴﻐﺔ‪.‬‬ ‫‪i (k1 + k ° ) v − i  w (k ° ) + k1vg + k12β  t‬‬ ‫‪‬‬ ‫‪‬‬



‫∞‬



‫‪f (x 1 t) = ∫ dk 1 e −αk e‬‬ ‫‪12‬‬



‫∞‪−‬‬



‫ﺨﺫ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺜﺎﺒﺘﺔ ﺨﺎﺭﺝ ﺍﻟﺘﻜﺎﻤل‪.‬‬ ‫‪1‬‬ ‫‪1‬‬



‫‪12βt‬‬



‫‪12‬‬



‫‪1‬‬



‫‪e −αk . e ik v. e −ik vgt. e −ik‬‬ ‫‪12βt‬‬



‫‪e −ik‬‬



‫)‪1 (v − vgt‬‬



‫‪e ik‬‬



‫∞‬



‫‪∫ dk‬‬



‫∞‪−‬‬



‫‪ik ° v − i w(k ° )t‬‬



‫∞‬



‫‪∫ dk e‬‬



‫‪1 − αk12‬‬



‫‪=e‬‬



‫‪ikov − iw(k ° )t‬‬



‫‪=e‬‬



‫∞‪−‬‬



‫)‪........(2-17‬‬ ‫ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﺃﺠﺭﻴﻨﺎﻫﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻷﻭﻟﻰ‪ ،‬ﻴﻤﻜﻥ ﻋﻤل ﺍﻟﺘﻜﺎﻤل ﻋﻥ‬



‫ﻁﺭﻴﻕ ﺇﻜﻤﺎل ﺍﻟﻤﺭﺒﻊ ﻓﻲ ﺍﻷﺱ‪ ،‬ﺨﺫ ﺍﻷﺱ ﻓﻘﻁ‪.‬‬ ‫)‪− (α + iβ t ) k12 + ik1 (v − μ g t‬‬



‫‪=e‬‬



‫‪12 + ik1 (v − μgt) − ik12 βt‬‬



‫‪e − αk‬‬



‫ ‪- ٥٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



.‫ﻋﺎﻤل ﻤﺸﺘﺭﻙ‬ =e



− (α + iβ t)



‫ﺨﺫ‬



(v − ν g t)   − (α + iβ t)  k12 − ik1  (α = iβ t )  



.‫ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺭﺒﻊ ﻜﺎﻤل ﻨﻁﺭﺡ ﻭﻨﻀﻴﻑ ﺍﻟﺤﺩ‬ (v − ν g t)2 4(α + iβ t)



e



 iu1 (u − v g t)  (x − v g t) 2 ( x − v g t) 2 + − (α + iβ t)  u12 − − α + iββ  4 (α + iββ) 4 (α + iβ t)  



‫ﺨﺫ ﻫﺫﻩ ﺍﻹﺸﺎﺭﺓ ﻤﺸﺘﺭﻙ ﻤﻊ ﺍﻟﺤﺩ ﺍﻷﻭل‬  ik 1 (u − v g t) (u − v g t) 2 − (α + iβ t)  k12 − − α + iβ t 4 (α + iββ) 



e ⇒ e



i (u − v g t)  − (α + iβ t)  k1 − 2 ( α + iβ t 



  



2 +



 ( x − v t) 2 g  −  4 (α + iβ t) 



2 1 ( x − v g t) 4 (α + iβ t)



............(2 − 18)



:‫( ﻨﺘﺤﺼل ﻋﻠﻰ‬2-17) ‫( ﻓﻲ‬2-18) ‫ﺒﺘﻌﻭﻴﺽ‬ f ( x1t ) = e







∫ dk



i ( k° x − w ( k° ) t )



1



e



(v − µ g t )   − (α + i β t )  k1 −  2 (α = i β t )  



−∞



= e i ( k° x − w ( k° ) t e







( x− y g t ) 2 4 (α + iβ t )



2 −



‫ﺛﺎﺑﺖ‬



( x − vg t ) 2



e 4 ( α + i βt ) 1424 3 ‫اﻟﺤﺪ‬



‫ھﺬا‬



‫اﺑﺖ‬



i ( x −u gt)  2  − ( α + i β t )  k1 −  2 (α + iβ t )  1 







∫ dk e



−∞



1444424444 3



− (x − u g t) 2



f (x 1 t) = e



i (u ° x − w (k ° ) t



e



D (α + iβ t)



4 (α + iβ t)



2



f (x 1 t) = f (n 1 t) f * (x 1 t) = e ° . e







(v − u g t) 2 4 (α + iβ t)







( v − u g t) 2 4 (α − iβ t)



D D (α + i β t ) ( α − i β t)



 − (v − u g t) 2 ( 2α )   D 2  α 2 + β 2t 2   = 1. e   (α 2 + β 2 t 2 )       =e







(v − u g t) 2



D



2 (α + β 2 t 2 /αα (α 2 + β 2 t 2 )



- ٥٥ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﺒﻘﺴﻤﺔ ﺍﻷﺱ ﻓﻲ ﺍﻟﺒﺴﻁ ﻭﺍﻟﻤﻘﺎﻡ ﻋﻠﻰ ‪. α‬‬ ‫ﺒﻤﻘﺎﺭﻨﺔ ﺍﻟﺼﻴﻐﺔ ﻓﻲ )‪ (2-19‬ﺒـ )‪(2-5‬‬



‫‪v2‬‬ ‫‪‬‬ ‫‪D − 2α ‬‬ ‫‪2‬‬ ‫‪f (x) = e ‬‬ ‫‪α‬‬ ‫‪‬‬ ‫‪‬‬



‫ﻨﺠﺩ ﺃﻥ ﻫﻨﺎﻙ ﺘﻤﺎﺜل ﻤﻊ ﻤﻼﺤﻅﺔ ﺃﻥ ‪ v‬ﻓﻲ )‪ (2-5‬ﺘﻐﻴﺭﺕ ﻟـ‬ ‫ﺘﺤﻭﻟﺕ ﻟـ‬



‫‪β2 t 2‬‬ ‫‪α‬‬



‫ﻭﻟﻬﺫﺍ ﻓﺈﻥ‬



‫)‪(v − u g t‬‬



‫ﻭ‪α‬‬



‫‪α+‬‬ ‫‪2‬‬



‫) ‪f (x 1 t‬‬



‫ﺘﻤﺜل ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﺘﺴﻴﺭ ﺒﺴﺭﻋﺔ‬



‫‪ug‬‬



‫ﻭﻟﻜـﻥ ﻋـﺭﺽ‬



‫ﻫﺫﻩ ﺍﻟﺤﺯﻤﺔ ﻏﻴﺭ ﻤﺤﺩﺩ ﻭﻟﻜﻥ ﻴﺘﻐﻴﺭ ﻤﻊ ﺍﻟﺯﻤﻥ‪ ،‬ﻻﺤﻅ ﺃﻥ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ )‪.(2-19‬‬ ‫‪Δv = 2. Δ v ° = 2. 2 (α + β 2 t 2 /αα‬‬ ‫‪or‬‬ ‫)‪...............(2 − 20‬‬



‫‪β 2 t 2 12‬‬ ‫)‬ ‫‪α2‬‬



‫‪Δv = 8α (1 +‬‬



‫ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (2-20‬ﻴﺘﻀﺢ ﺃﻥ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻴﺯﺩﺍﺩ ﻤﻊ ﺍﻟﺯﻤﻥ ﺃﻱ ﺃﻥ ﺍﻟﺩﺍﻟﺔ‬ ‫ﺘﻨﺒﺴﻁ ﻤﻊ ﻤﺭﻭﺭ ﺍﻟﺯﻤﻥ ﻭﺫﻟﻙ ﻤﻘﺎﺭﻨﺔ ﺒﻌﺭﻀﻬﺎ ﻋﻨﺩ ‪t = 0‬‬ ‫‪Δv = ( t = 0 ) = 8α‬‬



‫ﺃﻤﺎ ﻋﻨﺩ ﺃﻱ ﺯﻤﻥ ﺁﺨﺭ ﻓﺈﻥ ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻴﻌﻁﻲ ﺒﺎﻟﺼﻴﻐﺔ )‪ (2- 20‬ﺇﻥ ﻤﻌﺩل‬



‫ﺍﻻﻨﺒﺴﺎﻁ ﻓﻲ ﺍﻟﺩﺍﻟﺔ ﺴﻴﻜﻭﻥ ﺼﻐﻴﺭﺍﹰ ﺇﺫﺍ ﻜﺎﻨﺕ ‪ α‬ﻜﺒﻴﺭﺓ ﺃﻱ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﻤﻨﺒﺴﻁﺔ‬ ‫ﻜﺜﻴﺭﺍﹰ ﻋﻨﺩ ﺍﻟﺒﺩﺍﻴﺔ‪.‬‬



‫ ‪- ٥٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻤﻥ ﺍﻟﺤﺯﻡ ﺍﻟﻤﻭﺠﻴﺔ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ‪:‬‬ ‫‪FROM WAVE PACKETS TO THE SCHRöDINGER EQUATION‬‬



‫ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ }‬



‫‪.........‬‬



‫‪iku −iw ( k ) t‬‬



‫‪{f ( x t ) = ∫ dk g (u) e‬‬ ‫‪1‬‬



‫ﺘﻤﺜل ﺠﺴﻴﻡ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻟﻪ‬



‫ﺘﺴﺎﻭﻱ ‪ p‬ﻭﻁﺎﻗﺘﻪ ﺍﻟﺤﺭﻜﻴﺔ )‪ ،(p2 /2m‬ﻓﺈﻥ ﻫﺫﺍ ﻴﺴﺘﻠﺯﻡ ﺃﻥ ﺴﺭﻋﺔ ﺍﻟﻤﺠﻤﻭﻋـﺔ ‪ug‬‬



‫ﺘﻌﻁﻰ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ‪.‬‬ ‫‪dw‬‬ ‫‪p‬‬ ‫)‪= particle velocity ⇒ = .................(2 − 21‬‬ ‫‪dk‬‬ ‫‪m‬‬



‫= ‪ug‬‬



‫ﻭﻤﻥ ﺍﻓﺘﺭﺍﻀﺎﺕ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪ ،‬ﻓﺈﻥ ﺃﻱ ﺇﺸﻌﺎﻉ ﻟﻪ ﺘﺭﺩﺩ ‪ w‬ﻓﺈﻨﻪ ﻴﻘﺎﺒﻠﻪ ﻁﺎﻗﺔ‬



‫‪ E‬ﺘﻌﻁﻲ ﺒﺎﻟﻌﻼﻗﺔ‪.‬‬



‫‪E=hw‬‬ ‫‪or‬‬ ‫‪E‬‬ ‫‪h‬‬



‫=‪w‬‬



‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ E‬ﻫﻲ ﻁﺎﻗﺔ ﺠﺴﻴﻡ ﺤﺭ‪،‬ﻓﺈﻨﻬﺎ ﺘﻤﺜل ﻁﺎﻗﺘﻪ ﺍﻟﺤﺭﻜﻴﺔ ‪ p2/2m‬ﺃﻱ ﺃﻥ‪.‬‬ ‫‪( p 2 / 2m) p 2‬‬ ‫=‪w‬‬ ‫=‬ ‫‪2mh‬‬ ‫‪h‬‬



‫)‪(2 − 23‬‬



‫ﻭﻋﻠﻴﻪ ﻓﻤﻥ ﺍﻟﻤﻤﻜﻥ ﺃﻥ ﻨﻜﺘﺏ ﻤﺘﺠﻪ ﺍﻟﻤﻭﺠﺔ ‪) k‬ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ( ﻭﻤﻥ ﻤﻌﺎﺩﻟﺔ‬



‫ﺩﻴﺒﺭﻭﻟﻲ ‪. λ = n‬‬ ‫‪p‬‬



‫‪2D 2 D‬‬ ‫‪p‬‬ ‫‪p‬‬ ‫=‬ ‫=‬ ‫=‬ ‫‪λ (h ) ( h ) h‬‬ ‫‪p‬‬ ‫‪2D‬‬



‫)‪.................(2 − 24‬‬



‫=‪k‬‬



‫ﻭﻟﻬﺫﺍ ﺍﻟﺴﺒﺏ ﻴﻤﻜﻨﻨﺎ ﺇﻋﺎﺩﺓ ﻜﺘﺎﺒﺔ ﺍﻟﺼﻴﻐﺔ )‪ (2-14‬ﺒﺩﻻﻟﺔ ‪) p‬ﺒﺩﻻﹰ ﻤﻥ ‪(k‬‬ ‫‪ψ (p ) e i (px −Et)/h‬‬



‫)‪............(2 − 25‬‬



‫ﺤﻴﺙ ﺃﻥ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ‬



‫)‪ψ (x 1 t‬‬



‫ﺍﻟﺠﺯﺌﻴﺔ ‪.partial differentiable.‬‬



‫‪1‬‬



‫‪∫ dp‬‬ ‫‪2Dh‬‬



‫= )‪ψ (x 1 t‬‬



‫ﺘﻤﺜل ﺍﻟﺤل ﺍﻟﻌـﺎﻡ ﻟﻠﻤﻌﺎﺩﻟـﺔ ﺍﻟﺘﻔﺎﻀـﻠﻴﺔ‬



‫ ‪- ٥٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



iD



∂ ψ (x 1 t) ∂t



=



1



∫ dp φ (p) E e 2Dh



i (px − Et)/t



p 2 i( px − Et) /D = ∫ dp φ (p) 2m e 2Dh 1



.x ‫ﻤﺭﺘﻴﻥ ﺒﺎﻟﻨﺴﺒﺔ ﻟـ‬



ψ (x 1 t)



............(2 − 26)



‫( ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻴﻬﺎ ﺒﺘﻔﺎﻀل‬2-26) ‫ﺤﻴﺙ ﺃﻥ‬



∂ ∂ψ ∂  1 ∂  ( )= dp φ (p) e i (px − Et)/D   ∫ ∂x ∂x ∂x  2Dh ∂x  ∂  1 ip  = dp φ (p) . e i (px − Et)/h  ∫  h ∂x  2Dh  = =



1 2Dh 1 2Dh



ip ip i (px − Et)/t  e  h



∫ dp φ (p) h . ∫ dp φ ( p ) ( −



p 2 i (px − Et) /t )e ]................(2 − 27) D2



‫ ﻴﻠﺯﻡ ﻀﺭﺏ‬،‫( ﻤﻥ ﺍﻟﻁﺭﻑ ﺍﻷﻴﻤﻥ‬2-26) ‫( ﺒـ‬2-27) ‫ﻭﻟﻜﻲ ﺘﺘﺴﺎﻭﻯ ﻤﻌﺎﺩﻟﺔ‬



‫ ﺃﻱ‬، − D ‫( ﻓﻲ‬2-27) ‫ﻁﺭﻓﻲ‬ 2



2m







h2 ∂2ψ 1 D2 p 2 i (px − Et)/D = dp φ (p) ( − ) ( − )e ∫ 2m ∂x 2 2m D2 2Dh 1 p 2 i (px − Et)/D ] = dp φ (p) ( )e ∫ 2m 2Dh



]



:‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ‬ ih



∂ψ (x 1 t) ∂t



=−



2 h 2 ∂ ψ (v1 t) 2m ∂v 2



................(2 − 28)



.‫ﻭﻫﺫﻩ ﺼﺤﻴﺤﺔ ﻟﺠﺴﻡ ﺤﺭ‬ (‫ﻋﻼﻗﺎﺕ ﺍﻟﻼﺘﺤﺩﻴﺩ )ﺍﻟﻼﺘﻌﻴﻴﻥ‬



The uncertainty Relations



‫ﺃﺤﺩ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻬﻤﺔ ﺍﻟﺘﻲ ﺘﻭﺼﻠﻨﺎ ﻟﻬﺎ ﻤﻥ ﻤﻨﺎﻗﺸﺘﻨﺎ ﻟﻠﺤﺯﻡ )ﺍﻟﺭﺯﻡ( ﺍﻟﻤﻭﺠﻴـﺔ‬ .



k



‫ﻭ ﻓﺭﺍﻍ‬



v



‫ﻫﻲ ﺍﻟﻤﻌﻜﻭﺴﺔ ﻟﻠﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻷﻋﺭﺍﺽ ﻓﻲ ﻓﺭﺍﻍ‬ Δ k Δ v ≥1



p=h k



‫ﻭﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ‬



h



- ٥٨ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﺒﻀﺭﺏ ﺍﻟﻁﺭﻓﻴﻥ ﺒـ‬



‫ﺴﻨﺘﺤﺼل ﻋﻠﻰ ﻋﻼﻗﺔ ﻫﺎﻴﺯﻨﺒﺭﺝ ‪Heisenberg ancernrainrg clarion‬‬ ‫‪Δ pΔ v≥h‬‬



‫)‪........(1‬‬



‫ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻌﺭﺽ ﻴﻤﺜل ﺍﻟﻤﻨﻁﻘﺔ ﺍﻟﺘﻲ ﻤﻥ ﺍﻟﻤﺤﺘﻤل ﺃﻥ ﻴﻜﻭﻥ ﻓـﻲ ﺍﻟﺠـﺴﻡ‬



‫)‪( p- , v - I‬ﻓﻀﺎﺀ ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﺘﺒﻴﻥ‪:‬‬



‫ﻟﻭ ﺃﺭﺩﻨﺎ ﺃﻥ ﻨﻌﻤل ﺤﺯﻤﺔ )ﺭﺯﻤﺔ( ﻤﺘﻤﺭﻜﺯﺓ )ﻤﺘﻤﻴﺯﺓ ﺠﺩﺍﹰ( ﻭﻤﻭﺠﻴﺔ ﻓـﻲ ‪x‬‬



‫ﻓﻀﺎﺀ‪ ،‬ﻓﺈﻨﻪ ﻤﻥ ﺍﻟﻤﺴﺘﺤﻴل ﻋﻠﻴﻨﺎ ﺃﻥ ﻨﺸﺎﺭﻙ ﺒﻬﺎ ﻜﻤﻴﺔ ﺤﺭﻜﺔ ﻤﻌﺭﻓﺔ ﺠﻴﺩﺍﹰ‪) .‬ﺍﻷﻤﺭ‬



‫ﺍﻟﺫﻱ ﻴﻌﺘﺒﺭ ﺒﺩﻴﻬﻲ ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺭﺯﻤﺔ ﻤﻭﺠﻴﺔ ﺫﺍﺕ ﻜﻤﻴﺔ ﻤﺤﺩﺩﺓ ﻤﻥ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜـﺔ‬



‫ﻴﺠﺏ ﺃﻥ ﺘﻜﻭﻥ ﻏﻴﺭ ﻤﺘﻤﻴﺯﺓ ﻓﻲ ﻓﻀﺎﺀ ‪ v-‬ﺃﻱ ﺃﻥ ﺘﻜﻭﻥ ﻋﺭﻴﻀﺔ ﺠﺩﺍﹰ‪.‬‬ ‫ﻭﻫﺫﺍ ﺍﻟﺤﺩ )ﺍﻟﺤﺼﺭ( ﻭﺍﺤﺩ ﻤﻥ ﺇﻟﺯﺍﻤﺎﺕ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ ﻋﻠﻰ ﻭﺼﻔﻨﺎ ﻟﻸﻨﻅﻤﺔ‬



