Makalah BJT [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

MAKALAH BIPOLAR JUNCTION TRANSISTOR (BJT) Mata Kuliah : Elektronika Daya



Disusun Oleh : Bakti Balamaru (19011130001) Akhmad Amirudin (190111300xx) Muhammad Farhan (19011130010) Naufal Eka Putra (19011130015) Tsanny Rizky Agian (19011130016)



Dosen Pengampuh : Brainvendra Widi, S.ST., M.Sc.Eng



Teknik Elektro Fakultas Teknik & Ilmu Komputer Universitas Global Jakarta



i



DAFTAR ISI



DAFTAR ISI ............................................................................................................ i BAB I ...................................................................................................................... 1 PENDAHULUAN .................................................................................................. 1 1. Latar Belakang ................................................................................................ 1 2. Tujuan Pembahasan ......................................................................................... 1 BAB II ..................................................................................................................... 2 PEMBAHASAN ..................................................................................................... 2 1. Pengertian Transistor Bipolar .......................................................................... 2 2. Konstruksi Komponen ..................................................................................... 2 3. Cara Kerja Komponen (ON/OFF) ................................................................... 3 4. Fungsi komponen ............................................................................................ 5 5. Kurva Karakteristik ......................................................................................... 7 6. Contoh Komponen ........................................................................................ 10 BAB III ................................................................................................................. 13 PENUTUP ............................................................................................................. 13 REFERENSI ......................................................................................................... 14



1



BAB I PENDAHULUAN 1. Latar Belakang Perkembangan Teknologi yang sangat cepat yang membawa banyak perubahan dalam sikap dan perilaku manusia dalam menjalani kehidupan sehari – hari tidak lepas dari banyaknya perangkat elektronik yang tersebar dan berkembang di masyarakat. Dalam membuat suatu rangkaian elektronik ada banyak sekali komponen – komponen penyusun yang digunakan. Komponen tersebut meliputi resistor, transistor diode dan komponen lain sebagainya. Komponen – komponen tersebut dirangkai menjadi suatu rangakain yang dissatukan (solder) di sebuah papan (PCB). Jika resistor itu berfungsi untuk menghambat suatu arus dan diode digunakan untuk penyearah arus, maka dikel juga transistor yang mempunyai sifat menguatkan. Pada makalah ini akan dibahas mengenai transistor. 2. Tujuan Pembahasan Adapun tujuan dari mempelajri Transistor Bipolar ini adalah, yakni : a. Mempelajari tentang transistor bipolar b. Mengetahui teori mengenai transistor bipolar



2



BAB II PEMBAHASAN 1. Pengertian Transistor Bipolar BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua diode yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B). Transistor Bipolar atau nama lainnya adalah transistor dwikutub adalah jenis transistor paling umum di gunakan dalam dunia elektronik. Di dalam transistor ini terdapat 3 lapisan material semikonduktor yang terdiri dari dua lapisan inti, yaitu lapisan P-N-P dan lapisan N-P-N. Perbedaan antara fungsi dan jenis-jenis transisor ini terlihat pada polaritas pemberian tegangan bias dan arah arus listrik yang berlawanan. 2. Konstruksi Komponen BJT (Bipolar Junction Transistor) tersusun atas tiga material semikonduktor terdoping yang dipisahkan oleh dua sambungan pn. Ketiga material semikonduktor tersebut dikenal dalam BJT sebagai emitter, base dan kolektor (Gambar 1). Daerah base merupakan semikonduktor dengan sedikit doping dan sangat tipis bila dibandingkan dengan emitter (doping paling banyak) maupun kolektor (semikonduktor berdoping sedang). Karena strukturnya fisiknya yang seperti itu, terdapat dua jenis BJT. Tipe pertama terdiri dari dua daerah n yang dipisahkan oleh daerah p (npn), dan tipe lainnya terdiri dari dua daerah p yang dipisahkan oleh daerah n (pnp). Sambungan pn yang menghubungkan daerah base dan emitter dikenal sebagai sambungan base-emiter (base-emitter junction), sedangkan sambungan pn yang menghubungkan daerah base dan kolektor dikenal sebagai sambungan base-kolektor (base-collector junction).



Gambar 1 Jenis BJT Pada gambar 2 menunjukkan simbol skematik untuk bipolar junction transistor tipe npn dan pnp. Istilah bipolar digunakan karena adanya elektron dan hole sebagai muatan pembawa (carriers) didalam struktur transistor.