‫ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﺒﺎﻟﻤﻔﺎﻫﻴﻡ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ .‬ﻓﻲ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﻜﺎﻷﻤﺭ ‪) p, x‬ﺍﻟﻤﻭﻗـﻊ‪ ،‬ﻜﻤﻴـﺔ‬ ‫ﺍﻟﺤﺭﻜﺔ( ﻤﺴﺘﻘﻼﺕ ﻋﻥ ﺒﻌﻀﻬﻤﺎ‪.‬‬ ‫ﺒﻴﻨﻤﺎ ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ ‪ p, x‬ﻤﻜﻤﻠﻴﻥ ﻟﺒﻌﻀﻬﻤﺎ‪.‬‬ ‫ﻻﺤﻅ ﺃﻨﻪ ﻤﻥ ﻗﻴﻤﺔ‬



‫ﺍﻟﺼﻐﻴﺭﺓ ﻴﺘﻀﺢ ﻟﻨﺎ ﺃﻥ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﺘﻔﺸل ﻓـﻲ‬



‫‪h‬‬



‫ﺤﺎﻟﺔ ﺍﻷﻨﻅﻤﺔ ﺍﻟﻤﺠﻬﺭﻴﺔ ﻓﻠﻭ ﺍﻋﺘﺒﺭﻨﺎ ﺃﻥ ﺤﺒﺔ ﻏﺒﺎﺭ‬ ‫ﻤﺜﺎل‪ :‬ﺨﺫ ﺠﺴﻤﺎﹰ ﻜﺘﻠﺘﻪ‬



‫ﻜﻤﻴﺔ ﺤﺭﻜﺘﻪ‬



‫‪Δp‬‬



‫‪m 1μ g‬‬



‫‪m = 10 −4 g‬‬ ‫‪υ = 10 4 cn / s‬‬



‫ﻭﻤﻭﻗﻌﻪ ﻤﻌﺭﻭﻑ ﻟﺩﻗﺔ ‪ ، 1μ m‬ﺍﺤﺴﺏ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻓـﻲ‬



‫ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ‪.‬‬ ‫‪m2‬‬ ‫‪s2‬‬



‫‪J = kg.‬‬



‫‪D‬‬ ‫‪h‬‬ ‫≥ ‪⇒ Δp‬‬ ‫‪2‬‬ ‫‪2Δ v‬‬



‫≥ ‪Δp Δv‬‬



‫‪6.63×10 −34 J.S‬‬ ‫‪J. S‬‬ ‫‪m‬‬ ‫≥‪Δ p‬‬ ‫‪= 0.5× 10 −28‬‬ ‫‪= 5 × 10 −29 k g‬‬ ‫‪−6‬‬ ‫‪m‬‬ ‫‪s‬‬ ‫‪4D ×1 ×10 m‬‬



‫ﻭﻫﺫﺍ ﻴﻁﺎﺒﻕ ﺴﺭﻋﺔ ﻤﻘﺩﺍﺭﻫﺎ‬



‫‪−29‬‬ ‫‪m 5 ×10 u g m/s‬‬ ‫=‬ ‫‪s‬‬ ‫‪1×10 −9 u g‬‬



‫‪− 20‬‬



‫‪Δν = 5 ×10‬‬



‫ ‪- ٥٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻘﻴﻤﺔ ﻤﻬﻤﻠﺔ‪ .‬ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻟﻸﺠﺴﺎﻡ ﺍﻟﻜﺒﻴﺭﺓ ﻋﻼﻗﺔ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻟﻴﺴﺕ ﺫﺍﺕ‬ ‫ﺃﻫﻤﻴﺔ ﻭﻋﻠﻴﻪ ﻓﺈﻥ )ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ( ﺍﻟﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ ﺘﻌﻁﻲ ﻨﻔﺱ ﺍﻟﻘﻴﻤﺔ‪.‬‬ ‫ﻗﻴﺎﺱ ﻤﻜﺎﻥ ﺇﻟﻜﺘﺭﻭﻥ )ﻤﻴﻜﺭﻭﺴﻜﻭﺏ ﻫﻴﺯﺒﻨﺭﺝ(‬ ‫)‪Measwrcmerg position of aneleiton (Hesibdoceg Microswgee‬‬



‫ﺸﻌﺎﻉ ﻤﻥ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﻟﻬﺎ ﻜﻤﻴﺔ ﺤﺭﻜﺔ ﻤﺤﺩﺩﺓ ﺠﻴﺩﺍﹰ‬



‫‪px‬‬



‫ﺘﺘﺤﺭﻙ ﻓﻲ‬



‫ﺍﺘﺠﺎﻩ ‪t x‬‬



‫ﻭﺍﻟﻐﺭﺽ ﻤﻥ ﺍﻟﻤﻴﻜﺭﻭﺴﻜﻭﺏ ﺍﻟﺸﺎﺸﺔ ﻫﻲ ﺭﺅﻴﺔ ﻤﻭﻗﻊ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻭﺫﻟﻙ ﺒﻤـﺸﺎﻫﺩﺓ‬ ‫ﺍﻟﻀﻭﺀ ﺍﻟﻤﺘﺸﺘﺕ ﻤﻥ ﺍﻹﻟﻜﺘﺭﻭﻥ‪.‬‬



‫ﺇﻥ ﺍﺴﺘﻁﺎﻡ ﺍﻟﻔﻭﺘﻭﻨﺎﺕ ﺒﺎﻹﻟﻜﺘﺭﻭﻥ ﻴﺭﺘﺩ ﺨﻼل ﺍﻟﻤﻴﻜﺭﻭﺴﻜﻭﺏ‪ .‬ﻭﺇﻥ ﻗـﺩﺭﺓ‬ ‫ﺘﺤﻠﻴل ﺍﻟﻤﻴﻜﺭﻭﺴﻜﻭﺏ ‪) bastion‬ﺃﻱ ﺍﻟﺩﻗﺔ ﺍﻟﺘﻲ ﺒﻬﺎ ﻴﻤﻜﻨﻨﺎ ﺘﺤﺩﻴﺩ ﻤﻭﻗﻊ ﺍﻹﻟﻜﺘﺭﻭﻥ‬ ‫ﻤﻥ ﻤﻌﻠﻭﻤﺎﺕ ﻤﻥ ﺍﻟﻀﻭﺀ(‪.‬‬



‫ﺤﻴﺙ ‪ λ‬ﻁﻭل ﻤﻭﺠﺔ ﺍﻟﻀﻭﺀ‬



‫‪λ‬‬ ‫‪sin ϕ‬‬



‫~ ‪Δν‬‬



‫ﻴﺠﻌل‪ λ‬ﺃﻗل ﻤﺎ ﻴﻤﻜﻥ ﻭ ‪ ϕ‬ﺃﻜﺒﺭ ﻤﺎ ﻴﻤﻜﻥ ﺒﺈﻤﻜﺎﻨﻨﺎ ﺘﺼﻐﻴﺭ‬



‫‪∆v‬‬



‫ﻟﻠﺤﺩ ﺍﻟﻤﺭﻏﻭﺏ‬



‫ﻫﺫﺍ ﻴﻤﻜﻨﻨﺎ ﻓﻌﻠﻪ ﻋﻠﻰ ﺤﺴﺎﺏ ﻤﻌﻠﻭﻤﺎﺘﻨﺎ ﻤﻥ ﺩﻗﺔ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻓﻲ ﺍﺘﺠﺎﻩ ‪.νx‬‬ ‫ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ ﺘﺨﺒﺭﻨﺎ ﺒﺄﻥ ﺍﻹﺸﺎﺭﺍﺕ ﺍﻟﻤﺴﺠﻠﺔ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻫﻲ ﻋﺒﺎﺭﺓ ﻋـﻥ‬



‫ﻓﻭﺘﻭﻨﺎﺕ ﺘﺸﺘﺕ ﻤﻥ ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺍﺘﺠﺎﻩ ﺍﻟﻔﻭﺘﻭﻨﺎﺕ ﺒﻌﺩ ﺍﻟﺘﺸﺘﺕ ﻏﻴﺭ ﻤﺤﺩﺩ ﺨـﻼل‬ ‫ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﻤﻘﺎﺒﻠﺔ ﻟﻠﻔﺘﺤﺔ ﻭﻋﻠﻴﻪ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﺍﻟﻤﺭﺘﺩﺓ ﻟﻺﻟﻜﺘﺭﻭﻥ ﻏﻴﺭ ﻤﺤﺩﺩﺓ ﺒـ‬ ‫‪h‬‬ ‫‪λ‬‬ ‫‪c‬‬ ‫‪h‬‬ ‫‪hv‬‬ ‫‪λ ⇒ ϕ = 2 sin ϕ . ⇒ Δ p x ~ 2 sin φ‬‬ ‫‪c‬‬ ‫‪v‬‬ ‫‪c‬‬ ‫‪v‬‬



‫‪Δp (sin ϕ + sin ϕ ).‬‬



‫ﻭﻋﻠﻴﻪ‬



‫‪Dv‬‬ ‫‪λ‬‬ ‫‪sin ϕ .‬‬ ‫‪~ 4Dh‬‬ ‫‪c‬‬ ‫‪sin ϕ‬‬



‫‪Δ p v Δv ~ 2‬‬



‫ ‪- ٦٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻟﺘﺤﺴﻴﻥ ﺩﻗﺔ ﺍﻟﻤﻭﻗﻊ ﻟﻺﻟﻜﺘﺭﻭﻥ ﻴﺠﺏ ﺃﻥ ﻨﺴﺘﺨﺩﻡ ﻀﻭﺀ ﺫﻭ ‪ λ‬ﺼﻐﻴﺭﺓ ﻟﻜﻥ‬ ‫ﻫﺫﺍ ﻴﻨﺘﺞ ﺨﻁﺄ ﻜﺒﻴﺭ ﺃﻭ ﺘﺸﻭﻴﺵ ﻜﺒﻴﺭ ﻓﻲ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻭﺍﻟﻌﻜﺱ‪ :‬ﻟﻭ ﺃﺭﺩﻨﺎ ﺃﻥ ﻨﻘﻠل‬ ‫ﺍﻟﺨﻁﺄ ﺒﻘﻴﺎﺴﻨﺎ ﺒﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻴﺠﺏ ﺃﻥ ﻨﺴﺘﺨﺩﻡ ﺇﺸﻌﺎﻉ ﺫﻭ ﻁﻭل ﻤﻭﺠﻲ ﻜﺒﻴﺭ ﻭﻫﺫﺍ‬



‫ﺒﺩﻭﺭﻩ ﻴﺅﺩﻱ ﺇﻟﻰ ﺨﻁﺄ ﻜﺒﻴﺭ ﻓﻲ ﺍﻟﻤﻭﻗﻊ‪.‬‬



‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻤﺒﺩﺃ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻫﻭ ﻨﺎﺸﺊ ﻤﻥ ﻁﺭﻴﻘﺔ ﺍﻟﻘﻴـﺎﺱ ﻨﻔـﺴﻬﺎ‪ .‬ﻭﻋﻠـﻰ‬



‫ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﺫﺭﻱ ﻓﺈﻥ ﺍﻟﻘﻴﺎﺱ ﻨﻔﺴﻪ ﻴﻨﺸﺄ ﻋﻨﻪ ﺨﻁﺄ ﻭﺘﺸﻭﻴﺵ ﻤﻠﺤﻭﻅ ﻟﻠﻨﻅﺎﻡ ﻭﺫﻟـﻙ‬ ‫ﻟﻠﺘﻔﺎﻋل ﺒﻴﻥ ﺠﻬﺎﺯ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻘﺎﺴﺔ‪.‬‬



‫ﻭﻤﺒﺩﺃ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻴﻘﺭﺭ ﺃﻨﻨﺎ ﻻ ﻨﺴﺘﻁﻴﻊ ﺘﺤﺩﻴﺩ ﻤﺴﺎﺭ ﺠﺴﻡ ﺒﺩﻗﺔ ﻤﺘﻨﺎﻫﻴﺔ ﻜﻤـﺎ‬



‫ﻫﻭ ﺍﻟﺤﺎل ﻓﻲ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪.‬‬



‫ﻤﺜﺎل‪ :‬ﺒﺎﻓﺘﺭﺍﺽ ﺃﻥ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻓﻲ ﻤﻭﻗﻊ ﺠﺯﺉ ﻫﻴﺩﺭﻭﺠﻴﻥ )ﺍﻟﺫﻱ ﻜﺘﻠﺘﻪ‬



‫‪kg‬‬



‫‪−27‬‬



‫‪( 2 ×10‬‬



‫ﻴﻘﺩﺭ ﺒﺤﻭﺍﻟﻲ ‪ 10-10 m‬ﺍﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻓﻲ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ؟ ﻭﻜﺫﻟﻙ ﺍﻟﻨـﺴﺒﺔ‬ ‫‪Δ px‬‬ ‫‪px‬‬ ‫‪6.6 ×10 −34‬‬ ‫‪h‬‬ ‫≥ ‪Δp x‬‬ ‫=‬ ‫‪≥ 6.6 ×10 − 24 kg − m/s‬‬ ‫‪−10‬‬ ‫‪Δx (2D )10‬‬



‫ﻜﻤﻴﺔ ﺤﺭﻜﺔ ﺍﻟﺠﺯﺉ ﺍﻟﺫﻱ ﻴﺘﺤﺭﻙ ﺒﺴﺭﻋﺔ‬



‫‪m‬‬ ‫‪s‬‬



‫‪2000‬‬



‫)ﺍﻟﺴﺭﻋﺔ ﺍﻟﺤﺭﺍﺭﻴﺔ ﻋﻨﺩ‬



‫ﺩﺭﺠﺔ ﺤﺭﺍﺭﺓ ﺍﻟﻐﺭﻓﺔ(‬ ‫‪m‬‬ ‫‪= 4 ×10 −24 kg. m/s‬‬ ‫‪s‬‬



‫‪Px = mc = 2 ×10 − 27 kg × 2 ×10 3‬‬



‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻨﺴﺒﺔ ﺍﻟﻼﺘﻌﻴﻴﻥ‪:‬‬ ‫‪0.25‬‬



‫‪6.6 ×10 −24‬‬ ‫=‬ ‫‪= 1.7‬‬ ‫‪4 ×10 − 24‬‬



‫‪Δp x‬‬ ‫‪px‬‬



‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻜﻤﻴﺔ ﺤﺭﻜﺔ ﻫﺫﺍ ﺍﻟﺠﺯﺉ ﻻ ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩﻫﺎ ﺒﺩﻗﺔ ﺃﻜﺜﺭ ﻤﻥ ﺍﻟﻘﻴﻤﺔ‬



‫ﺃﻷﺼﻠﻴﺔ‪.‬‬



‫ ‪- ٦١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻟﻜﻥ‪ :‬ﻟﻭ ﺃﺨﺫﻨﺎ ﻜﺘﻠﺔ‪ ،‬ﻟﻬﺎ ﺴﺭﻋﺔ ‪ ،1000 m‬ﻤﻭﻗﻌﻬﺎ ﻤﺤﺩﺩ ﻟﺩﻗﺔ ‪ 1. mm‬ﻫـﺫﺍ‬ ‫‪s‬‬



‫ﺍﻟﺠﺴﻡ ﻤﻘﺩﺍﺭ ﺍﻟﻼﺘﻌﻴﻴﻥ ﻓﻲ ﻜﻤﻴﺔ ﺤﺭﻜﺘﻪ‪.‬‬ ‫‪6.63×10 −34 6.6‬‬ ‫≥ ‪Δp‬‬ ‫=‬ ‫‪×10 −31 kg − m/s‬‬ ‫‪−3‬‬ ‫‪10 m‬‬ ‫‪2D‬‬ ‫‪p = 0.005 ×1000 = 50 kg - m/s‬‬



‫ﻨﺴﺒﺔ ﺍﻟﻼﺘﻌﻴﻴﻥ‪.‬‬ ‫‪Δp 6.6 ×10 −31 kg − k/s‬‬ ‫=‬ ‫‪= 1.3×10 −32‬‬ ‫‪p‬‬



‫ﻭﻫﺫﺍ ﺭﻗﻡ ﺼﻐﻴﺭ ﺠﺩﺍﹰ ﻭﻻ ﻴﻤﻜﻥ ﻗﻴﺎﺴﻪ ﺒﺄﻱ ﺠﻬﺎﺯ‪.‬‬ ‫ﻤﺜﺎل‪ :‬ﺯﻤﻥ ﺍﻟﺤﻴﺎﺓ ﻟﻠﺤﺎﻟﺔ ﺍﻟﻤﺜﺎﺭﺓ ﻟﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ‬



‫‪s‬‬



‫‪−8‬‬



‫‪ .10‬ﻓﺈﻥ ﺍﻗل ﻗﻴﻤـﺔ‬



‫ﻟﻼﺘﺤﺩﻴﺩ ﻟﻠﻁﺎﻗﺔ ﻫﻭ؟‬ ‫‪ΔE. Δt ≥ h‬‬



‫‪h 6.6 ×10 −34‬‬ ‫‪= 1.0 × − 26 J = 6.5 ×10 −8 ev.‬‬ ‫=‬ ‫‪∆t 2D ×10 −8‬‬



‫≥‪∆E‬‬



‫ﻭﻫﺫﺍ ﻴﺴﻤﻰ ﻋﺭﺽ ﺍﻟﻁﺎﻗﺔ ﻟﻠﺤﺎﻟﺔ ﺍﻟﻤﺜﺎﺭﺓ‪.‬‬ ‫ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻭﺍﻟﺘﺭﺩﺩ ﻓـﻲ ﻤﻭﺠـﺔ ﺍﻟﻤﻭﺠـﺎﺕ ‪wave Guide‬‬



‫ﺘﻌﻁﻲ ﺒﺎﻟﻤﻌﺎﺩﻟﺔ‪:‬‬



‫‪c‬‬ ‫‪2‬‬



‫ﺃﻭﺠﺩ ﺴﺭﻋﺔ ﺍﻟﻤﺠﻤﻭﻋﺔ‬



‫‪vg‬‬



‫=‪λ‬‬



‫‪v 2 − v°‬‬



‫ﻟﻬﺫﻩ ﺍﻟﻤﻭﺠﺎﺕ‪.‬‬ ‫‪c2‬‬ ‫‪2‬‬



‫‪2‬‬



‫‪v 2 − v°‬‬



‫= ‪λ2‬‬



‫‪2‬‬ ‫‪2‬‬ ‫‪4D 2 (v − v° ) w − w°‬‬ ‫=‬ ‫=‬ ‫‪D2‬‬ ‫‪c2‬‬ ‫‪c2‬‬ ‫‪2‬‬



‫ ‪- ٦٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



4D2 2D ⇒ k2 = 2 λ λ w w = 2Dv ⇒ v = 2D k=



v2 = k = 2



w2 − w° c2



w2 vD 2



2



⇒ c k = w − w° ⇒ k = 2



2



2



2



w2 − w°



2



c



w ‫ﺒﺎﻟﺘﻔﺎﻀل ﺒﺎﻟﻨﺴﺒﺔ ﻟـ‬ c 2 2kdk = 2 w dw ⇒



dw c 2 k = dk w 2



vg =



w dw c 2 k c 2 w l − w ° = c 1 − °2 = = dk w w w = c 1−







2



v2



.1 mev = ‫ ﺤﺯﻤﺔ ﻤﻥ ﺍﻟﻨﻴﻭﺘﺭﻭﻨﺎﺕ ﺒﻁﺎﻗﺔ ﻤﺘﻭﺴﻁﺔ ﻟﻠﻨﻴﺘﺭﻭﻥ ﺍﻟﻭﺍﺤﺩ‬:‫ﻤﺜﺎل‬ 10 km ‫ ﺍﺤﺴﺏ ﺍﺘﺴﺎﻉ ﺍﻟﺤﺯﻤﺔ ﺒﻌﺩ ﻗﻁﻊ ﻤﺴﺎﻓﺔ‬،1 cu ‫ﺒﺩﺃﺕ ﺍﻟﺤﺯﻤﺔ ﺒﺎﺘﺴﺎﻉ‬



.‫ﻓﻲ ﺍﻟﻔﺭﺍﻏﺎﺕ‬ b b Δy Δy = 1com, ⇒ Δp y ? ∴Δp y =



,



‫ﺍﻻﺘﺴﺎﻉ‬



Δp y . Δy ≥ h



6.6 ×10 −34 D = 5.3×10 −33 kgm/sec = 2DΔy 4D ×10 − 2 m



p x = 2m n E = 2 (1.67 ×10 −27 ) (10 6 en) (1.6 × 10 −19 ) = 2.3×10 − 20 ∴tomθ =



kg . m / sec



−33



5.3 ×10 2.3 × 10 − 20



R = x R 5.3× 10 −33 9 = ton θ ⇒ R = v ton θ = 10 m × = 2 ×10 −4 m − 20 x 2.3×10



.2R ‫ ﺒﻤﻘﺩﺍﺭ‬1am ‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻟﺤﺯﻤﺔ ﺴﺘﺯﺩﺍﺩ ﻤﻥ‬ - ٦٣ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫‪2 R = 4 ×10 −4 m = 4 ×10 −2 con = 0.4‬‬



‫ﺴﻴﺼﺒﺢ ‪10.4 nm‬‬



‫ﺱ‪ /‬ﻜﻡ ﻴﺒﻠﻎ ﻋﺩﻡ ﺍﻟﺘﺤﺩﻴﺩ )ﺍﻟﻼﺘﺤﺩﻴﺩ( ﻓﻲ ﻤﻭﻀﻊ ﻓﻭﺘﻭﻥ ﻁﻭل ﻤﻭﺠﺘﻪ‬



‫‪°‬‬



‫‪3000 A‬‬



‫ﻜﺎﻨﺕ ﺩﻗﺔ ﺘﺤﺩﻴﺩ ﻁﻭل ﺍﻟﻤﻭﺠﺔ ﻴﺼل ﺇﻟﻰ ﺠﺯﺀ ﻤﻥ ﺍﻟﻤﻠﻴﻭﻥ؟‬



‫ﺇﺫﺍ‬



‫‪∆λ‬‬ ‫‪= 10‬‬ ‫‪λ‬‬



‫ﺱ‪ /‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺇﻟﻜﺘﺭﻭﻥ ﻓﻲ ﺤﺎﻟﺔ ﻤﺸﺘﺎﻗﺔ ﺃﻭﻟﻲ ﻤﺩﺓ ‪ 10-6 s‬ﺍﺤﺴﺏ ﻋﺩﺩ ﺍﻟﻠﻔﺎﺕ ﺍﻟﺘﻲ‬



‫ﺴﻴﻠﻔﻬﺎ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺩﺍﺭ‪.‬‬



‫‪13.6‬‬ ‫‪2D 2Dh‬‬ ‫=‬ ‫= ) ‪→ hw = (E 2‬‬ ‫=‬ ‫‪4‬‬ ‫‪w hw‬‬ ‫) ‪2D (1.05 × 10 −34‬‬ ‫=‪T‬‬ ‫‪= 1.2 ×10 −15 sec‬‬ ‫‪13.6‬‬ ‫(‬ ‫) ‪) (1.6 ×10 −19‬‬ ‫‪4‬‬ ‫=‪T‬‬



‫~‬



‫‪C 10 −8 sec‬‬ ‫= =‪T‬‬ ‫‪= 8 × 10 6 tw‬‬ ‫‪−15‬‬ ‫‪T 1.2 × 10‬‬



‫ﺍﺘﺴﺎﻉ ﺍﻟﺨﻁ ﺍﻟﻁﻴﻔﻲ ﺍﻟﺫﻱ ﻟﻪ ﻁﻭل ﻤﻭﺠﺔ‬



‫‪°‬‬



‫‪4000 A‬‬



‫ﻫـﻭ‬



‫ﻤﺘﻭﺴﻁ ﺯﻤﻥ ﻤﻜﻭﺙ ﺍﻟﻨﻅﺎﻡ ﺍﻟﺫﺭﻱ ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻁﺎﻗﺔ ﺍﻟﻤﻨﺎﻅﺭﺓ‪.‬‬ ‫‪°‬‬



‫‪°‬‬



‫‪0.0001A‬‬



‫ﺍﺤـﺴﺏ‬



‫‪°‬‬



‫‪D = 4000 A , Δλ = 10 −4 A = 10 −14 m.‬‬ ‫‪h c ΔD hc ΔD‬‬ ‫=‪ΔE =hΔv‬‬ ‫‪= 2‬‬ ‫‪D D‬‬ ‫‪D‬‬



‫ﻋﺩﻡ ﺍﻟﺘﺤﺩﻴﺩ ﻓﻲ ﺍﻟﺯﻤﻥ ‪ ، ∆t‬ﺯﻤﻥ ﻤﻜﻭﺙ ﺍﻟﺫﺭﺓ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻤﺴﺘﺜﺎﺭﺓ‪.‬‬ ‫‪4Dh 4h D 2‬‬ ‫= ‪C = Δt‬‬ ‫=‬ ‫‪Δ E c D ΔD‬‬ ‫`‬



‫) ‪(4) (16) (10 −14‬‬ ‫‪= 2.1× 10 −7 sec.‬‬ ‫‪8‬‬ ‫‪−14‬‬ ‫) ‪(3×10 ) (10‬‬ ‫‪= 0.21μ sec.‬‬



‫=‬



‫ﺱ‪ /‬ﺍﻟﻁﺎﻗﺔ ﺍﻟﻤﺴﺘﺜﺎﺭﺓ ﻟﻬﺎ ﺇﺸﻌﺎﻉ ﻴﺴﺎﻭﻱ ‪ ،1.1 ev‬ﺍﺤﺴﺏ ﻤﺘﻭﺴﻁ ﻋﻤﺭ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ؟‬ ‫ﻤﻥ ﻋﻼﻗﺔ ﺍﻟﻼﺘﺤﺩﻴﺩ‬



‫‪h‬‬ ‫‪2D‬‬



‫= ‪Δt . ΔE‬‬



‫ ‪- ٦٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



ΔE = DΔv Δt =



6.6 × 10 −34 h = = ..............? 2D ΔE 2D ×1.1ev α∞



F (x) = ∫ dk g (k) e ikx −∞



‫ﺤﺯﻤﺔ ﻤﻭﺠﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ‬ ‫ ﺘﻌﻁﻲ ﺒـ‬g ( k) ‫ﺤﻴﺙ‬



g (k ) = o =N



k 〈 − k/2 − k/2 〈 k 〈 k/2 4 〈k 2



=o



‫ ﺍﻟﺘﻲ ﻟﻬﺎ‬N ‫ﻗﻴﻤﺔ‬ +∞



∫ dx f ( x )



2



=1



−∞



2N kx sin x 2 +∞ 2 kx 4N ⇒ ∫ dx 2 sin 2 = 2 x −∞



Qf( x ) =



+∞



2 4N 2 sin 2 n z z 2 du . Sin u 2kN du = ∫ k 2u 2 ∫−∞ u 2 = 2D N = 1 k2 1 ⇒ N= 2Dk



‫ ﺍﻟﺘﻲ ﻟﻬﺎ‬N ‫ﻜﻴﻑ ﻫﺫﻩ ﻤﺭﺘﺒﻁﺔ ﺒﺎﺨﺘﻴﺎﺭ‬ +∞



∫ dk g ( u )



2



−∞



+∞



=



1 2D



2 ∫ dk g ( u) = N



u/z



2



−∞



− k/z



⇒N sin



kv 2



∫ dk = N



2



k=



1 2D



1 2Dk



‫ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﺍﻟﺘـﻲ ﻋﻨـﺩﻫﺎ ﺍﻟﺩﺍﻟـﺔ‬v ‫ﻤﻥ ﺍﻟﻤﻨﺎﺴﺏ ﺍﺨﺘﻴﺎﺭ ﻋﺭﺽ‬ Δu =



uD 2D ⇐ ×=± u k



- ٦٥ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ ﻭﻫﺫﺍ ﻴﺤﺩﺙ ﻋﻨﺩ‬.‫ﺘﺘﻼﺸﻰ‬



‫‪uD‬‬ ‫‪) u = uD‬‬ ‫‪u‬‬



‫( = ‪∴Δ × Δk‬‬



‫ﻻ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ‪.u‬‬ ‫)‪(1‬‬



‫‪2D dv‬‬ ‫‪dv‬‬ ‫‪dv‬‬ ‫‪dv‬‬ ‫=‬ ‫=‬ ‫‪= −D2‬‬ ‫) ‪dk 2D d (1/D ) d (1/D‬‬ ‫‪dD‬‬



‫‪C2‬‬ ‫‪2‬‬ ‫‪v2 − v°‬‬



‫= ‪D2‬‬



‫‪2‬‬



‫‪,‬‬



‫‪2‬‬



‫‪v 2 − v°‬‬



‫= ‪vg‬‬



‫= ‪QD‬‬



‫‪2‬‬



‫‪2v dv‬‬ ‫‪dv dv c 2‬‬ ‫‪v2 v°‬‬ ‫‪1‬‬ ‫⇒ ‪∴ 2 = 2 + 2 ⇒ 2 =− 2 2‬‬ ‫=‬ ‫‪dD D 3‬‬ ‫‪C‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪D‬‬ ‫‪D‬‬ ‫‪c2‬‬ ‫‪c2‬‬ ‫‪dv‬‬ ‫‪2‬‬ ‫‪−D2‬‬ ‫‪= (−D 2 ) . ( 3 ) = = c 1 − v ° /v 2‬‬ ‫‪dD‬‬ ‫‪D v Dv‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪c‬‬ ‫‪2‬‬ ‫‪v2 − v°‬‬ ‫=‬ ‫=‬ ‫=‬ ‫‪c‬‬ ‫‪1‬‬ ‫‪v‬‬ ‫‪v°‬‬ ‫(‪v‬‬ ‫)‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪v − v ° /v‬‬ ‫‪v − v°‬‬



‫)‪(1‬‬



‫‪u g = c 1 − v ° /v 2‬‬ ‫‪2‬‬



‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﺸﺭﻭﺩﻨﺠﺭ ﻭﺘﻔﺴﻴﺭ ﺍﻻﺤﺘﻤﺎل‬ ‫‪The Schrödinger wave Eqn. nd the Probability Interpretation‬‬



‫ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺴﻨﻨﺎﻗﺵ ﺒﻌﺽ ﺨﻭﺍﺹ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﻟﻠﺠﺴﻡ ﺍﻟﺤﺭ‪ ،‬ﻫﺫﻩ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﺍﺴﺘﻨﺘﺠﻨﺎﻫﺎ ﻓﻲ ﺍﻟﻔﺼل ﺍﻟﺜﺎﻨﻲ‪ .‬ﻭﻜﺫﻟﻙ ﺴﻨﺴﺘﻨﺘﺞ ﺘﻔـﺴﻴﺭ ﺍﻻﺤﺘﻤـﺎل‬



‫ﻟﻠﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ‪ Ψ‬ﻭﻫﺫﺍ ﺒﺩﻭﺭﻩ ﻴﺅﺩﻱ ﺇﻟﻰ ﺘﻌﺭﻴﻑ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ‪ montentum‬ﻓﻲ‬



‫ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪ ،‬ﻭﻜﺫﻟﻙ ﻟﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﺍﻟﺘﻲ ﺘﺼﻑ ﺠﺴﻡ ﻓﻲ ﺠﻬﺩ )‪.V (x‬‬ ‫ﻭﻨﻘﻁﺔ ﺍﻟﺒﺩﺍﻴﺔ ﻫﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ‪.‬‬ ‫)‪.............(1‬‬



‫)‪∂ ψ (x, t‬‬ ‫)‪h 2 ∂ 2 ψ (x, t‬‬ ‫‪=−‬‬ ‫‪∂t‬‬ ‫‪2m ∂x 2‬‬



‫‪ih‬‬



‫ﻭﻫﺫﻩ ﻤﻌﺎﺩﻟﺔ ﺼﺤﻴﺤﺔ ﻟﻭﺼﻑ ﺤﺭﻜﺔ ﺠﺴﻡ ﺤﺭ‪ .‬ﻭﺤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻴﻤﻜـﻥ‬ ‫ﺍﻟﺤﺼﻭل ﻋﻠﻴﻪ )ﺒﻌﻜﺱ ﺍﻟﺨﻁﻭﻁ ﺍﻟﺘﻲ ﺃﺩﺕ ﺇﻟﻴﻬﺎ(‪ ..‬ﻭﻨﺘﺤﺼل ﻋﻠﻰ ﺍﻟﺤل ﺍﻟﻌﺎﻡ‪:‬‬ ‫‪i(px − Et)/h‬‬



‫‪1‬‬



‫‪∫ ap ϕ (p) e‬‬ ‫‪2Dh‬‬



‫= )‪ψ (x, t‬‬



‫ ‪- ٦٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﺤﻴﺙ ﺃﻥ ‪ E‬ﻟﻠﺠﺴﻡ ﺍﻟﺤﺭ ﻫﻲ ‪p2/2m‬‬ ‫‪i(px − (p 2 /2m)t)lh‬‬



‫)‪.............(2‬‬



‫‪1‬‬



‫‪∫ ap ϕ (p) e‬‬ ‫‪2Dh‬‬



‫= )‪ψ (x, t‬‬



‫ﻭﻤﻥ ﺍﻟﺠﺩﻴﺭ ﺒﺎﻟﻤﻼﺤﻅﺔ‪ :‬ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (١‬ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺘﻔﺎﻀﻠﻴﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ‬ ‫ﺍﻷﻭﻟﻰ ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻨﺎ ﺒﻤﺠﺭﺩ ﺃﻥ ﻨﻌﺭﻑ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻭﻟﻴﺔ ﻟـ‬ ‫) ‪(ψ‬‬



‫) )‪(ψ ( x, o‬‬



‫ﻋﻨﺩ ﻜل ﺍﻷﺯﻤﻨﺔ ﺍﻷﺨﺭﻯ ﻴﻤﻜﻥ ﻤﻌﺭﻓﺘﻬﺎ‪.‬‬



‫ﻓـﺈﻥ ﻗﻴﻤـﺔ‬



‫)‪∂ψ (x, t‬‬ ‫‪Δt‬‬ ‫‪∂t‬‬ ‫‪∂ψ (x, t) i 2h 2 ∂ψ (x, t) ih ∂ψ‬‬ ‫=‬ ‫=‬ ‫‪i2m h ∂xH2 2m xt 2‬‬ ‫‪∂t‬‬ ‫‪ih ∂ 2 ψ‬‬ ‫‪Δt‬‬ ‫‪ψ ( x, t + Δt) = ψ (x, t) +‬‬ ‫‪2m ∂x 2‬‬ ‫)‪ih ∂ 2 ψ (x, t‬‬ ‫‪ψ (x, t + Δt ) = ψ (x, t ) +‬‬ ‫)‪Δt .................(3‬‬ ‫‪2m ∂x 2‬‬ ‫‪ψ (x, t + Δt) = ψ (x, t) +‬‬



‫ﻭﺒﺈﻋﻁﺎﺀ ﻗﻴﻤﺔ )‪ ψ (x, o‬ﺍﻟﺩﺍﻟﺔ ) ‪ ϕ (p‬ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩﻫﺎ ﻤﻥ )‪ (2‬ﻀﻊ ‪ t = o‬ﻓـﻲ‬



‫ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (2‬ﺘﻜﺎﻤل ﻓﻭﺭﻴﺭ‪.‬‬



‫)‪.................(4‬‬



‫ﻴﻤﻜﻥ ﻋﻜﺴﻪ ﻟﻠﺤﺼﻭل ﻋﻠﻰ‬



‫‪ipx/h‬‬



‫‪1‬‬



‫‪∫ dp φ (p) e‬‬ ‫‪2xh‬‬



‫= ) ‪ψ (x, o‬‬



‫)‪ϕ ( p‬‬



‫ﺸﺭﻭﻁ ﺍﻟﻤﻌﺎﻴﺭﺓ‪:‬‬ ‫‪ϕ (P ) = 2Dh ∫ ψ (x, o ) dx e ipx/ h‬‬



‫ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (2‬ﻴﻤﻜﻨﻨﺎ ﺤﺴﺎﺏ ) ‪ ψ (x, t‬ﻋﻨﺩ ﻜل ﻗﻴﻡ ‪..t‬‬ ‫ﻻﺤﻅ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ "ﻻ ﺘﻌﻴﻴﻥ" ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ‪:‬‬ ‫ﻁﺎﻟﻤﺎ ‪ once‬ﻨﻌﺭﻑ ﺍﻟﻘﻴﻡ ﺍﻷﻭﻟﻰ ﻟﻠﺤﺎﻟﺔ )ﻟﻠﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﺒﺔ( ﻻ ﺘﻭﺠﺩ ﻗﻴـﻭﺩ‬ ‫ﻋﻠﻰ ﻗﻴﻡ )‪ ψ (x, o‬ﻋﻨﺩﺌﺫ ﺍﻟﺤﺯﻤﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻜﻠﻬﺎ ﻤﻌﺭﻓﺔ ﻋﻨﺩ ﻜل ﺍﻷﺯﻤﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ‪..‬‬ ‫ﺘﻔﺴﻴﺭ ﺍﻻﺤﺘﻤﺎل ﻟﻠﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ‬



‫) ‪ψ ( x, t‬‬



‫ ‪- ٦٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﻨﺤﻥ ﺒﺼﺩﺩ ﺍﻟﺒﺤﺙ ﻋﻥ ﺘﺄﻭﻴل )ﺘﻔﺴﻴﺭ( ﻟﻠﺩﺍﻟﺔ‬



‫) ‪ψ ( x, t‬‬



‫ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻓـﻲ‬



‫ﺘﻔﻜﻴﺭﻨﺎ‪.‬‬ ‫)‪ (1‬ﺃﻥ ) ‪ ψ (x, t‬ﻫﻲ ﺒﺸﻜل ﻫﺎﻡ ﺩﺍﻟﺔ ﻤﻌﻘﺩﺓ ‪.conglex fetom‬‬ ‫)‪ (2‬ﺍﻟﺩﺍﻟﺔ‬



‫) ‪ψ (x, t‬‬ ‫‪1‬‬ ‫‪424‬‬ ‫‪3‬‬



‫ﺘﻜﻭﻥ ﻜﺒﻴﺭﺓ ﺤﻴﺙ ﻴﻔﺘﺭﺽ ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺠﺴﻡ ﻤﻭﺠـﻭﺩ ﻭﺘﻜـﻭﻥ‬



‫ﻛﻤﯿﺔﺣﻘﯿﻘﯿﺔ‬



‫ﺼﻐﻴﺭﺓ ﻓﻲ ﺃﻤﺎﻜﻥ ﻏﻴﺭ ﻫﺫﺍ ﺍﻟﻤﻜﺎﻥ‪.‬‬ ‫)‪ (3‬ﻭﻜﺫﻟﻙ ﻤﺼﺎﺤﺏ ﻟﻠﺩﺍﻟﺔ ﻅﺎﻫﺭﺓ ﺍﻻﻨﺒﺴﺎﻁ )‪) (Spreading‬ﺍﻟﻼﺘﺤﻴﺯ(‪.‬‬ ‫ﻭﻤﺒﺎﺸﺭﺓ ﺒﻌﺩ ﺍﻜﺘﺸﺎﻑ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ )ﺍﻟﺘﻲ ﺘﺒﻌﺙ ﺍﻜﺘﺸﺎﻑ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‬