3



Gambar 2 Simbol BJT tipe npn dan pnp 3. Cara Kerja Komponen (ON/OFF) Gambar 3 menunjukkan rangkaian kedua jenis transistor npn dan pnp dalam mode operasi aktif transistor sebagai amplifier. Pada kedua rangkaian, sambungan base-emiter (BE) dibias maju (forward-biased) sedangkan sambungan basekolektor (BC) dibias mundur (reverse-biased).



Gambar 3 Forward Reverse Bias pada BJT Sebagai gambaran dan ilustrasi kerja transistor BJT, misalkan pada transistor npn (gambar 4). Ketika base dihubungkan dengan catu tegangan positif dan emiter dicatu dengan tegangan negatif maka daerah depletion BE akan menyempit. Pencatuan ini akan mengurangi tegangan barrier internal sehingga muatan mayoritas (tipe n) mampu untuk melewati daerah sambungan pn yang ada. Beberapa hole dan elektron akan mengalami rekombinasi di daerah sambungan sehingga arus mengalir melalui device dibawa oleh hole pada base(daerah tipe-p) dan elektron pada emiter (daerah tipe-n ). Karena derajat doping pada emiter (daerah tipe n) lebih besar daripada base (daerah tipe p), arus maju akan dibawa lebih banyak oleh elektron. Aliran dari muatan minoritas akan mampu melewati sambungan pn sebagai kondisi reverse bias tetapi pada skala yang kecil sehingga arus yang timbul pun sangat kecil dan dapat diabaikan.



4



Elektron banyak mengalir dari emiter ke daerah base yang tipis. Karena daerah base berdoping sedikit, elektron pada hole tidak dapat berekombinasi seluruhnya tetapi berdifusi ke dalam daerah depletion BC. Karena base dicatu negatif dan kolektor dicatu positif (reverse bias), maka depletion BC akan melebar. Pada daerah depletion BC, elektron yang mengalir dari emiter ke base akan terpampat pada daerah depletion BC. Karena pada daerah kolektor terdapat muatan minoritas (ion positif) maka pada daerah sambungan BC akan terbentuk medan listrik oleh gaya tarik menarik antara ion positif dan ion negatif sehingga elektron tertarik kedaerah kolektor. Arus listrik kemudian akan mengalir melalui device.



Gambar 4 Prinsip kerja BJT Pada transistor baik untuk tipe NPN atau PNP anak panah selalu ditempat emitor artinya anak panah menunjuk arus listrik konvensional dimana arahnya berlawanan denga arah arus electron. Transistor PNP: Arus listrik yang besar akan mengalir dari emitter ke collector. Apabila ada arus kecil yang mengalir dari emitter ke base.



5



Transistor PNP: Arus listrik yang besar akan mengalir dari emitter ke collector. Apabila ada arus kecil yang mengalir dari emitter ke base.



Gambar 4 Transistor PNP Transistor NPN: Arus listrik yang besar akan mengalir dari collector ke emitter, apabila ada arus kecil yang mengalir dari base ke emitter. Dalam hal ini transistor mirip dengan amplifier, yang mengontrol jumlah arus dari collector ke emitter oleh arus yang mengalir dari base. Transistor juga mirip dengan fungsi sakelar. Transistor akan bekerja pada posisi ON, yaitu arus akan mengalir dari collector ke emitter apabila arus kecil mengalir dari base. Sedangkan transistor akan berada pada posisi OFF, apabila tidak ada arus yang mengalir dari base.



Gambar 5 Transistor NPN 4. Fungsi komponen Adapun prinsip kerja dari Transistor yakni : A. Saklar Elektronik Berikut gambar transistor yang dapat dianalisa sebagai saklar :



6



Gambar 6 Dari gambar analogi saklar tersebut, bila basis diberi sinyal maka saklar akan terdorong sehingga akan menutup, dengan demikian arus akanmengalir dar C ke E bila dalam rangkaian digambarkan sebagai berikut :



Gambar 7 Keterangan VR



= resistor variable = Lampu pijar



Tegangan positif akan masuk ke transistor yaotu ke kolektor melalui R1 dan ke basis melalui R2 dan VR (resistor variable) R3 berfungsi sebagai umpan negatif agar arus mesuk ke basis. Bila VBE telah tercapai, maka transistor akan di ‘on” sebagai saklar, sehingga arus akan mengalir dari kolektor ke emiter dan lampu akan menyala. B. Penguat Sinyal