‫ﺒﻭﺍﺴﻁﺔ ﻫﻴﺯﺒﻨﺭﺝ ﺴﻨﺔ ‪ (١٩٢٥‬ﻗﺎﻡ ‪ MaxBorn‬ﺒﺩﺭﺍﺴﺔ ﺘﺒﻌﺜﺭ )ﺘﻁﺎﻴﺭ( ﺸﻌﺎﻉ ﻤﻥ‬



‫ﺍﻹﻟﻜﺘﺭﻭﻨﺎﺕ ﺒﻬﺩﻑ ﺃﻭ ﺍﻟﺘﻲ ﺃﺭﺸﺩﺘﻪ ﺇﻟﻰ ﺍﻟﺘﺄﻭﻴل ﺍﻟﺼﺤﻴﺢ ﻟﻠﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ‪ .‬ﻭﻋﻠﻴـﻪ‬



‫ﻓﻘﺩ ﺍﻗﺘﺭﺡ ﺃﻥ‪.‬‬



‫ﺘﻜﻭﻥ ﻜﺒﻴﺭﺓ ﺤﻴﻨﻤﺎ ﻴﻔﺘﺭﺽ ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺠـﺴﻡ‬



‫⇒) ‪⇐ p (x, t‬‬



‫ﺩﺍﻟـﺔ ﺤﻘﻴﻘﻴـﺔ‬



‫ﻭﺘﻔﻠﻁﺤﻬﺎ ﻻ ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﺠﺴﻡ ﻤﺘﻔﻠﻁﺢ‪.‬‬ ‫ﻭﻜل ﻤﺎ ﺘﻌﻨﻴﻪ ﻫﻭ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﻴﺘﻐﻴﺭ ﺍﻟﺯﻤﻥ ﻴﻜﻭﻥ ﻤﻥ ﺍﻷﻗل ﺍﺤﺘﻤﺎﻻﹰ ﺃﻥ ﻨﺠـﺩ‬



‫ﺍﻟﺠﺴﻡ ﺤﻴﻨﻤﺎ ﻜﺎﻥ ﻋﻨﺩ ‪.t = 0‬‬



‫ﻭﻟﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺘﺄﻭﻴل ﺼﺤﻴﺤﺎﹰ ﻴﻠﺯﻤﻨﺎ‪:‬‬ ‫∞‪x‬‬



‫‪∫ p (x, t ) dx =1‬‬



‫)‪(6‬‬



‫∞‬



‫ﺸﺭﻁ ﺍﻟﻤﻌﺎﻴﺭﺓ ‪vormalization‬‬



‫ﻭﺫﻟﻙ ﻷﻥ ﺍﻟﺠﺴﻡ ﻴﺠﺏ ﺃﻥ ﻴﻜﻭﻥ ﻓﻲ ﻤﻜﺎﻥ ﻤﺎ ﻭﺴﻴﺘﻀﺢ ﻟﻨﺎ ﻻﺤﻘﺎﹰ ﺃﻥ ﻴﻜﻔﻲ‬ ‫ﺃﻥ ﻴﻠﺯﻡ ﺃﻥ‪:‬‬ ‫) ‪(7‬‬



‫∞〈‬



‫‪2‬‬



‫∞‪x‬‬



‫) ‪∫ dx ψ (x, o‬‬



‫∞‬



‫ ‪- ٦٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ـﺔ‬ ‫ـﺔ ﻤﺘﻜﺎﻤﻠـ‬ ‫ـﻭﻥ ﻤﺭﺒﻌـ‬ ‫ـﺏ ﺃﻥ ﺘﻜـ‬ ‫ـﺔ )‪ ψ (x, o‬ﻴﺠـ‬ ‫ـﻲ ﺃﻥ ﺍﻟﺩﺍﻟـ‬ ‫ـﺫﺍ ﻴﻌﻨـ‬ ‫ﻭﻫـ‬ ‫‪ squaredintegrabli‬ﻭﺒﻨﻁﺎﻕ ﺘﻜﺎﻤل‬



‫∞ ‪+ ∞←−‬‬



‫ﻴﺠﺏ ﺃﻥ ﺘﺅﻭل ﺇﻟﻰ ﺼﻔﺭ ﺃﺴﺭﻉ ﻤﻥ‬ ‫ﻤﺘﺼﻠﺔ ﻓﻲ ‪x‬‬



‫) ‪ψ (x, t‬‬



‫ﻴﻌﻨﻲ ﺃﻥ )‪.ψ (x, o‬‬ ‫ﻭﻫﺫﺍ ﻴﻠـﺯﻡ ﺃﻥ ﺘﻜـﻭﻥ ﺍﻟﺩﺍﻟـﺔ‬



‫‪x −1 / 2‬‬



‫‪.contineon sin x.‬‬



‫ﺃﻫﻤﻴﺔ ﺍﻷﻁﻭﺍﺭ‪Import on ce of the ases :‬‬



‫ﻴﺒﺩﻭ ﻟﻠﻭﻫﻠﺔ ﺍﻷﻭﻟﻰ ﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ‬



‫‪2‬‬



‫ﺫﺍﺕ ﻤﻌﻨﻰ ﻓﻴﺯﻴـﺎﺌﻲ‪ ،‬ﻴﺒـﺩﻭ ﺃﻥ‬



‫) ‪ψ (x, t‬‬



‫ﺍﻟﻁﻭل ﻟﻴﺱ ﻟﻪ ﺃﻫﻤﻴﺔ‪ .‬ﻭﻫﺫﺍ ﺨﻁﺄ‪.‬‬ ‫ﺤل‪.‬‬



‫ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺨﻁﻴﺔ‪) ،‬ﻭﺒﺎﻗﺘﺭﺍﻥ ﺃﻥ‬ ‫)‪ψ (x, t ) = ψ1 (x, t) + ψ 2 (x, t‬‬



‫)‪(8‬‬



‫ﻟﻭ ﺃﻥ‬



‫‪iθ1‬‬



‫ﺤﻴﺙ ﺃﻥ‬



‫)‪ψ 2 (x, t ), ψ1 (x, t‬‬



‫ﻫﻲ‬



‫ﻫﺫﺍ ﻜﺫﻟﻙ ﺤل‪.‬‬



‫←‬



‫‪ψ 2 (x, t ) = R 2 e iθθ , ψ1 (x, t) = R 1 e‬‬ ‫‪R 1 , R 2 , θ1 , θ 2‬‬



‫ﻫﻲ ﺤﻘﻴﻘﺔ‪ ،‬ﻋﻨﺩﻫﺎ‬ ‫‪2‬‬



‫)‬



‫) ‪i (θ 2 − θ 1‬‬



‫‪(R1 +R 2 e‬‬



‫‪iθ 1‬‬



‫‪= e‬‬



‫‪2‬‬



‫) ‪ψ (x, t‬‬



‫) ‪= R 1 + R 2 + 2R 1 cos (θ 1 − θ 2‬‬ ‫‪2‬‬



‫)‪(9‬‬



‫‪2‬‬



‫ﻭﻫﺫﺍ ﻴﻅﻬﺭ ﺃﻥ ﺍﻟﻁﻭﺭ ﻤﻬﻡ‪ ،‬ﺍﻟﻁﻭﺭ ﺍﻟﻜﻠﻲ ﻓﻲ ) ‪ ψ (x, t‬ﻴﻤﻜﻥ ﺇﻫﻤﺎﻟـﻪ‪ ،‬ﺃﻤـﺎ‬ ‫ﺍﻟﻁﻭل ﺍﻟﻨﺴﺒﻲ‬



‫) ‪(θ 1 − θ 2‬‬



‫ﺒﻴﻥ ﺩﺍﻟﺘﻴﻥ ﻤﻭﺠﺒﺘﻴﻥ‬



‫‪ψ1‬‬



‫و ‪ψ2‬‬



‫ﺘﻅﻬﺭ ﻓﻲ‬



‫‪2‬‬



‫‪ψ‬‬



‫‪.‬‬



‫ﻻﺤﻅ ﺃﻥ ﺍﻟﻁﺭﻑ ﺍﻷﻴﻤﻥ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (9‬ﻫﻭ ﺍﻟﺫﻱ ﻨـﺭﺍﻩ ﻋﻨـﺩ ﺘﺭﺍﻜـﺏ‬



‫ﺍﻟﻤﻭﺠﺎﺕ‪ .‬ﻭﻓﻲ ﺍﻟﺤﻘﻴﻘﺔ ﺃﻨﻬﺎ ﺍﻟﺨﻁﻭﺓ ‪ lineally‬ﻟﻠﺩﻭﺍل ﺍﻟﻤﻭﺠﺒﺔ ﺍﻟﺘﻲ ﺃﺩﺕ ﻟـ ﻟﺸﻜل‬ ‫ﺍﻟﺘﺩﺍﺨل ﺍﻟﺫﻱ ﻴﻅﻬﺭ ﻤﻥ ﺨﻼل ‪ cosine‬ﻓﻲ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ‪.‬‬ ‫ﻭﻋﻨﺩﻤﺎ ﻨﺘﺤﺩﺙ ﻋﻥ ﺍﻟﺴﻠﻭﻙ ﺍﻟﻤﻭﺠﻲ ﻟﻺﻟﻜﺘﺭﻭﻨﺎﺕ‪ ،‬ﺍﻟﻔﻭﺘﻭﻨﺎﺕ‪ ،‬ﻓﺘﺤﺩﺙ ﻤﻥ‬



‫ﺍﻟﺨﻁﻴﺔ‪...‬‬



‫ ‪- ٦٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



Peobalrility current ‫ﺍﺤﺘﻤﺎل ﺍﻟﺘﻴﺎﺭ‬



.(1) ‫ ﺍﻟﻤﺭﺍﻓﻕ ﺍﻟﻤﻌﻘﺩ ﻟﻠﻤﻌﺎﺩﻟﺔ‬complex conjugate ‫ﻟﻨﺄﺨﺫ‬ ∂ψ h2 ∂2ψ =− ⇒ 2m ∂t 2 ∂t ∂ψ * (x, t) h 2 ∂ 2 ψ * (x, t) ⇒ − ih =− 2m ∂t ∂t 2



ih



∂ψ ih ∂ 2 ψ = ∂t 2m ∂x 2 ih ∂ 2 ψ * ∂ψ * ⇒ =− 2m ∂x 2 ∂t



ψ 2



644744 8 ∂ ∂ p (x, t) = ( ψ (x, t) ψ x (x, t) ) ∂t ∂t ∂ψ * (x, t) ∂ψ ψ + ψ* = ∂t ∂t *  ih ∂ψ * ih ∂ 2 ψ  ψ = −  2 2m ∂x 2   2m ∂x 2 1  h 2 ∂ 2ψ* ∂ 2ψ  * h ψ ψ − ih  2m ∂x 2 2m ∂x t  ∂ ∂ p (x, t) = − ∂t ∂x ∂ ∂ j (x, t) ⇒ t (x, t) = − ∂t ∂x



=



+∞



∂ dx p (x, t) ∂x −∫∞



‫ﻴﺘﻌـﻭﺽ ﺒـﺎﻟﺘﻐﻴﺭ‬



x



+∞



= − ∫ dx −∞



∂ j (x, t) = o ∂x



= − [J (− ∞ ) − j (− ∞ ) ]= 0 , j → 0



‫ ﺍﻟﺘﻐﻴﺭ ﻓﻲ ﺍﻟﻜﺜﺎﻓﺔ ﻓﻲ ﻤﻨﻁﻘﺔ ﻓـﻲ‬:‫ﺘﺒﻴﻥ‬







(12) ‫ﻤﻌﺎﺩﻟﺔ‬



.‫ﺍﻟﺼﺎﻓﻲ ﻓﻲ ﺍﻟﻔﻴﺽ ﻓﻲ ﺘﻠﻙ ﺍﻟﻤﻨﻁﻘﺔ‬ ∞



‫ ﺘﺘﻼﺸﻰ ﻋﻨﺩ‬square integreble ‫ﺍﻟﺩﻭﺍل ﻤﺘﻜﺎﻤﻠﺔ ﺍﻟﺘﺭﺒﻴﻊ‬



Q



∞ ∂ ∂ ax p(x, t) dx j (x, t) = − ∫ ∫ ∂t ∂x −∞



= j (a, t) − j (b, t)



(1) ‫ﻭﻗﺎﻨﻭﻥ ﺍﻟﺒﻘﺎﺀ ﺘﻜﻭﻥ ﺼﺤﻴﺤﺔ ﻟـﻭ ﺍﻟﻤﻌﺎﺩﻟـﺔ‬



(14)



j (x, t) , p(x, t )



- ٧٠ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﻭﺘﻌﺭﻴﻑ ﻟـ‬



‫ﺘﺘﻐﻴﺭ ﻟـ‬



‫ﻭﻫﺫﻩ ﺍﻟﺘﻌﺭﻴﻔﺎﺕ ﻟـ ) ‪ d (x, t ), p (x, t‬ﻭﻗﺎﻨﻭﻥ ﺍﻟﺤﻔﻅ )ﺍﻟﺒﻘﺎﺀ( ﺘﺒﻘـﻰ ﺼـﺤﻴﺤﺔ‬ ‫ﺤﺘﻰ ﻟﻭ ﻏﻴﺭﻨﺎ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺠﺴﻡ ﺍﻟﺤﺭ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ‪.‬‬ ‫)‪(15‬‬



‫ﺃﺒﻌﺎﺩ‪.‬‬



‫) ‪∂ ψ (x, t‬‬ ‫)‪h 2 ∂ 2 ψ (x, t‬‬ ‫‪=−‬‬ ‫)‪+ ψ (x, t‬‬ ‫‪∂t‬‬ ‫‪2m‬‬ ‫‪∂x‬‬



‫‪it‬‬



‫ﻭﻫﺫﻩ ﻤﻬﻤﺔ ﻷﻨﻬﺎ ﺘﻤﺜل ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﻟﺠﺴﻡ ﻓﻲ ﺠﻬﺩ )‪ V(x‬ﻓﻲ ﺜﻼﺜـﺔ‬ ‫‪ψ (x, y, z, t),‬‬ ‫) ‪V (x, y, z‬‬ ‫‪∂2‬‬ ‫‪∂2‬‬ ‫‪∂2‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪⇒∇2‬‬ ‫‪∂x 2 ∂y 2 ∂z 2‬‬



‫ﻜﺫﻟﻙ ﺘﻌﻤﻴﻡ )‪(12‬‬ ‫∂‬ ‫‪p (r, t ) + ∇ . J (r, t) = 0‬‬ ‫‪∂t‬‬ ‫‪2‬‬



‫) ‪p (r, t ) = ψ (r, t‬‬



‫)‪∂ψ (x, t‬‬ ‫‪h2 2‬‬ ‫‪=−‬‬ ‫) ‪∇ ψ (r, t ) + v (r ) ψ (r, t‬‬ ‫‪∂t‬‬ ‫‪2m‬‬ ‫‪h‬‬ ‫= ) ‪j (r, t‬‬ ‫) ‪ψ * (r, t ) ∇ψ (x, t ) − ∇ψ * (r, t ) ψ (r, t‬‬ ‫‪2im‬‬



‫‪ih‬‬



‫[‬



‫]‬



‫ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻭﻜﻤﻴﺔ ﺤﺭﻜﺔ ﺍﻟﺠﺴﻡ‬ ‫‪Expectation Values of Canticle nonctn‬‬



‫ﺒﺈﻋﻁﺎﺀ ﻜﺜﺎﻓﺔ ﺍﻻﺤﺘﻤﺎل‪.P (x,t) .‬‬ ‫ﻓﺈﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻟـ )‪ f (x‬ﻴﻤﻜﻥ ﺤﺴﺎﺒﻬﺎ ﺒﺸﻜل ﻋﺎﻡ‪.‬‬ ‫)‪(20‬‬



‫) ‪f (x ) = ∫ ax f (x ) p (x, t‬‬



‫) ‪= ∫ ax ψ * (x, t ) f (x ) ψ (x, t‬‬



‫ﻻﺴﺘﻨﺘﺎﺝ ﻤﺅﺜﺭ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻤﻥ ﺍﻟﻤﻴﻜﺎﻨﻴﻜﺎ‬



‫ ‪- ٧١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



p = mv = m



dx dt



(21)



d d x = m ∫ dx ψ * 9x, t) v ψ (x, t ) dt dt +∞ ∂ψ ∂ψ * ) xψ + ψ * x p (x ) = m ∫ dx ( ∂Z ∂Z −∞



p =m



+∞



p (x ) = m ∫ dx ( −∞



،‫ﻫﻲ ﺍﻟﺘﻲ ﺘﺘﻐﻴﺭ ﺒﺎﻟﺯﻤﻥ‬



ψ (x, t )



(22)



∂ψ * ∂ψ ) + ψ (x, t ) + ψ * x ∂t ∂Z



‫ ﻓﻘﻁ‬.‫ﺘﺤﺕ ﺍﻟﺘﻜﺎﻤل‬



.‫ﻤﻊ ﺍﻟﺯﻤﻥ‬



x



dx dt



‫ﻻﺤﻅ ﺃﻨﻪ ﻻ ﻴﻭﺠﺩ‬



‫ﻭﻫﺫﺍ ﺍﻟﺘﻐﻴﺭ ﻫﻭ ﺍﻟﺫﻱ ﻴﺅﺩﻱ ﺇﻟﻰ ﺍﻟﺘﻐﻴﺭ ﻓﻲ‬ .‫ﻭﺒﻤﺎ ﺃﻥ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺁﺨﺭ ﻤﻌﺎﺩﻟﺔ‬



∂ψ h ∂ψ =− ∂t 2m ∂x 2 ∂ψ h ∂ 2ψ m =− ∂t 2i ∂x 2 ∂ψ * h ∂ 2 ψ * m = ∂t 2i ∂x 2



ih



2 h +∞ ∂ 2 ψ * * ∂ ψ xψ − ψ x 2 )dx p = ∫( 2i −∞ ∂x 2 ∂x



∂ 2 ψ* ∂ ∂ψ * ∂ψ * ∂ψ * ∂ψ xψ ( xψψ ψ x = − − x 24 x ∂x ∂x ∂x ∂4 ∂3 ∂x 2 1 ∂x * ∂ψ ψ ∂x ∂x



∂ ∂ψ * ∂ ∂ψ ( xψψ− (ψ * ψ) + ψ * ∂x ∂x ∂x ∂x 2 ∂ ∂ψ ∂ψ ∂ ψ − (ψ * x ) + ψ * + ψ*x 2 ∂x ∂x ∂x ∂x =



.‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻟﺤﺩ ﺍﻟﺫﻱ ﻴﻘﻊ ﺩﺍﺨل ﺍﻟﺘﻜﺎﻤل ﻴﺼﺒﺢ‬ 2 ∂ 2 ψ* ∂ ∂ψ * ∂ ∂ψ * ∂ ψ (xψx − ψ x = ( x ψ) − (ψ * ψ) + ψ * 2 2 ∂x ∂x ∂x ∂x ∂x ∂x ∂ ∂ψ ∂ψ − ( ψ* x ) + ψ* ∂x ∂x ∂x * ∂  ∂ψ ∂ψ  ∂ψ =  xψ − ψ * ψ − ψ * x  + 2ψ * ∂x  ∂x ∂x  ∂x



- ٧٢ PDF created with pdfFactory Pro trial version www.pdffactory.com



+∞



+∞



h ∂ p = ∫ [ 2i − ∞ ∂x



]+ h ∫ 2ψ * (x, t) ∂ ψ (x, t) dx 2i −∞ ∂x



+∞



p = ∫ dx ψ * (x, t) −∞



h ∂ ψ (x, t) i ∂x



.operator ‫ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻘﺘﺭﺡ ﺃﻥ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻴﻤﻜﻥ ﺃﻥ ﺘﻤﺜل ﺒﺎﻟﻤﺅﺜﺭ‬ p=



h ∂ i ∂x



.‫ ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل‬،‫ﻭﻟﻬﺫﺍ‬ p 2 = ∫ dxψ * (x, t) (−h 2



∂2 ) ψ (x, t) ∂x 2



f ( p ) = ∫ dxψ * (x, t) f ( φ ( p)



D ∂ ) ψ (x, t) t ∂x



.‫ﻭﺒﺸﻜل ﻋﺎﻡ‬



‫ﻭﺒﻬﺫﺍ ﺍﻟﺘﻤﺜﻴل ﻟﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ﻴﻤﻜﻨﻨﺎ ﻤﻨﺎﻗﺸﺔ ﺍﻟﻤﺩﻟﻭل ﺍﻟﻔﻴﺯﻴـﺎﺌﻲ ﻟــ‬



.‫ﺍﻟﺘﻲ ﺘﻅﻬﺭ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻓﻲ ﻓﺭﺍﻍ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ‬ 1



∫ 2Dh



ψ(x, t )=



ap φ ( p ) e i [px - (p/2m) t ] / h



.t ‫ﻻ ﺘﻌﺘﻤﺩ ﻋﻠﻰ‬ ψ (x ) =



1



∫ 2Dh



ap φ ( p ) e ipn/ h =



‫ ﻭﺫﻟﻙ ﻷﻥ‬t = 0 ‫ ﺩﻉ‬:‫ﺃﻭﻻﹰ‬



φ (p )



h ou φ (hD ) e ikv 1D ∫



‫ﻭﺒﺎﺴﺘﺨﺩﺍﻡ ﻤﻌﻜﻭﺱ ﺘﻜﺎﻤل ﻓﻭﺭﻴﺭ‬ φ ( hD ) = ∫ axψ ( x) e −ikx or ⊗ φ (p) =



1 2Dh







ax ψ (x) e - ipx/ h



⇒ ∫ ap φ * ( p) φ ( p) = ∫ ap φ * ( p) = ∫ ax ψ



1



1 2Dh







ax ψ (x) e - ipx/ h







ap φ * e - ipx/ h Dh4424443 124 ψ*



= ∫ ax ψψ * = 1



- ٧٣ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﻭﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺘﺴﻤﻰ ﺒﻨﻅﺭﻴﺔ ﺒﺎﺭﺴﻴﻔﺎل ‪Parsevali‬‬



‫ﻭﻤﻨﻁﻭﻗﻬﺎ‪ :‬ﻟﻭ ﺃﻥ ﺩﺍﻟﺔ ﻤﻌﺎﻴﺭﺓ ﻟـ ‪ :1‬ﻓﺈﻥ ﺘﺤﻭﻴل ﻓﻭﺭﻴﺭ ﻟﻠﺩﺍﻟﺔ ﻴﻜﻭﻥ ﻤﻌﺎﻴﺭ ﻜﺫﻟﻙ‬ ‫‪If a function is normalized to 1, 50 is its Fourier Transform‬‬



‫) ﻋﻨﺩﻨﺎ ﺘﻤﺜﻴﻼﻥ ﻟﻠﺩﻭﺍل‪ :‬ﺘﻤﺜﻴل ‪ ،x‬ﺘﻤﺜﻴل ‪.(regasrauney p‬‬ ‫ﺨﺫ‪:‬‬ ‫‪h d‬‬ ‫)‪ψ (x‬‬ ‫‪i dx‬‬ ‫‪h d 1‬‬ ‫) ‪= ∫ ax ψ * ( x‬‬ ‫‪ap φ (p) e ipx/h‬‬ ‫∫‬ ‫‪i dx 2Dh‬‬ ‫‪1‬‬ ‫‪= ∫ ap φ ( p) p‬‬ ‫‪ax ψ * (x) e ipx/ h‬‬ ‫∫‬ ‫‪2Dh‬‬



‫) ‪p = ∫ ax ψ * ( x‬‬



‫)‪p = ∫ ap φ ( p ) p φ * (p‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺘﻌﻨﻲ ﺃﻥ‬



‫ﺍﻟﺤﺭﻜﺔ ﺒـ‬



‫‪2‬‬



‫) ‪φ( p‬‬



‫) ‪φ (p‬‬



‫ﺘﻔﺴﻴﺭ ﺒﺄﻨﻬﺎ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻓﻲ ﻓـﺭﺍﻍ ﻜﻤﻴـﺔ‬



‫ﺘﻌﻁﻴﻨﺎ ﻜﺜﺎﻓﺔ ﺍﺤﺘﻤﺎل ﺇﻴﺠﺎﺩ ﺍﻟﺠﺴﻡ ﺍﻟﺫﻱ ﻜﻤﻴﺔ ﺤﺭﻜﺘﻪ ‪.p‬‬



‫ﻓﻲ ﻓﺭﺍﻍ ﻜﻤﻴﺔ ﺍﻟﺤﺭﻜﺔ ‪ x‬ﻟﻬﺎ ﺍﻟﺘﻤﺜﻴل‬



‫∂‬ ‫‪∂p‬‬



‫‪x = ih‬‬



‫ﺴﺘﺠﺩ ﻓﻴﻤﺎ ﺒﻌﺩ ﺃﻥ ﺍﻟﻤﺅﺜﺭﺍﺕ‬



‫‪ ogenatrs‬ﺘﻠﻌﺏ ﺩﻭﺭﺍﹰ ﻤﻬﻤﺎﹰ ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪.‬‬ ‫ﻭﺍﻵﻥ ﺴﻨﻭﻀﺢ ﺒﻌﺽ ﺨﺼﺎﺌﺼﻬﺎ‪.‬‬ ‫ﻋﻠﻰ ﻋﻜﺱ ﺍﻷﺭﻗﺎﻡ ﺍﻟﻌﺎﺩﻴﺔ ﺍﻟﻤﺅﺜﺭﺍﺕ ﻟﻴﺴﺕ ﺒﻨﺩ ﺩﺍﺌﻤﺎﹰ‪ ،‬ﻟﻭ ﻋﺭﻓﻨﺎ‬



‫‪[ A B ] = AB − BA‬‬ ‫‪1‬‬



‫∂‬ ‫)‪D∂ ψ (x, t‬‬ ‫‪x ψ (x, t ) − x‬‬ ‫‪i ∂x‬‬ ‫‪i ∂x‬‬ ‫‪D ∂ψ‬‬ ‫‪∂ψ‬‬ ‫‪= (x‬‬ ‫‪+ψ ( x, t ) − x‬‬ ‫)‬ ‫‪i‬‬ ‫‪∂x‬‬ ‫‪∂x‬‬ ‫) ‪[ p, x ] ψ (x, t) = h ψ (x, t‬‬ ‫‪i‬‬



‫‪[ p, x ] ψ (x, t) = h‬‬



‫ﺤﻴﻨﺌﺫ‪:‬‬



‫ﻭﻋﻠﻴﻪ ﻨﻘﻭل ﺃﻨﻨﺎ ﻋﻨﺩﻨﺎ ﻋﻼﻗﺔ ﺍﻟﺘﺒﺩﻴل ‪Commutation relatively‬‬



‫ ‪- ٧٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



[ p, x ] = h i



normalized ware fumets ‫ ﺨﺫ ﺠﺴﻡ ﺍﻟﺫﻱ ﺩﺍﻟﺘﻪ ﺍﻟﻤﻌﺎﻴﺭﺓ‬:‫ﻤﺜﺎل‬ ψ (x ) = 2 α α v e − αv v > 0 =



v0



= a/h e −pa/ h p2 p



2



= =



2a h















p 2 e − pa/h ap



0



φ * p 2 φ ap



ap =z h p



2



p>0



p2 = z2



2a h 3 ( ) = h a = 2(



p =0 Δ p = 2h/a











h2 a2



z 2 e − z az



0



3



h h ) Γ (3) = 4 ( ) 2 a a Γ (n + 1 ) = n ! Γ (2 + 1) 2! Δp =



p2



Δx =



Δx



- ٧٩ PDF created with pdfFactory Pro trial version www.pdffactory.com



.‫ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﺅﺜﺭ‬



‫ ﻟﻭ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺘﺤﻘﻕ ﺍﻟﺸﺭﻁ‬/‫ﺱ‬



ψ (D ) = ψ ( − D )



∠=



h d i dθ



‫ﻤﺅﺜﺭ ﻫﻴﺭﻤﻴﺘﻲ‬ ∠ − ∠ D







∠ =



dθ ψ * ( θ )



−D D







*



=−







dθ ψ



−D



∠ − ∠ = *



*



‫ﻹﺜﺒﺎﺕ ﻫﺫﺍ ﻴﺠﺏ ﺃﻥ‬



=0



h d ψ i dθ



h d * ψ i dθ



d d D  h  * dθ dθ + dθ ( ψ ( θ ) ψ ) (ψ ψ * ) ∫ i  −D 



=



h i



D











−D



d ( ψ* ψ ) dθ



[



h * = ψ ( D ) ψ ( D ) − ψ * ( − D ) ψ (D ) i ψ (D ) =ψ ( − D ) = 0



]



∠ = ∠ ∞



3.c.







k/2



dk N 2 = N 2



−∞







dk = N 2 k =



− k/2



1 ⇒ 2D



N=



*



‫∴ ﺍﻟﻤﺅﺜﺭ‬



1 2D k



.‫ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﻤﺘﺴﺎﻭﻴﺔ‬N ‫ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﻗﻴﻡ‬ ‫( ﻴﻤﻜﻥ ﺘﻘﺩﻴﺭﻩ ﺒﺎﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺘـﻴﻥ ﻋﻨـﺩﻫﺎ‬p) ‫ﻋﺭﺽ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺍﻟﺠﺯﺀ‬ :‫ ﻭﻫﺫﺍ ﻴﺤﺩﺙ ﻋﻨﺩ‬3.d ‫ﺘﺨﺘﻔﻲ‬ sin



.k ‫ﻭﻫﻲ ﻨﺘﻴﺠﺔ ﻻ ﺘﻌﺘﻤﺩ ﻋﻠﻰ‬



2D kx  x = + k =0  2D 2  x = − k



⇒ Δx=



4D k



⇒ Δ x. Δ k =



, 4D . k



- ٨٠ PDF created with pdfFactory Pro trial version www.pdffactory.com



k u Δk = − (− ) = k 2 2



k = 4D



sin



kx 2



‫ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﻭﺍﻟﻘﻴﻡ ﺍﻟﺨﺎﺼﺔ‪Eigenfunctions and Eigenvalues :‬‬



‫ﻟﻭ ﺃﺨﺫﻨﺎ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﺍﻟﺘﻲ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﺯﻤﻥ‪:‬‬ ‫)‪∂ψ (x, t‬‬ ‫)‪h 2 ∂ 2 ψ(x, t‬‬ ‫‪=−‬‬ ‫)‪+ v (x) ψ (x, t‬‬ ‫‪∂t‬‬ ‫‪2m ∂x 2‬‬



‫)‪(1‬‬



‫‪ih‬‬



‫ﻭﻟﺤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻨﻘﺼﻬﺎ ﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻨﻕ‬ ‫)‪ψ (x, t) , T(t) u (x‬‬ ‫‪‬‬ ‫)‪dT (t)  h 2 d 2 u (x‬‬ ‫‪= −‬‬ ‫‪+ v (x) u (x) ‬‬ ‫‪2‬‬ ‫‪dt‬‬ ‫‪ 2m dx‬‬ ‫‪‬‬



‫)‪⇒ ih u (x‬‬



‫ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ )‪u (x) T (t‬‬ ‫)‪2m) (a 2 u (x) / dx 2 ) + V (x)u (x‬‬ ‫)‪u (x‬‬



‫‪(sin 1‬‬



‫‪dT (t)dt‬‬ ‫‪⇒ ih‬‬ ‫=‬ ‫)‪T (t‬‬



‫ﻭﻫﺫﺍ ﻜﻤﻴﺔ ﻴﻤﻜﻥ ﺘﺤﻘﻴﻘﻪ ﻓﻘﻁ ﺍﻓﺘﺭﺍﺽ ﺃﻥ ﻜﻼ ﺍﻟﻁﺭﻓﻴﻥ ﻴﺴﺎﻭﻱ ﺜﺎﺒﺕ ﻭﺍﻟﺫﻱ‬ ‫ﻨﺴﻤﻴﻪ ‪E‬‬ ‫)‪dT (E‬‬ ‫‪i1‬‬ ‫‪i‬‬ ‫‪= ∫ − E dt = − Et‬‬ ‫‪h‬‬ ‫)‪T (E‬‬ ‫‪ih‬‬



‫∫‬



‫)‪d T (t‬‬ ‫⇒ )‪= E T (t‬‬ ‫‪dt‬‬



‫‪⇒ ih‬‬



‫‪i‬‬



‫‪− ET‬‬ ‫‪i‬‬ ‫‪lm T (t) = - Et ⇒ T (t) = Ce t‬‬ ‫‪h‬‬



‫ﻭﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ‪:‬‬ ‫)‪h 2 d 2 u (x‬‬ ‫)‪+ v (x) u (x) = Eu (u‬‬ ‫‪2m dx 2‬‬



‫‪−‬‬



‫ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﺍﻟﻐﻴﺭ ﻤﻌﺘﻤﺩﺓ ﻋﻠﻰ ﺍﻟﺯﻤﻥ‪ time indgader S-E :‬ﻭﻫـﺫﻩ‬



‫ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻔﺭﻕ ﻋﻥ )‪ (1‬ﻭﺍﻟﺘﻲ ﺘﺼﻑ ﺍﻟﺘﻐﻴﺭ ﺍﻟﺯﻤﻨﻲ ﻟﻠﺩﺍﻟﺔ‬



‫)‪ψ (x, t‬‬



‫ﻤﻌﺎﺩﻟﺔ ﻫﻲ ﺩﺍﻟﺔ‬



‫ﺨﺎﺼﺔ‪ .Ligea valu equation .‬ﻭﻟﻔﻬﻡ ﻤﺎﺫﺍ ﻴﻌﻨﻲ ﻫﺫﺍ ﺍﻟﻜﻼﻡ ﺩﻋﻨﺎ ﻨﻌـﺩﺩ ﻤـﺭﺓ‬ ‫ﺃﺨﺭﻯ ﻟﻤﻔﻬﻭﻡ ﺍﻟﻤﺅﺜﺭﺓ‪.‬‬



‫ﺒﺸﻜل ﻋﺎﻡ ﻤﺅﺜﺭ ﻤﺎ‪ :‬ﻴﺅﺜﺭ ﻋﻠﻰ ﺩﺍﻟﺔ ﻭﻴﺄﺨﺫﻫﺎ ﻟﺩﺍﻟﺔ ﺃﺨﺭﻯ‪ ،‬ﻤﺜﺎل ﻋﻠﻰ ﺫﻟﻙ‪:‬‬



‫ ‪- ٨١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪of (x) = f (x) + x 2‬‬



‫‪1.‬‬



‫] )‪of (x) = [f (x‬‬



‫‪2.‬‬



‫)‪of (x) = f (3 x 2 + 1‬‬



‫‪3.‬‬



‫‪2‬‬



‫‪3‬‬



‫‪ d f (x) ‬‬ ‫‪4. of (x) = ‬‬ ‫‪‬‬ ‫‪ dx ‬‬ ‫)‪5. of (x) = df / dx − 2f (x‬‬ ‫)‪6. of (x) = λf (x‬‬



‫ﻜل ﻫﺫﻩ ﺍﻷﻤﺜﻠﺔ ﺘﺅﺜﺭ ﻓﻲ ﺍﻟﺨﺎﺼﻴﺔ ﻫﻲ ﺒﺈﻋﻁﺎﺀ ﺩﺍﻟﺔ )‪ f (x‬ﺘﻭﺠﺩ ﻗﺎﻋﺩﺓ ﺍﻟﺘﻲ‬ ‫ﺘﺤﺩﺩ )‪ of (x‬ﻟﻨﺎ‪.‬‬ ‫ﻴﻭﺠﺩ ﻨﻭﻉ ﺨﺎﺹ ﻤﻥ ﺍﻟﻤﺅﺜﺭﺍﺕ ﻴﺴﻤﻰ ﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﺨﻁﻴﺔ‪.‬‬ ‫ﻭﻫﺫﻩ ﺍﻟﻤﺅﺜﺭﺍﺕ ﻟﻪ ﺍﻟﺨﺎﺼﻴﺔ‪:‬‬ ‫] )‪∠ [f 1 (x) + f 2 (x) ] = ∠ [f 1 (x) + ∠ f 2 (x‬‬



‫ﻭﺒﻭﺠﻭﺩ ‪ c‬ﻜﺭﻗﻡ ﻤﻭﺠﺏ ﺍﺨﺘﻴﺎﺭﻱ‪.‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻴﻭﺠﺩ ﻤﺅﺜﺭﺍﺕ ﻋﻜﺴﻴﺔ ﺍﻟﺨﻁﻴﺔ ﻭﻟﻬﺎ‬ ‫)‪∠ cf (x) = c * ∠ f (x‬‬



‫ﺍﻟﺨﻁﻴﺎﻥ‪.‬‬



‫)‪∠cf(x) = c * ∠ f(x‬‬



‫ﻭﻋﻠﻴﻪ ﻓﺈﻨﻪ ﻓﻲ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﺈﻥ ﺍﻟﻤﺅﺜﺭﻴﻥ ﺍﻷﺨﻴﺭﻴﻥ ﻫﻤـﺎ‬



‫ﺍﻟﻤﺅﺜﺭ ﺍﻟﺨﻁﻲ ﺴﻴﻨﻘل ﺩﺍﻟﺔ ﻤﺎ ﻟﺩﺍﻟﺔ ﺃﺨﺭﻯ‪.‬‬ ‫)‪df (x‬‬ ‫)‪− 2 f (x‬‬ ‫‪ax‬‬



‫= )‪∠ f (x‬‬



‫ﻭﻴﻤﻜﻨﻨﺎ ﺘﺸﺒﻪ ﺍﻟﺩﻭﺍل ﻜﻤﺘﺠﻬﺎﺕ ﻓﻲ ﺜﻼﺜﺔ ﺃﺒﻌﺎﺩ ﻭﺘﺄﺜﻴﺭ ﺍﻟﻤﺅﺜﺭﺍﺕ ﻴﻜﻭﻥ ﺒﻨﻘل‬ ‫)ﺘﺤﻭﻴل( ﺍﻟﻤﺘﺠﻪ ﻟﻤﺘﺠﻪ ﺁﺨﺭ‪ ،‬ﻭﻴﺄﺨﺫ ﺍﻟﻤﺘﺠﻪ ﻜﻭﺤﺩﺓ )‪ (amitvedre‬ﻭﻤـﺅﺜﺭ ﻴﻨﻘـل‬