7



Gambar 9 Penguatan sinyal pada transistor “bila kaki kolektor dan emiter diberi tegangan dan basis diberi sinyal input maka transistro akan ‘on’ sehingga arus mengalir dari C ke E. sinyal basis akan diperkuat oleh arus tersebut yang dapat dideteksi melalui output pada C dan E. ICB0 : arus bocor pada transistor yang mengalir dari kolektro kemudian ke basis, lalu ke netral Basis : Kaki transistor untuk memasukkan input sinyal yang akan diperkuat Keadaan jenuh : Suatu keadaan dimana apabila sinyal input diperbesar maka sinyal output tidak xakan naik lagi. 5. Kurva Karakteristik A. Kurva Kolektor Karakteristik kolektor yang terlihat dari pengamatan kurva kolektor dibawah ini merelasikan antara IC , VBE, dan IB sebagai sumber parameter. Dari kurva kolektor tersebut, tampak disana ada 4 daerah yaitu daerah aktif, daerah saturation (jenuh), daerah cuf-off (putus), dan daerah breakdown (dadal).



Gambar 10 Kurva Kolektor



Daerah Aktif



8



Daerah antara tegangan lutut (knee), VK dan tegangan dadal (breakdown), VBR serta diatas IB = ICO. Daerah aktif terjadi bila sambungan emitor diberi bias maju dan sambungan kolektor diberi bias balik. Pada daerah aktif arus kolektor sebanding dengan arus basis ( IC = IB).



Tabel 1 Daerah Saturation (Jenuh) Daerah dengan VCE lebih kecil dari tegangan lutut (VK). Daerah saturasi terjadi bila sambungan emitor dan basis sama-sama diberi bias maju. Pada daerah saturasi, arus kolektor (IC) tidak tergantung pada arus basis (IB).Daerah Saturation (Jenuh).



Tabel 2 Daerah Cut-Off (Putus) Daerah yang terletak di bawah IB = ICO. Daerah cut-off terjadi bila sambungan kolektor dan emitor sama-sama diberi bias balik. Pada daerah cut-off, IE = 0 ; IC =ICO = IB.ah Cut-Off (Putus).



Tabel 3 Daerah Breakdown (Dadal) Daerah yang terletak di atas batas tegangan maksimum kolektor-emitor (VCE) suatu transistor. VCE maksimum pada beberapa jeni transistor adalah berbeda-beda. Pada kurva kolektor diatas terlihat, daerah breakdown terjadi setelah



9



VCE transistor mencapai diatas ± 10 volt. Transistor tidak boleh bekerja pada daerah ini, karena transistor dapat menjadi rusak.Daerah Breakdown (Dadal) Keterangan: VK = tegangan lutut (knee) IB = Arus basis ICO = Arus cut-off VCE = Tegangan kolektor-emitor VCE(sat) = Tegangan kolektor-emitor pada daerah saturasi B. Kurva Basis Kurva karakteristik basis merelasikan antara arus basis (IB) dan tegangan basis-emitor (VBE) dengan tegangan kolektor-emitor (VCE) sebagai parameternya.



Gambar 11 Kurva Karakteristik Basis Kurva basis diatas dapat terlihat pada alat ukur yang bernama osiloskop dengan cara menghubung singkatkan kolektor-emitor (VCE = 0) dan emitor diberi bias maju. (Karakter basis adalah seperti karakter komponen diode) Dengan bertambahnya VCE pada VBE yang konstan (tetap), maka lebar daerah deplesi di sambungan kolektor bertambah dan mengakibatkan lebar basis efektif berkurang. Dengan berkurangnya lebar basis, maka arus basis (IB) rekombinasi juga berkurang. (VK (tegangan lutut) atau tegangan ambang/threshold, untuk transistor silikon = 0.5 sampai 0,6 volt, untuk transistor germanium = 0,1 sampai 0,2 volt. VBE (tegangan basis-emitor) di daerah aktif, untuk transistor



10



silikon = 0.7 volt, untuk transistor germanium = 0,2 volt. VBE transistor ideal, VBE = 0 volt) C. Kurva Beta Kurva beta menunjukkan bahwa nilai β akan berubah dengan dipengaruhi oleh suhu (T) dan arus kolektor (IC). Berikut karakteristiknya: • • •



Nilai β bertambah jika suhu (T) naik. Nilai β bertambah jika arus kolektor (IC) naik. Nilai β turun jika arus kolektor (IC) naik di luar nilai tertentu.



Gambar 12 Kurva Beta (β) 6. Contoh Komponen Transistor adalah salah satu komponen elektronika dengan berbagai kegunaan, diantaranya sebagai penguat, sirkuit pemutus, menstabilkan tegangan, memodulasi sebuah sinyal, sebagai penyambung, dan masih banyak fungsi yang lainnya, disini ada beberapa jenih komponen Transistor BJT. a. Fet Transistor FET adalah komponen Elektronika aktif yang menggunakan Medan Listrik untuk mengendalikan Konduktifitasnya. Field Effect Transistor (FET) dalam bahasa Indonesia disebut dengan Transistor Efek Medan.