‫ﻨﻘﻁﺔ ﻋﻠﻰ ‪ unit sphere‬ﻟﻨﻘﻁﺔ ﺃﺨﺭﻯ ﻭﻤﺅﺜﺭ ﻤﺎ ﻴﻤﻜﻥ ﺍﻋﺘﺒـﺎﺭﻩ ﺒﻘﺎﺒـل ﺩﻭﺭﺍﻥ‬ ‫ﺍﻟﻨﻘﻁﺔ ﺤﻭل ﻤﺤﻭﺭ ‪ z‬ﺒﺜﻼﺜﻴﻥ ‪. 30‬‬ ‫‪°‬‬



‫ﺜﻼﺙ ﺤﺎﻻﺕ‪:‬‬



‫‪A → A′‬‬



‫ ‪- ٨٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪B → B′‬‬ ‫‪C → C′‬‬



‫ﻻﺤﻅ ﺃﻥ ﺍﻟﻨﻘﻁﺔ ﻋﻠﻰ ﺍﻟﻘﻁﺏ ﺘﻨﻘل ﻋﻠﻰ ﻨﻔﺴﻬﺎ )ﻭﻜﺫﻟﻙ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﻋﻠـﻰ‬



‫ﺍﻟﻘﻁﺏ ﺍﻟﺠﻨﻭﺒﻲ( ﻭﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺨﺎﺼﺔ ﻟﻤﺜﺎل ﻤﺅﺜﺭ ﻤﺜل ﻤﻌﺎﺩﻟﺔ )‪ ( 4 – 6‬ﻭﺍﻟـﺫﻱ‬ ‫ﻴﻤﻜﻥ ﻜﺘﺎﺒﺘﻪ ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫)‪(4-10‬‬



‫)‪u E (x‬‬



‫‪H u E (x) = E‬‬



‫ﻤﻨﻁﻭﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ‪ ،H :‬ﻤﺅﺜﺭ ﺍﻟﻬﺎﻤﻠﺘﻴﻭﻨﻴﺎﻥ ﻴﺅﺜﺭ ﻋﻠﻰ ﻨﻭﻑ ﻤﻌﻴﻥ ﻤﻥ ﺍﻟﺩﻭﺍل‬



‫ﺴﻴﻌﻁﻴﻨﺎ ﻤﻥ ﺠﺩﻴﺩ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﻴﺅﺜﺭ ﻋﻠﻴﻬﺎ ﻤﻀﺭﻭﺒﺔ ﻓﻲ ﺜﺎﺒﺕ‪.‬‬



‫ﻫﺫﺍ ﺍﻟﺜﺎﺒﺕ ﻴﺴﻤﻰ ‪ eigeulalw‬ﻭﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ‪ E‬ﻭﺤل ﺍﻟﻤﻌﺎﺩﻟـﺔ‬ ‫ﻴﻌﺘﻤﺩ ﻋﻠﻰ ‪.E‬‬ ‫ﻭﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬



‫)‪u E (x‬‬



‫ﻟﻠﻤﺅﺜﺭ ‪.H‬‬



‫ﻴﺴﻤﻰ ‪ eigeufaction‬ﺍﻟﺫﻱ ﻴﻨﺎﻅﺭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺨﺎﺼﺔ ‪E‬‬



‫ﻤﺜﺎل‪ :‬ﺤل ﻤﺴﺄﻟﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺨﺎﺼﺔ‬



‫)‪∠ f (x) = λ f (x‬‬



‫ﺤﻴﺙ‪:‬‬ ‫)‪h df (x‬‬ ‫)‪− β x f (x‬‬ ‫‪i ax‬‬



‫ﻓﻲ ﺍﻟﻤﻨﻁﻘﺔ‬



‫‪a ≤x≤a‬‬



‫= )‪∠ f (x‬‬



‫ﻭﻟﻬﺎ ﺸﺭﻁ ﺍﻷﻁﺭﺍﻑ )ﺍﻟﺸﺭﻭﻁ ﺍﻟﺤﺩﻴﺔ( ‪.bouday‬‬ ‫)‪f (a) = f ( − a‬‬



‫ ‪- ٨٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



:‫ﺍﻟﺤل‬ ∠ f (x) = λ f (x) h a f (x) − β v f (x) = λ f (x) i ax df (x) i i = [β + t (x) + λ f (x)]= [β x + λ ]+ (x) dx h h df i x = (β + λ) ax f h i x2 h f = (β + λx )+c h 2 x 2 iβ + iλλxh 2 f (x) = Ae



energy eigenvahes ‫ ﺘﺴﻤﻰ ﻗﻴﻡ ﺍﻟﻁﺎﻗﺔ ﺍﻟﺨﺎﺼﺔ‬H ‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﺨﺎﺼﺔ ﻟﻠﻤﺅﺜﺭ‬ H=



p 2 op + V (x) 2m



the Eigenvalne Poeem for a ‫ﻤﺴﺄﻟﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺨﺎﺼﺔ ﻟﺠﺴﻡ ﻓﻲ ﺼﻨﺩﻭﻕ‬



.Particle in box



h 2 a 2 u (x) − + V (x) u (x) = Eu (x) 2m ax 2



(4 – 6) ‫ﺒﺎﻋﺘﺒﺎﺭ‬



:‫ﺤﻴﺙ‬ V (x) = ∞ = 0 =∞



x N‬‬



‫~ ‪am + 2‬‬



‫ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﺤﻠﻭل ﺘﻘﺭﻴﺒﺎﹰ )ﺒﺎﺨﺘﻴﺎﺭ ﺍﻟﺤﻠﻭل ﺍﻟﺯﻭﺠﻴﺔ(‪ .‬ﻭﻫﺫﺍ‬ ‫)‪h ( y ) = (atolyromialiny‬‬



‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪22‬‬ ‫‪23‬‬ ‫‪+ a N  y N + y N+2 +‬‬ ‫‪yN+4 +‬‬ ‫‪y N + 6 + .......... ‬‬ ‫‪N‬‬ ‫) ‪N (N + 2‬‬ ‫) ‪N (N + 2 ) (N + 4‬‬ ‫‪‬‬ ‫‪‬‬



‫ﻭﺒﺎﻟﺘﺒﺴﻴﻁ‬ ‫‪N‬‬ ‫‪N‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪−1‬‬ ‫‪+1‬‬ ‫‪N‬‬ ‫‪2 2‬‬ ‫‪2‬‬ ‫‪2 2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪N‬‬ ‫‪(y‬‬ ‫)‬ ‫‪(y‬‬ ‫)‬ ‫‪(y‬‬ ‫)‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪+ .......... ‬‬ ‫‪a N y 2 ( −1 )! ‬‬ ‫‪N‬‬ ‫‪N‬‬ ‫‪2‬‬ ‫! )‪ ( N − 1‬‬ ‫‪‬‬ ‫!) (‬ ‫!)‪( + 1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ 2‬‬ ‫‪‬‬



‫ﺒﺎﺨﺘﻴﺎﺭ‬



‫‪N = 2k‬‬



‫)ﻟﻠﻤﻼﺌﻤﺔ( ﻓﺈﻥ ﺍﻟﻤﺘﺴﻠﺴﻠﺔ ﺘﺄﺨﺫ ﺍﻟﺸﻜل‪.‬‬



‫‪ (y 2 ) k − 1 (y 2 ) k‬‬ ‫‪‬‬ ‫‪(y 2 ) k + 1‬‬ ‫‪y 2 (k − 1 )! ‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪+ .......... ‬‬ ‫!‪k‬‬ ‫! )‪(k + 1‬‬ ‫! )‪ (k − 1‬‬ ‫‪‬‬



‫ ‪- ١١٤‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫‪ 2‬‬ ‫‪(y 2 ) k −1 ‬‬ ‫‪(y 2 ) 2‬‬ ‫‪= y 2 (k − 1) !  e y − {1 + y 2 +‬‬ ‫‪+ .................. +‬‬ ‫‪‬‬ ‫‪(k − 2)! ‬‬ ‫!‪2‬‬ ‫‪‬‬



‫ﻭﻫﺫﺍ ﺸﻜل ﻤﺘﻌﺩﺩ ﺍﻟﺤﺩﻭﺩ ‪ +‬ﺜﺎﺒﺕ ‪x‬‬



‫‪y2 ey‬‬



‫ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‬



‫‪2‬‬



‫‪−y2‬‬



‫ﻓﺈﻨﻨﺎ ﺴﻨﺘﺤﺼل ﻋﻠﻰ ﺤل ﻻ ﻴﺘﻼﺸﻰ ﻋﻨﺩ‬



‫‪4 (y ) = h (y ) e‬‬ ‫∞‬



‫ﻟﻭ ﺃﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻻﺴﺘﻁﺭﺍﺩ ﺘﻨﺘﻬﻲ‪ ،‬ﺃﻱ ﺃﻥ ﻟﻭ ﺃﻥ‪.‬‬



‫ﻭﺍﻟﺤل ﺍﻟﻤﻘﺒﻭل ﻴﻤﻜﻥ ﺃﻥ ﻴﻭﺠﺩ‬



‫‪( N + 1 ) ( N + 2 ) a n + 2 = 2N − ∈+ 1 a n = 0‬‬ ‫‪1424‬‬ ‫‪3‬‬ ‫‪=0‬‬



‫‪⇒ ∈ = 2N + 1‬‬ ‫‪2E‬‬ ‫‪= 2N + 1‬‬ ‫‪hw‬‬



‫)‪(17‬‬



‫ﻭﺍﻟﻨﺘﺎﺌﺞ ﻫﻲ‪:‬‬ ‫‪ -1‬ﺃﻨﻪ ﻴﻭﺠﺩ ﻗﻴﻡ ﺫﺍﺘﻴﺔ ﻤﻨﻔﺼﻠﺔ )ﻏﻴﺭ ﻤﺘﺼﻠﺔ( ﻤﺘﺴﺎﻭﻴﺔ ﺍﻟﻤﺴﺎﻓﺎﺕ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟـﺔ‬



‫)‪ (4‬ﻭﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (17‬ﻴﻤﻜﻨﻨﺎ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪.‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪hw (2m + 1) = (n + ) h w‬‬ ‫‪2‬‬ ‫‪2‬‬



‫)‪(18‬‬



‫=‪E‬‬



‫ﻭﻫﺫﻩ ﻗﺭﻴﺒﺔ ﻤﻥ ﻤﻌﺎﺩﻟﺔ ‪ Planck‬ﻟﻺﺸﻌﺎﻉ‪.‬‬ ‫‪1‬‬ ‫‪E = (n + ) hw‬‬ ‫‪2‬‬



‫‪ -2‬ﻤﺎ ﻋﺩﺍ ﺜﻭﺍﺒﺕ ﺍﻟﻤﻌﺎﻴﺭﺓ‪ ،‬ﻓﺈﻥ ﻤﺘﻌﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ ﻤﺘﻌﺩﺩ ﺍﻟﺤﺩﻭﺩ‬



‫ﺍﻟﻬﻴﺭﻤﻴﺘﻲ)‪Hn (y‬‬



‫ﻭﺍﻟﺫﻱ ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩ ﺨﻭﺍﺼﻪ ﺒﺴﻬﻭﻟﺔ ﻓﻲ ﺃﻱ ﻜﺘﺎﺏ ﻓﻲ ﺍﻟﻔﻴﺯﻴﺎﺀ ﺍﻟﺭﻴﺎﻀﻴﺔ‪.‬‬ ‫ﻭﻟﻭ ﻗﺼﺭﻨﺎ ﺃﻨﻔﺴﻨﺎ ﻟﻠﺨﻭﺍﺹ ﺍﻟﺘﺎﻟﻴﺔ ﻤﻨﻬﺎ‪:‬‬ ‫)‪Hn (y‬‬



‫ﺘﺤﻘﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ‪.‬‬ ‫ﺘﺤﺕ ﺸﺭﻁ‬



‫‪∈ = 2 n +1‬‬



‫‪+ 2nH n (y) = 0‬‬



‫)‪dH n (y‬‬ ‫‪dy‬‬



‫‪− 2y‬‬



‫) ‪d 2 H n (y‬‬ ‫‪2‬‬



‫‪dy‬‬



‫ ‪- ١١٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



ecussionedations ‫ﻭﻫﺫﻩ ﺘﺤﻘﻕ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻻﺴﺘﻁﺭﺍﺩﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‬ H n +1 − 2y H n + 2n H n −1 = 0 H n +1 +



∑ n



dH n dy



− 2y H n + 2n H n = 0



‫ﻭﻜﺫﻟﻙ‬



2 Zn H n (y) = e 2zy − z n!



H n (y) = (−1) n e y



2



‫ﻭ‬



d n − y2 e dy n



‫ﻭﺍﻟﺘﻁﺒﻴﻊ ﻟﻜﺜﻴﺭﺍﺕ ﺤﺩﻭﺩ ﻫﻴﺭﻤﻴﺕ ﻴﻜﻭﻥ ﺒﺤﻴﺙ‬ ∞







2



dy e − y H n (y) 2 = d n n! D



−∞



.‫ﻫﺫﻩ ﻗﺎﺌﻤﺔ ﺒﺒﻌﺽ ﻋﺩﻴﺩﺍﺕ ﺤﺩﻭﺩ ﻫﻴﺭﻤﻴﺕ‬ H 0 (y) = 1 H1 (y) = 2 y H 2 (y) = 4 y 2 − 2 H 3 (y) = 8 y 2 − 12 y H 4 (y) = 16 y 4 − 48 y 2 + 12 H 5 (y) = 32 y 5 − 160 y 3 + 129 y



(‫ﻭﻤﻌﺎﺩﻻﺕ ﺍﻟﻘﻴﻡ ﺍﻟﺫﺍﺘﻴﺔ )ﺍﻟﺨﺎﺼﺔ‬ d2u n dx



2



=



mk 2 2mEn x un − un 2 h h2 ‫و‬



d2u* e mk 2mEn * u e = 2 x 2 u* e − 2 dx h h2



‫ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ‬،‫ﺒﺎﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ ﻋﻠﻰ ﺍﻟﺘﻭﺍﻟﻲ‬



un



‫ﻭ‬



u*e



‫ﻭﻋﻨﺩ ﻀﺭﺏ‬ .‫ﺘﻁﺭﺡ ﻤﻥ ﺍﻷﻭﻟﻰ‬



*  2m d  * dun du x ux − u x  = 2 (E x − E n ) u *x u n  h dx  dx dx 



- ١١٦ PDF created with pdfFactory Pro trial version www.pdffactory.com



‫ﻭﺒﺘﻜﺎﻤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻋﻠﻰ ‪ x‬ﻤﻥ‬



‫∞‪−‬‬



‫∞‪+‬‬



‫←‬



‫ﻓﺈﻥ ﺍﻟﺠﺎﻨـﺏ ﺍﻷﻴـﺴﺭ‬



‫ﻴﺘﻼﺸﻰ‪ ،‬ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺨﺎﺼﺔ ﻭﺘﻔﺎﻀﻼﺘﻬﺎ ﺘﺘﻼﺸﻰ ﻋﻨﺩ‬ ‫‪dx u *e (x) u n (x) = 0‬‬



‫∞‬



‫∫‬



‫) ‪− En‬‬



‫‪x‬‬



‫∞ ‪x= ±‬‬



‫ﻭﻫﻜﺫﺍ‪.‬‬



‫‪(E‬‬



‫∞‪−‬‬



‫ﻭﺍﻟﺫﻱ ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﺍﻟﺘﻲ ﻟﻬﺎ‬ ‫‪ -3‬ﺍﻟﻤﻌﺎﺩﻟﺔ‬



‫‪1‬‬ ‫) ‪E = h w (n +‬‬ ‫‪2‬‬



‫‪Ee ± En‬‬



‫ﻫﻲ ﻤﺘﻌﺎﻤﺩﺓ‪.‬‬



‫ﺘﻭﻀﺢ ﺃﻥ ﺃﻗل ﺤﺎﻟﺔ ﻟﻬﺎ ﻁﺎﻗﺔ ﻭﻫﺫﻩ ﻫﻲ ﻁﺎﻗﺔ ﻨﻘﻁـﺔ‬



‫ﺍﻟﺼﻔﺭ ‪.Zero – point evergy‬‬ ‫ﺇﻥ ﻭﺠﻭﺩﻫﺎ ﻫﻭ ﺘﺄﺜﻴﺭ ﻜﻤﻲ ﺒﺤﺕ‪ ،‬ﻭﻴﻤﻜﻥ ﺘﺄﻭﻴﻠﻪ ﺒﺩﻻﻟﺔ ﻤﺒﺩﺃ ﺍﻟﻼﺘﻌﻴﻴﻥ‪ .‬ﺇﻨﻬﺎ‬ ‫ﻁﺎﻗﺔ ﻨﻘﻁﺔ ﺍﻟﺼﻔﺭ ﺍﻟﻤﺴﺌﻭﻟﺔ ﻋﻥ ﺍﻟﺤﻘﻴﻘﺔ ﺃﻥ ﺍﻟﻬﻴﻠﻴﻭﻡ ﻻ ﻴﺘﺠﻤـﺩ ﻋﻨـﺩ ﺩﺭﺠـﺎﺕ‬ ‫ﺍﻟﺤﺭﺍﺭﺓ ﺍﻟﻘﻠﻴﻠﺔ‪ ،‬ﻭﻟﻜﻨﻪ ﻴﺒﻘﻰ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺴﺎﺌﻠﺔ ﺤﺘﻰ ﺩﺭﺠﺎﺕ ﺤـﺭﺍﺭﺓ ﻤﻘـﺩﺍﺭﻫﺎ‬ ‫‪ 10-3k‬ﻭﺫﻟﻙ ﻋﻨﺩ ﺍﻟﻀﻐﻁ ﺍﻟﻌﺎﺩﻱ‪ .‬ﺍﻟﺘﺭﺩﺩ ﻟﻬﺎ ﻴﻜﻭﻥ ﻜﺒﻴﺭﺍﹰ ﻟﻠﺫﺭﺍﺕ ﺍﻟﺨﻔﻴﻔﺔ‪ .‬ﻭﺍﻟﺫﻱ‬



‫ﻫﻭ ﺍﻟﺴﺒﺏ ﻓﻲ ﺃﻥ ﺍﻟﻨﻴﺘﺭﻭﺠﻴﻥ ﻻ ﻴﻅﻬﺭ ﻫﺫﺍ ﺍﻟﺘﺄﺜﻴﺭ ﻤﺜل ﺍﻟﻬﻴﻠﻴﻭﻡ‪ .‬ﺇﻨﻪ ﻜﺫﻟﻙ ﻴﻌﺘﻤﺩ‬



‫ﻋﻠﻰ ﺍﻟﺨﻭﺍﺹ ﺍﻟﺘﻔﻀﻴﻠﻴﺔ ﻟﻠﻘﻭﻯ ﺍﻟﻔﺎﻋﻠﺔ ﺒﻴﻥ ﺍﻟﺠﺯﻴﺌﺎﺕ ﻭﺍﻟﺘﻲ ﺘﺸﺭﺡ ﺍﻟﺴﺒﺏ ﻓﻲ ﺃﻥ‬ ‫ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ﻴﺘﺠﻤﺩ‪.‬‬



‫ ‪- ١١٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻟﺒﻨﺎﺀ ﺍﻟﻌﺎﻡ ﻟﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ )ﺍﻟﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻤﻭﺠﻴﺔ(‪:‬‬ ‫ﺴﻨﺘﻌﺭﺽ ﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﻟﺩﺭﺍﺴﺔ ﺍﻟﻤﺒﺎﺩﺉ ﺍﻷﺴﺎﺴﻴﺔ ﺍﻟﺘﻲ ﺫﻜﺭﺕ ﺁﻨﻔﺎﹰ ﻓـﻲ‬



‫ﺴﻴﺎﻕ ﺤل ﺒﻌﺽ ﺍﻟﻤﺴﺎﺌل ﺍﻟﻔﻴﺯﻴﺎﺌﻴﺔ ﻤﻥ ﻫﺫﻩ ﻨﻅﺭﻴﺔ ﺍﻟﻤﻔﻜﻭﻙ ﻭﻤﻌﻨﺎﻫﺎ ﺍﻟﻔﻴﺯﻴـﺎﺌﻲ‬ ‫ﻓﻲ ﺍﻟﻤﺅﺜﺭﺍﺕ ﻤﺘﺠﻬﺎﺕ ﺍﻟﺤﺎﻟﺔ‪ ،‬ﺍﻟﺘﻜﺭﺍﺭ ﻭﺍﻟﻨﻬﺎﻴﺔ ﺍﻟﺘﻘﻠﻴﺩﻴﺔ‪ .‬ﻭﺴﻨﻘﺩﻡ ﺘﺭﻤﻴﺯ ﺩﻴـﺭﺍﻙ‬



‫ﺒﺎﺨﺘﺼﺎﺭ‪.‬‬



‫ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﻭﺍﻟﻘﻴﻡ ﺍﻟﺨﺎﺼﺔ‪:‬‬ ‫"ﻤﺅﺜﺭ ﺍﻟﻬﺎﻤﻠﺘﻭﻨﻴﺎﻥ"‬ ‫ﺇﻥ ﺤﺎﻟﺔ ﺃﻱ ﻨﻅﺎﻡ ﻓﻴﺯﻴﺎﺌﻲ ﻴﻭﺼﻑ ﺒﺎﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻭﺍﻟﺘﻲ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﻜل‬



‫ﺍﻟﻤﻌﻠﻭﻤﺎﺕ ﻋﻥ ﻫﺫﺍ ﺍﻟﻨﻅﺎﻡ‪ .‬ﺇﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﺯﻤﻥ‪ ،‬ﻭﺘﻁﻭﺭﻫﺎ ﻤـﻊ‬



‫ﺍﻟﺯﻤﻥ ﻴﻌﻁﻲ ﺒـ‪:‬‬



‫)‪(1‬‬



‫∂‬ ‫)‪ψ (x, t) = H ψ (x, t‬‬ ‫‪xt‬‬



‫‪ih‬‬



‫ﺇﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﺁﺜﺭﻨﺎ ﻋﻠﻴﺎ ﺒﻤﺅﺜﺭ ‪ ،H‬ﺍﻟﻬﺎﻤﻠﺘﻭﻨﻴﺎﻥ ﻭﺍﻟـﺫﻱ ﻴﻠﻌـﺏ ﺩﻭﺭﺍﹰ‬



‫ﻜﺒﻴﺭﺍﹰ ﻓﻲ ﻤﻴﻜﺎﻨﻴﻜﺎ ﺍﻟﻜﻡ‪ .‬ﺍﻟﻤﺅﺜﺭ ‪ H‬ﻟﻨﻅﺎﻡ ﻤﻥ ﺠﺴﻡ ﻭﺍﺤﺩ ﻓﻲ ﺠﻬﺩ ‪ V‬ﻟﻪ ﺍﻟﺸﻜل‪.‬‬ ‫)‪+ V (x‬‬



‫‪p sp2‬‬ ‫‪2m‬‬



‫=‪H‬‬



‫ﻭﺇﺫﺍ ﻜﺎﻨﺕ )‪ V (x‬ﻟﻴﺱ ﻟﻬﺎ ﺍﻋﺘﻤﺎﺩ ﻭﺍﻀﺢ ﻋﻠﻰ ﺍﻟﺯﻤﻥ ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟـﺔ )‪(١‬‬



‫ﻴﻤﻜﻥ ﺤﻠﻬﺎ ﺒـ‪:‬‬



‫‪ψ (x, t) = u E (x) e − Et/h‬‬



‫ﺤﻴﺙ‪:‬‬ ‫)‪H u E (x) = E u E (x‬‬



‫ ‪- ١١٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺇﻥ ﺤﻠﻭل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ‬



‫)‪u E (x‬‬



‫ﻫﻲ ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﻟﻠﻬﺎﻤﻠﺘﻭﻨﻴﺎﻥ ﻭ ‪ E‬ﻫـﻲ ﺍﻟﻘـﻴﻡ‬



‫ﺍﻟﺨﺎﺼﺔ ﻭﻓﻲ ﻫﺫﺍ ﺍﻟﻔﺼل ﺴﻨﺫﻜﺭ ﻋﻠﻰ ﺨﺎﺼﻴﺘﻥ ﻤﻬﻤﺘﻴﻥ ﻟﻠﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﻟـ ‪.H‬‬ ‫‪ -1‬ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﺍﻟﻤﻁﺎﺒﻘﺔ ﻟﻘﻴﻡ ﺨﺎﺼﺔ ﻤﺨﺘﻠﻔﺔ )ﺃﻱ ﻗﻴﻡ ﻤﺨﺘﻠﻔﺔ ﻟـ ‪ (E‬ﺘﻜـﻭﻥ‬



‫ﻫﺫﻩ ﺍﻟﺩﻭﺍل ﻤﺘﻌﺎﻤﺩﺓ ﺃﻱ‪:‬‬



‫‪E ≠ E′‬‬



‫‪(x) = 0‬‬



‫‪E′‬‬



‫‪dx u *E (x) u‬‬



‫∫‬



‫‪ -2‬ﺇﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺨﺎﺼﺔ ﺘﻜﻭﻥ ﻓﺌﺔ ﺍﻟﻬﺎﻤﻠﺔ – ﺃﻱ ﺃﻥ – ﺩﺍﻟﺔ ﺍﺨﺘﻴﺎﺭﻴﺔ‬



‫ﻤﺭﺒﻌﺔ ﺍﻟﺘﻜﺎﻤل ﻟﻜﻲ‪.‬‬



‫∞‬



‫)‪(6‬‬



‫ 0‬‬



‫ﻟﺩﻴﻨﺎ ﺍﻟﺤﻠﻭل ﻭﺍﻟﺘﻲ ﺘﻜﻭﻥ ﻤﻌﺎﻴﺭﺓ ﻓﻲ ﺩﺍﺨل ﺼﻨﺩﻭﻕ‪.‬‬ ‫)‪(55‬‬



‫ﺍﻟﺤل ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ‬ ‫ﻤﻥ‬



‫‪e ikr‬‬



‫ﻭ‬



‫‪− ikr‬‬



‫‪γ‬‬



‫‪2μ E‬‬ ‫‪=k2‬‬ ‫‪2‬‬ ‫‪h‬‬ ‫‪d 2u‬‬ ‫‪−u2 =0‬‬ ‫‪2‬‬ ‫‪dr‬‬



‫ﻜﺒﻴﺭﺓ ﺒﺤﻴﺙ ﺃﻥ ) ‪ V(r‬ﻤﻬﻤﻠﺔ ﻴﻜﻭﻥ ﻫﻭ ﺍﺘﺤﺎﺩ ﺨﻁـﻲ‬



‫‪.e‬‬



‫ ‪- ١٤٥‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ‬



‫‪The Hydrogen Atom‬‬



‫ﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ﺃﺒﺴﻁ ﺫﺭﺓ ﻭﺫﻟﻙ ﻷﻨﻬﺎ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺇﻟﻜﺘﺭﻭﻥ ﻭﺍﺤﺩ‪ .‬ﻭﻟﻬﺫﺍ‬



‫ﺍﻟﺴﺒﺏ ﺘﺼﺒﺢ ﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﻤﻌﺎﺩﻟﺔ ﺠﺴﻡ ﻭﺍﺤﺩ ﻭﺫﻟﻙ ﺒﻌﺩ ﻓﺼل ﺤﺭﻜﺔ ﻤﺭﻜﺯ‬ ‫ﺍﻟﻜﺘﻠﺔ ﻭﺴﻭﻑ ﻨﺘﻌﺎﻤل ﻤﻊ ﺫﺭﺍﺕ ﻤﺸﺎﺒﻬﺔ ﻟﻠﻬﻴﺩﺭﻭﺠﻴﻥ‪ ،‬ﺃﻱ ﺃﻥ ﺍﻟﺫﺭﺍﺕ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻱ‬ ‫ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﺃﻜﺜﺭ ﻤـﻥ ﺒﺭﻭﺘـﻭﻥ‬



‫ﻋﻠﻰ ﺇﻟﻜﺘﺭﻭﻥ ﻭﺍﺤﺩ ﻓﻘﻁ‪ ،‬ﻭﻟﻜﻥ ﺴﻨﺴﻤﺢ‬ ‫ﻭﺍﺤﺩ‪ .‬ﻭﺍﻟﺠﻬﺩ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻴﻜﻭﻥ‬



‫‪Ze2‬‬ ‫‪r‬‬



‫)‪(1‬‬



‫‪V(r ) = −‬‬



‫ﻭﻤﻌﺎﺩﻟﺔ ﺸﺭﻭﺩﻨﺠﺭ ﺍﻟﻨﺼﻑ ﻗﻁﺭﻴﺔ ﺘﻜﻭﻥ‬ ‫‪ d2 2 d ‬‬ ‫‪2μ ‬‬ ‫‪Ze 2 l (l + 1) h 2 ‬‬ ‫‪ 2 +‬‬ ‫‪ R + 2  E +‬‬ ‫‪−‬‬ ‫‪ R =0‬‬ ‫‪r dr ‬‬ ‫‪r‬‬ ‫‪2μ r 2 ‬‬ ‫‪h ‬‬ ‫‪ dr‬‬



‫)‪(2‬‬



‫ﻭﺴﻨﺭﻜﺯ ﺍﻟﺩﺭﺍﺴﺔ ﻋﻠﻰ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻘﻴﺩﺓ‪ ،‬ﺃﻱ ﺤﻠﻭل‬



‫‪E < 0‬‬



‫ﺃﻥ ﻨﻌﻤل ﺘﻐﻴﻴﺭ ﻓﻲ ﺍﻟﻤﺘﻐﻴﺭﺍﺕ‪.‬‬



‫‪2‬‬



‫)‪(3‬‬



‫‪1‬‬



‫‪r‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫ﺇﻨﻪ ﻤﻥ ﺍﻟﻤﻨﺎﺴﺏ‬



‫‪8µ E‬‬ ‫‪δ = ‬‬ ‫‪2‬‬ ‫‪ h‬‬



‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺘﺼﺒﺢ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (2‬ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫)‪d 2 R 2 dR l ( l + 1‬‬ ‫‪λ 1‬‬ ‫‪+‬‬ ‫‪−‬‬ ‫‪R+ −  R = 0‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪δ dδ‬‬ ‫‪dδ‬‬ ‫‪δ‬‬ ‫‪δ 4‬‬



‫)‪(4‬‬



‫ﻭﻗﺩ ﺍﺴﺘﺤﺩﺜﻨﺎ ﺍﻟﻤﻌﺎﻤل )ﺒﺩﻭﻥ ﻭﺤﺩﺓ(‬ ‫)‪(5‬‬



‫‪2‬‬



‫‪1‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫‪ μ C2‬‬ ‫‪= Zα ‬‬ ‫‪2 E‬‬



‫ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (4‬ﻤﻥ ﺍﻟﺴﻬل ﺤﻠﻬﺎ‪ .‬ﻭﺫﻟﻙ‬



‫‪2‬‬



‫‪1‬‬



‫‪1‬‬ ‫‪137‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫‪ μ‬‬ ‫‪‬‬ ‫‪2 E‬‬ ‫‪‬‬



‫‪Z e2‬‬ ‫=‪λ‬‬ ‫‪h‬‬



‫= ‪ ، α‬ﻭﺍﻟﻁﺎﻗﺔ ﻤ‪‬ﻌﺒﺭ ﻋﻨﻬﺎ ﺒﻭﺤﺩﺍﺕ‬



‫ﺍﻟﻜﺘﻠﺔ ﻋﻨﺩ ﺍﻟﺴﻜﻭﻥ ‪. rest – mass‬‬



‫ ‪- ١٤٦‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻁﻴﻑ ﺍﻟﻁﺎﻗﺔ‬



‫‪The Energy Spectrum‬‬



‫ﺴﻨﺤﺎﻭل ﺤل ﻤﻌﺎﺩﻟﺔ )‪ (4‬ﺒﻁﺭﻴﻘﺔ ﻤﻌﺭﻭﻓﺔ ﻟﺩﻴﻨﺎ ﺍﻵﻥ‪ .‬ﺃﻭﻻﹰ ﺴـﻨﺠﺩ ﺴـﻠﻭﻙ‬



‫ﺍﻟﺩﺍﻟﺔ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ‪ δ‬ﻜﺒﻴﺭﺓ‪ .‬ﻭﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ‬



‫‪δ‬‬



‫ﻜﺒﻴﺭﺓ ﻓﺎﻟﺤﺩﻭﺩ ﺍﻟﻤﺘﺒﻘﻴﺔ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪.‬‬



‫‪d2R 1‬‬ ‫‪− R=0‬‬ ‫‪4‬‬ ‫‪dδ 2‬‬



‫) ‪(6‬‬



‫ﻭﺍﻟﺤل ﺍﻟﻤﻘﺒﻭل ﻋﻨﺩ ﻤﺎ ﻻ ﻨﻬﺎﻴﺔ‬ ‫‪2‬‬



‫‪+δ‬‬



‫‪⇐ R ~e‬‬



‫ﻋﻨﺩ‬ ‫‪2‬‬



‫‪−δ‬‬



‫∞ → ‪∞ ← R ⇐δ‬‬



‫‪R~e‬‬



‫ﻭﻜﻤﺎ ﻋﺎﻟﺠﻨﺎ ﺍﻟﻤﺘﺫﺒﺫﺏ ﺍﻟﺘﻭﺍﻓﻘﻲ‬ ‫) ‪G (δ‬‬



‫) ‪(7‬‬



‫‪δ‬‬ ‫‪2‬‬



‫‪−‬‬



‫‪R= e‬‬



‫ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪(4‬‬



‫ﺴﻨﺘﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻟﺔ ﻟـ )‪:G (s‬‬ ‫‪d 2 G  2  dG  λ − 1 l (l + )‬‬ ‫‪G =0‬‬ ‫‪− 1 − ‬‬ ‫‪+‬‬ ‫‪−‬‬ ‫‪dδ 2  δ  dδ  δ‬‬ ‫‪δ 2 ‬‬



‫)‪(8‬‬



‫ﻭﺍﻵﻥ ﻨﻜﺘﺏ ﻤﻔﻜﻭﻙ ﺍﻟﻘﻭﺓ ﻟـ ) ‪ G (δ‬ﻭﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﺸﻜل‪:‬‬ ‫)‪(9‬‬



‫‪δn‬‬



‫∞‬



‫‪n‬‬



‫‪∑a‬‬



‫‪n =ο‬‬



‫‪G (δ ) = δ l‬‬



‫ﻭﺒﺘﻌﻭﻴﺽ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (a‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀـﻠﻴﺔ‪ ،‬ﺴـﻨﺠﺩ ﺍﻟﻌﻼﻗـﺔ ﺒـﻴﻥ‬



‫ﺍﻟﻤﻌﺎﻤﻼﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ‬



‫‪an‬‬



‫ﻭﻤﻌﺎﺩﻟﺔ ﺍﻻﺴﺘﻁﺭﺍﺩ ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻴﻬﺎ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟـﺔ‬



‫ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﺍﻟﺨﺎﻀﻌﺔ ﻟﻠﻌﻼﻗﺔ‬



‫)‪(10‬‬



‫∞‬



‫‪H (δ ) = ∑ a n δ n‬‬ ‫‪n =ο‬‬



‫ ‪- ١٤٧‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻭﺍﻟﺘﻲ ﺘﻜﻭﻥ‬ ‫‪d 2 H  2 l + 2  d H λ −1− l‬‬ ‫‪H=0‬‬ ‫‪+‬‬ ‫‪+‬‬ ‫‪− 1‬‬ ‫‪δ‬‬ ‫‪dδ 2  δ‬‬ ‫‪ dδ‬‬



‫)‪(11‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟـﺔ ﻴﻤﻜﻨﻨـﺎ ﺍﻟﺤـﺼﻭل ﻋﻠﻴﻬـﺎ ﺒـﺴﻬﻭﻟﺔ ﻭﺫﻟـﻙ ﺒﺘﻌـﻭﻴﺽ‬ ‫) ‪G (δ ) = δ l H ( p‬‬



‫ﻓﻲ ﻤﻌﺎﺩﻟﺔ )‪(8‬‬



‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ‪:‬‬ ‫) ‪(12‬‬



‫‪‬‬ ‫‪ 2l + 2 ‬‬ ‫‪δ n − 2 + n a n δ n −1 ‬‬ ‫‪− 1 + (λ − 1 − l ) a n δ n −1  = 0‬‬ ‫‪ δ‬‬ ‫‪‬‬ ‫‪‬‬



‫]‬



‫}‬



‫‪+ (2 l + 2 ) a n + 1 + ( λ − 1 − l − n ) a n δ n −1 = 0‬‬



‫‪‬‬ ‫‪∑ n ( n − 1 ) a‬‬ ‫∞‬



‫‪n‬‬



‫‪‬‬



‫‪n=0‬‬



‫‪∑ {(n + 1)[n a‬‬ ‫∞‬



‫‪n +1‬‬



‫‪n=0‬‬



‫ﻭﺒﻤﺎ ﺃﻥ ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﺘﻼﺸﻰ ﺤﺩ ﺒﺤﺩ‪ ،‬ﻭﺴﻨﺘﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻟﺔ ﺍﻻﺴﺘﻁﺭﺍﺩ‪.‬‬ ‫‪n + l +1− λ‬‬ ‫) ‪( n + 1 )(n + 2l + 2‬‬



‫)‪(13‬‬



‫=‬



‫‪a n +1‬‬ ‫‪an‬‬



‫ﻭﻟﻘﻴﻡ ﻜﺒﻴﺭﺓ ﻟﻘﻴﻤﺔ ‪ n‬ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺘﺼﺒﺢ‬ ‫) ‪(14‬‬



‫‪1‬‬ ‫‪n‬‬



‫≈‬



‫‪a n +1‬‬ ‫‪an‬‬



‫ﻭﻜﻤﺎ ﻓﻌﻠﻨﺎ ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﺘﺫﺒﺫﺏ ﺍﻟﺘﻭﺍﻓﻘﻲ‪ ،‬ﻓﺈﻨﻨﺎ ﻟﻥ ﻨﺘﺤﺼل ﻋﻠﻰ ﺴﻠﻭﻙ ﻤﻘﺒﻭل‬



‫ﻟﻠﺩﺍﻟﺔ ) ‪ R ( p‬ﻋﻨﺩ‬



‫∞‬



‫ﺇﻻ ﺇﺫﺍ ﺍﻨﺘﻬﺕ ﺍﻟﺴﻠﺴﻠﺔ )‪ (a‬ﺃﻱ ﺃﻨﻪ ﻟﻘﻴﻤﺔ ﻤﻌﻁﺎﺓ ﻟـ‬



‫‪l‬‬



‫ﻭ‬



‫‪n = nr‬‬



‫ﻴﺠﺏ ﺃﻥ ﻨﺘﺤﺼل ﻋﻠﻰ‪.‬‬ ‫ﺩﻋﻨﺎ ﺍﻵﻥ ﻨﺴﺘﺤﺩﺙ ﺍﻟﺭﻗﻡ ﺍﻟﻜﻤﻲ ﺍﻷﺴﺎﺴﻲ ‪ N‬ﺍﻟﻤﻌﺭﻑ ﺒـ‬ ‫)‪(16‬‬