11



Gambar 13 b. Transistor PNP PNP adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan negatif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Emitor ke Kolektor.



Gambar 14 c. Transistor NPN Transistor NPN adalah transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor.



12



Gambar 15 d. Transistor Mosfeet Transistor Mosfeet adalah transistor yang menggunakan isolator biasanya menggunakan silicon dioksida atau si02 diantara gerbang gate dan kanalnya, Mosfeet ini juga terdiri dua jenis konfigurasi yaitu mosfeet depletion yang masing masing jenis mosfeet ini juga terbagi menjadi mosfeet kanal P-channel dan mosfeet kanala N-channel.



Gambar 16 e. Transistor SMD Sebuah Transistor SMD (surface mount device) adalah jenis transistor yang disolder langsung ke permukaan papan komponen komputer. Meskipun transistor dipasang dengan cara ini bisa lebih mudah pecah, papan yang memanfaatkan transistor SMD lebih murah dari pada yang lainya. Alternatif untuk Transistor SMD adalah transistor melalui lubang, yang melekat pada papan dengan lengan logam yang dimasukkan ke lubang



13



yang di bor di papan. Pengeboran lubang ini yang membuat teknologinya jadi lebih mahal dan memakan waktu daripada teknologi SMD.



Gambar 17



BAB III PENUTUP Perhitungan – perhitungan di atas banyak menggunakan aproksimasi dan penyederhanaan. Tergantung dari keperluannya, untuk perhitungan lebih rinci dapat juga dilakukan dengan tidak mengabaikan efek – efek baha seperti resistansi, tegangan jepit antar junction dan sebagainya.



14



REFERENSI Diakses dari trikuni-desain-sistem.blogspot.com, diakses di http://trikuenidesain-sistem.blogspot.com/2013/11/Pengenalan-Transistor-Bipolar.html , diakses pada 24 Maret 2022 Diakses dari sribd.com, diakses di https://www.scribd.com/doc/225005790/bjt , diakses pada 23 Maret 2022 Diakses dari robotics-university.com, diakses di https://www.roboticsuniversity.com/2014/09/karakter-transistor-bjt.html , diakses pada 26 Maret 2022 Diakses dari dosenpendidikan.co.id, diakses di https://www.dosenpendidikan.co.id/transistor-adalah/ , diakses pada 27 Maret 2022 Diakses dari teknikelektronika.com, diakses di https://teknikelektronika.com/pengertian-field-effect-transistor-fet-dan-jenisjenisnya/ , diakses pada 27 Maret 2022



15



Lampiran (Datasheet) 1. Fet Transistor (JFET Transistor : MMBF310LT1G)



MMBFU310LT1G JFET Transistor N−Channel www.onsemi.com



Features



2 SOURCE



• These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant



3 GATE Rating



Symbol



Value



Unit



Drain−Source Voltage



VDS



25



Vdc



Gate−Source Voltage



VGS



25



Vdc



IG



10



mAdc



Gate Current



MAXIMUM RATINGS



1 DRAIN



3



SOT−23 (TO−236AB) CASE 318−08 STYLE 10



1 2



Stresses exceeding those listed in the Maximum Ratings table may damage the Total Device Dissipation FR−5 Board (Note 1)



PD



Junction and Storage Temperature



mW



MARKING DIAGRAM



1.8



TA = 25°C Derate above 25°C Thermal Resistance, Junction−to−Ambient



225



RJA



556



TJ, Tstg



−55 to +150



mW/°C device. If any of these limits are exceeded, device functionality °C/W should not be assumed, damage may occur and reliability may be °C affected.



M6C M 1



THERMAL CHARACTERISTICS 1. FR−5 = 1.0 0.75 0.062 in. M6C



=



Device Code M



= Date



Code* = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location.



16



ORDERING INFORMATION Device MMBFU310LT1G



Shipping†



Package SOT−23 (Pb−Free)



3000 Tape & Reel



†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



© Semiconductor Components Industries, LLC, 1994



1



October, 2016 − Rev. 6



Publication Order Number: MMBFU310LT1/D



MMBFU310LT1G ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic



Symbol



Min



Max



Unit



V(BR)GSS



−25







Vdc



Gate 1 Leakage Current − (VGS = −15 Vdc, VDS = 0)



IG1SS







−150



pA



Gate 2 Leakage Current − (VGS = −15 Vdc, VDS = 0, TA = 125°C)



IG2SS







−150



nAdc



VGS(off)