‫ﻭﻴﻨﺘﺞ ﻤﻥ ﺍﻟﺤﻘﻴﻘﺔ ﺃﻥ‬



‫‪n = nr + l + 1‬‬



‫‪⇐ nr ≥ 0‬‬



‫‪1. n ≥ l +1‬‬ ‫‪2. n is au int eger‬‬



‫ ‪- ١٤٨‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫) ‪(Zα‬‬ ‫‪1‬‬ ‫‪E = − µ c2‬‬ ‫‪2‬‬ ‫‪n2‬‬ ‫‪E = hw‬‬



‫‪2‬‬



‫)‪(14‬‬



‫ﻭﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ ﺸﺒﻴﻬﺔ ﺒﻨﻤﻭﺫﺝ ﺒﻭﺭ‪ .‬ﻻﺤﻅ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻤﺨﺘﺯﻟﺔ‬



‫‪µ‬‬



‫ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪ .‬ﺇﻥ ﻭﺠﻭﺩ ﺍﻟﻜﺘﻠﺔ ﺍﻟﻤﺨﺘﺯﻟﺔ‪.‬‬ ‫)‪(18‬‬



‫‪mµ‬‬ ‫‪m+ M‬‬



‫ﺍﻟﺘﻲ ﺘﻅﻬﺭ‬



‫=‪µ‬‬



‫ﺤﻴﺙ ‪ m‬ﻜﺘﻠﺔ ﺍﻹﻟﻜﺘﺭﻭﻥ‪ ،‬ﻭ ‪ M‬ﻜﺘﻠﺔ ﺍﻟﻨﻭﺍﺓ‪ ،‬ﻴﻌﻨﻲ ﺃﻥ ﺍﻟﺘﺭﺩﺩﺍﺕ‪.‬‬ ‫)‪(19‬‬



‫‪Ei − Ej mC 2 /2h‬‬ ‫‪(Zα )2  12 − 12 ‬‬ ‫=‬ ‫‪m‬‬ ‫‪h‬‬ ‫‪n ∫ n ∫‬‬ ‫‪1+‬‬ ‫‪M‬‬



‫= ‪ωiy‬‬



‫ﻭﺍﻟﺫﻱ ﻴﺨﺘﻠﻑ ﻗﻠﻴﻼﹰ ﻻﺨﺘﻼﻑ ﺫﺭﺍﺕ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ﺍﻟﺸﺒﻴﻬﺔ ﻋﻠـﻰ ﺍﻷﺨـﺹ‬



‫ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻁﻴﻑ ﺫﺭﺓ ﺍﻟﻬﻴﺩﺭﻭﺠﻴﻥ ﻭﺫﺭﺓ ﺍﻟﺩﻴﺘﻭﻴﺭﻭﻡ‪.‬‬



‫ ‪- ١٤٩‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﻅﺎﻫﺭﺓ ﺘﺤﻠل ﺍﻟﻁﻴﻑ‬



‫‪The Degeneracy of the spectrum‬‬



‫ﺍﻵﻥ ﺴﻨﻨﺎﻗﺵ ﺘﺤﻠل ﻁﻴﻑ ﺍﻟﻁﺎﻗﺔ‬ ‫ﻟﻘﻴﻤﺔ ‪ ، λ =1‬ﺍﻟﺤﺎﻟﺔ ﺍﻟﺩﻨﻴﺎ‪ ،‬ﻴﺠﺏ ﺃﻥ ﻴﻜـﻭﻥ )ﻤـﻥ ﺍﻟﻤﻌﺎﺩﻟـﺔ‬ ‫‪= o, l = 0‬‬



‫ﺃﺨﺫﻨﺎ‬



‫‪r‬‬



‫‪λ = nr + l +1‬‬



‫ﻭ‬



‫‪ . n‬ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻪ ﺘﻭﺠﺩ ﺤﺎﻟﺔ ﻭﺤﻴﺩﺓ ﻓﺭﻴﺩﺓ ﻟﻠﺤﺎﻟﺔ ﺍﻟﺩﻨﻴﺎ ‪ ground stale‬ﺇﺫﺍ‬



‫‪⇐ λ=2‬‬



‫ﻴﻜﻭﻥ ﻋﻨﺩﻨﺎ ﺍﺤﺘﻤﺎﻟﻴﻴﻥ‬



‫‪(i ) n r =1, l = 0‬‬ ‫‪(ii ) n r = 0 , l =1‬‬



‫ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﺤﺎﻟﺔ ﺍﻷﻭﻟﻰ‬



‫‪=1, l = 0‬‬



‫‪r‬‬



‫‪ (i ) n‬ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ ،(13‬ﺘﻜﺘﺏ ﺒﺎﻟﺸﻜل‬



‫‪n + l + 1− nr − l −1‬‬ ‫‪n + l +1 − λ‬‬ ‫=‬ ‫)‪(n + 1)(n + 2l + 2 ) (n + 1)(n + 2 l + 2‬‬ ‫‪n − nr‬‬



‫) ‪(20‬‬



‫=‬



‫) ‪(n + 1)(n + 2 l + 2‬‬



‫‪a n +1‬‬ ‫‪an‬‬



‫=‬



‫ﻭﻫﺫﺍ ﻴﺒﻴﻥ ﺃﻥ‪:‬‬ ‫‪a‬‬ ‫‪−1‬‬ ‫‪−1‬‬ ‫=‬ ‫‪⇒ a1 = − ο‬‬ ‫‪(ο + ο + 2) 1 × 2‬‬ ‫‪2‬‬



‫=‬



‫‪a1‬‬ ‫‪aο‬‬



‫∞‬



‫‪⇒ H (δ ) = ∑ a n δ n = a ο δ ο + a 1 δ1‬‬ ‫‪n=ο‬‬



‫‪‬‬ ‫‪ δ‬‬ ‫‪‬‬



‫)‪(21‬‬



‫‪ a‬‬ ‫‪= a ο +  − ο‬‬ ‫‪ 2‬‬ ‫‪ δ‬‬ ‫‪= a ο 1 − ‬‬ ‫‪ 2‬‬



‫) ‪H (δ‬‬



‫ﺒﻴﻨﻤﺎ ﺍﻟﺘﻭﺯﻴﻊ ﺍﻟﺯﺍﻭﻱ ﻤﺘﻤﺎﺜل ﻜﺭﻭﻴﺎﹰ‬ ‫ﻟﻨﺄﺨﺫ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ‪(i i ) n r = 0, l = 1 .‬‬



‫ﻫﻨﺎ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻨﺼﻑ ﻗﻁﺭﻴﺔ ﺜﺎﺒﺘﺔ‬ ‫‪H (δ ) = a ο‬‬



‫ﻟﻜﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺯﺍﻭﻱ ﻤﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻴﺘﻀﻤﻥ ) ‪. Y (ο , ϕ‬‬ ‫‪1m‬‬



‫ ‪- ١٥٠‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻟﺘﺤﻠل ﻴﻜﻭﻥ )‪ (2 l +1‬ﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﺜﻼﺙ ﻤﻥ ﻤﺜل ﻫﺫﻩ ﺍﻟﺤﺎﻻﺕ‪.‬‬ ‫ﺍﻟﺘﺤﻠل ﺍﻟﻜﻠﻲ ﻟﻠﺤﺎﻟﺔ‬



‫ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬



‫‪λ =n=2‬‬



‫ﻴﻜﻭﻥ‬



‫‪3 +1= 4 = 2 2‬‬



‫ﻓﻲ ﺤﺎﻟﺔ‬



‫ﻴﻭﺠﺩ ﻟـﺩﻴﻨﺎ‬



‫‪λ =3‬‬



‫‪n r = 2, l = 0‬‬



‫ﻫﻨﺎ ﻴﻭﺠﺩ ﺤﺎﻟﺔ ﻭﺍﺤﺩﺓ ﻭﺍﻟﺘﻲ ﻟﻬﺎ‬



‫‪1‬‬ ‫‪6‬‬



‫‪=−‬‬



‫‪a2‬‬ ‫‪a1‬‬



‫ﻭ‬



‫‪= −1‬‬



‫‪a1‬‬ ‫‪aο‬‬



‫ﻭﻋﻠﻴـﻪ ﻓـﺈﻥ ﺍﻟﺩﺍﻟـﺔ‬



‫ﺍﻟﻨﺼﻑ ﻗﻁﺭﻴﺔ ﺘﺘﻀﻤﻥ‪.‬‬ ‫‪1 ‬‬ ‫‪‬‬ ‫‪H (δ ) = a ο 1 − δ + δ 2 ‬‬ ‫‪6 ‬‬ ‫‪‬‬



‫)‪(22‬‬ ‫‪nr = 1 , l = 1‬‬



‫ﺒﻴﻨﻤﺎ‬



‫ﻟﻬﺎ ﺜﻼﺙ ﺤﺎﻻﺕ‪ ،‬ﺒـ‬



‫‪nr = 0 , l = 2‬‬



‫ﻟﻬﺎ‬



‫ﻭﻫﻜﺫﺍ ﻴﻭﺠﺩ‬ ‫‪λ =n=3‬‬



‫)‪5 = (2l +1‬‬



‫‪ δ ‬‬ ‫‪1 − ‬‬ ‫‪4 ‬‬ ‫‪‬‬



‫‪ο‬‬



‫ﺤﺎﻻﺕ ﺒـ‬



‫‪1+ 3 + 5 = 9 = 32‬‬



‫‪، H (δ ) = a‬‬ ‫‪H (δ ) = a ο‬‬



‫ﺘﺤﻠل ﻟﻠﺤﺎﻻﺕ ﺍﻟﺘﻲ ﻟﻬﺎ ﻗﻴﻤﺔ ﺨﺎﺼـﺔ )ﺫﺍﺘﻴـﺔ(‬



‫ﻭﺒﺸﻜل ﻋﺎﻡ‪ ،‬ﺍﻟﺘﺤﻠل ﻓﻲ ﺤﺎﻟﺔ‬



‫ﻴﻜﻭﻥ‬



‫‪λ=n‬‬



‫‪1 + 3 + 5 + ... + [2 (n − 1) + 1]= n 2‬‬



‫ﻭﻤﺴﺒﻘﺎﹰ ﻨﺤﻥ ﺘﻭﻗﻌﻨﺎ ﺘﺤﻠل )‪ (2l +1‬ﻟﻠﺠﻬـﺩ ﺍﻟﻨـﺼﻑ ﻗﻁـﺭﻱ‪ ،‬ﻭﺫﻟـﻙ ﻷﻥ‬



‫ﺍﻟﻬﺎﻤﻠﺘﻭﻨﻴﺎﻥ ﺍﻟﻨﺼﻑ ﻗﻁﺭﻱ ﻻ ﻴﻌﺘﻤﺩ ﻋﻠﻰ‬



‫‪z‬‬



‫‪ ،‬ﻭﻟﻜﻥ ﻴﻌﺘﻤﺩ ﻋﻠﻰ‬



‫‪.‬‬



‫‪2‬‬



‫ﻫﻨﺎ ﻴﻭﺠﺩ ﺘﺤﻠل ﺇﻀﺎﻓﻲ‪ .‬ﻭﺍﻟﺘﺤﻠل ﺍﻟﺨﺎﺹ ﺼﻔﺔ ﻤﻤﻴﺯﺓ ﻟﻠﺠﻬﺩ ‪. 1‬‬ ‫‪r‬‬



‫ ‪- ١٥١‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺍﻟﺩﻭﺍل ﺍﻟﺫﺍﺘﻴﺔ ﺍﻟﻨﺼﻑ ﻗﻁﺭﻴﺔ ‪The Radial Eigen functions‬‬



‫ﺒﺎﻟﺭﺠﻭﻉ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ‪ .‬ﻟﻭ ﻋﻭﻀﻨﺎ‬



‫‪λ=n‬‬



‫ﺒﺤﻴﺙ‪:‬‬



‫ﻓﻲ ﻋﻼﻗـﺔ ﺍﻻﺴـﺘﻁﺭﺍﺩ )‪(13‬‬



‫‪k + l +1− n‬‬ ‫‪a‬‬ ‫‪(k + 1)(k + 2l + 2 ) k‬‬



‫) ‪(26‬‬



‫= ‪a k +1‬‬



‫ﺴﻨﺠﺩ ﺃﻥ‪:‬‬ ‫)‪n − (k + l + 1‬‬ ‫) ‪n − (k + l‬‬ ‫‪.‬‬ ‫)‪(k + 1)(k + 2l + 2) k (k + 2l +1‬‬ ‫)‪n − ( l + 1‬‬ ‫‪a‬‬ ‫‪.........‬‬ ‫‪1. ( 2l + 2) ο‬‬



‫) ‪(27‬‬



‫‪k +1‬‬



‫)‪a k + 1 = (− 1‬‬



‫ﺒﻤﺴﺎﻋﺩﺓ ﻫﺫﻩ ﺍﻟﻌﻼﻗﺔ ﺒﺈﻤﻜﺎﻨﻨﺎ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻤﻔﻜﻭﻙ ﺴﻠﺴﻠﺔ ﺍﻟﻘﻭﺱ ﻟﻠﺩﺍﻟـﺔ‬ ‫) ‪ . H (δ‬ﻭﻤﺎ ﻴﻜﺎﻓﺊ ﻫﺫﺍ‪.‬ﻨﺠﺩ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻟـ ) ‪ H (δ‬ﺘﻜﻭﻥ ﻟﻤﻌﻘﺩﺓ ﺍﻟﺤﺩﻭﺩ‬ ‫) ‪(δ‬‬



‫)‪(28‬‬



‫= ) ‪H (δ‬‬



‫)‪( 2 l + 1‬‬ ‫‪n − l −1‬‬



‫ﻭﺒﻌﺩﻤﺎ ﻨﹸﺤ‪‬ﻭل ﺒﺎﻟﻌﻜﺱ ﻟﻠﻭﺼﻭل ﻟﻺﺤـﺩﺍﺜﻴﺎﺕ ﺍﻟﻨـﺼﻑ ﻗﻁﺭﻴـﺔ ‪ r‬ﻭﺒﻌـﺩ‬ ‫ﺍﻟﻤﻌﺎﻴﺭﺓ ﻨﺠﺩ ﺃﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻨﺼﻑ ﻗﻁﺭﻴﺔ ﺍﻷﻭﻟﻰ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪12 − 30‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫‪‬‬ ‫‪h ‬‬ ‫= ‪ a ο‬‬ ‫‪‬‬ ‫‪µ c α ‬‬ ‫‪‬‬



‫‪Rnl (r ):‬‬ ‫‪zr‬‬ ‫‪aο‬‬



‫‪ − 2 aο‬‬ ‫‪e‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪zr‬‬



‫‪−‬‬



‫‪2‬‬



‫‪e‬‬



‫‪‬‬ ‫‪1 − z r‬‬ ‫‪ 2a‬‬ ‫‪ο‬‬ ‫‪‬‬



‫‪2‬‬ ‫‪‬‬ ‫‪2 z r 2 ( z r )  − 3 aο‬‬ ‫‪+‬‬ ‫‪ 1−‬‬ ‫‪e‬‬ ‫‪3 aο‬‬ ‫‪27 a ο2 ‬‬ ‫‪‬‬ ‫‪zr‬‬



‫‪2‬‬



‫‪2‬‬



‫‪3‬‬



‫‪2‬‬ ‫‪‬‬ ‫‪2 z r 2 ( z r )  − 3 aο‬‬ ‫‪+‬‬ ‫‪ 1−‬‬ ‫‪e‬‬ ‫‪3 aο‬‬ ‫‪27 a ο2 ‬‬ ‫‪‬‬ ‫‪zr‬‬



‫‪3‬‬



‫‪3‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫‪ z‬‬ ‫‪R10 (r ) = 2 ‬‬ ‫‪ aο‬‬



‫‪ z‬‬ ‫‪R20 (r ) = 2 ‬‬ ‫‪ 2 aο‬‬



‫‪ z‬‬ ‫‪‬‬ ‫‪3  2 a ο‬‬



‫‪1‬‬



‫‪3‬‬



‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬



‫= ) ‪R21 (r‬‬



‫‪ z‬‬ ‫‪R30 (r ) = 2 ‬‬ ‫‪ 3 aο‬‬



‫ ‪- ١٥٢‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬



‫ﺭﺴﻡ ﻜﺜﺎﻓﺔ ﺍﻻﺤﺘﻤﺎل ﺍﻟﻨﺼﻑ ﻗﻁﺭﻱ‬



‫ﻟﻭﺠﻭﺩ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻋﻨﺩ ﻤﺴﺎﻓﺔ ‪r‬‬



‫) ‪P (r‬‬



‫ﻤﻥ ﻨﻘﻁﺔ ﺍﻷﺼل ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩﻩ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻭﺠﻴﺔ ﻜﻤﺎ ﻫﻭ ﻤﻭﻀﺢ ﺒﺎﻟـﺸﻜل‬



‫)‪ (12-2‬ﻴﺠﺏ ﺃﻥ ﻨﺘﺫﻜﺭ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻭﺠﻴﺔ ﻟﻬﺎ ﺠﺯﺀ ﺯﺍﻭﻱ‪ ،‬ﺍﻟﺫﻱ ﻤﺭﺒﻌﻪ ﺍﻟﻤﻁﻠﻕ‬ ‫ﻴﻜﻭﻥ‬



‫‪2‬‬



‫) ‪Pem (cosθ‬‬



‫ﺍﻟﺭﺴﻭﻤﺎﺕ ﻟﺩﻭﺍل ﻟﻴﺠﻨﺩﺭ ﺍﻟﻤﺸﺎﺭﻜﺔ‬



‫) ‪Pem (cosθ‬‬



‫‪2‬‬



‫ﻤﻭﻀﺤﺔ ﺒﺎﻟﺭﺴﻡ‬



‫)‪.(12-3‬‬ ‫ﻭﺒﻤﻌﺭﻓﺔ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻭﺠﻴﺔ ﺒﺈﻤﻜﺎﻨﻨﺎ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﺘﻭﻗﻌﺔ‪.‬‬ ‫∞‬



‫]) ‪= ∫ dr r 2 + k [ Rnl (r‬‬



‫‪2‬‬



‫‪k‬‬



‫‪r‬‬



‫‪ο‬‬



‫ﻭﻫﺫﻩ ﺒﻌﺽ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺘﻭﻗﻌﺔ ﺍﻟﻤﻔﻴﺩﺓ‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2 2‬‬ ‫‪‬‬ ‫‪a n‬‬ ‫‪= ο 2 5 n 2 + 1 − 3 l (l + 1) ‬‬ ‫‪2z‬‬ ‫‪‬‬ ‫‪‬‬ ‫)‪ (12 − 36‬‬ ‫‪z‬‬ ‫=‬ ‫‪‬‬ ‫‪aο n 2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪z‬‬ ‫‪‬‬ ‫=‬ ‫‪1‬‬ ‫‪2 3‬‬ ‫‪‬‬ ‫‪aο n  l + ‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬



‫]‬



‫)‪− l (l + 1‬‬



‫]‬



‫‪2‬‬



‫[‬



‫‪[3n‬‬ ‫‪2z‬‬ ‫‪aο‬‬



‫= ‪r‬‬ ‫‪r2‬‬ ‫‪1‬‬ ‫‪r‬‬ ‫‪1‬‬ ‫‪r2‬‬



‫ ‪- ١٥٣‬‬‫‪PDF created with pdfFactory Pro trial version www.pdffactory.com‬‬