−2.5



−6.0



Vdc



IDSS



24



60



mAdc



VGS(f)







1.0



Vdc



Forward Transfer Admittance − (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)



|Yfs|



10



18



mmho



Output Admittance − (VDS = 10 Vdc, ID = 10 mAdc, f = 1.0 kHz)



|yos|







250



mhos



Input Capacitance − (VGS = −10 Vdc, VDS = 0 Vdc, f = 1.0 MHz)



Ciss







5.0



pF



Reverse Transfer Capacitance − (VGS = −10 Vdc, VDS = 0 Vdc, f = 1.0 MHz)



Crss







2.5



pF



OFF CHARACTERISTICS Gate−Source Breakdown Voltage − (IG = −1.0 Adc, VDS = 0)



Gate Source Cutoff Voltage − (VDS = 10 Vdc, ID = 1.0 nAdc) ON CHARACTERISTICS Zero−Gate−Voltage Drain Current − (VDS = 10 Vdc, VGS = 0) Gate−Source Forward Voltage − (IG = 10 mAdc, VDS = 0) SMALL−SIGNAL CHARACTERISTICS



Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



17



-5.0



-4.0



-3.0



-2.0



0



-1.0



5.0



ID - VGS, GATE-SOURCE VOLTAGE



4.0



3.0



2.0



1.0



VGS, GATE-SOURCE VOLTAGE (VOLTS)



(VOLTS) IDSS - VGS, GATE-SOURCE CUTOFF VOLTAGE (VOLTS)



Figure 1. Drain Current and Transfer Characteristics vs Gate−Source Voltage www.onsemi.com 2



MMBFU310LT1G



Figure 2. Forward Transconductance vs Gate−Source Voltage



18 0.01



0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.010 20 30 50 100



VGS, GATE SOURCE VOLTAGE (VOLTS)



ID, DRAIN CURRENT (mA)



Figure 4. On Resistance and Junction Capacitance vs Gate−Source Voltage



Figure 3. Common−Source Output Admittance and Forward Transconductance vs Drain Current



|S21|, |S11| 0.85 0.45 30



|S12|, |S22| 0.060 1.00 S22



3.0 0.79 0.39



24



0.048 0.98 S21



VDS = 10 V ID = 10 mA TA = 25°C



2.4



VDS = 10 V ID = 10 mA TA = 25°C



0.73 0.33



Y11



18



1.8



0.036 0.96



0.67 0.27 Y21



12



0.024 0.94 S11



1.2 0.61 0.21



Y22



6.0



S12



0.6 0.55 0.15 100



Y12 0 100



200 300 500 700 1000 f, FREQUENCY (MHz)



21, 11 180° 50°



12, 22



- 20°



11, 12



87°



21, 22



- 20° 120°



0 11



- 20°



22



40°



- 40° 21



160°



0.90 200 300 500 700 1000 f, FREQUENCY (MHz)



Figure 6. Common−Gate S Parameter Magnitude vs Frequency



Figure 5. Common−Gate Y Parameter Magnitude vs Frequency



170°



0.012 0.92



86°



- 40° 100°



85°



- 60°



80°



-120° 84°



- 80°



60°



-100°



40°



-120°



20° 100



21



- 20°



22



- 60°



30°



- 80°



- 40°



-100° 150° 140° 130°



20°



12



-140°



11



10° 0° 100



VDS = 10 V ID = 10 mA TA = 25°C



-160° 83° -180°



-200° 82° 200 300 500 700 1000 f, FREQUENCY (MHz)



Figure 7. Common−Gate Y Parameter Phase−Angle vs Frequency 10



9.0 8.0



7.0



6.0



5.0



4.0 3.0



2.0



21 12



VDS = 10 V ID = 10 mA TA = 25°C



11



www.onsemi.co m 3



- 80°



-100° 200 300 500 700 1000 f, FREQUENCY (MHz)



Figure 8. S Parameter Phase−Angle vs Frequency



1.0 0



- 60°



19 PACKAGE DIMENSIONS



DATE 30 JAN 2018 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,PROTRUSIONS, OR GATE BURRS. MILLIMETERS INCHES DIM A A1 b c D E e L L1 HE T



MIN 0.89 0.01 0.37 0.08 2.80 1.20 1.78 0.30 0.35 2.10 0°



NOM 1.00 0.06 0.44 0.14 2.90 1.30 1.90 0.43 0.54 2.40 −−−



MAX 1.11 0.10 0.50 0.20 3.04 1.40 2.04 0.55 0.69 2.64



MIN 0.035 0.000 0.015 0.003 0.110 0.047 0.070 0.012 0.014 0.083



10°







NOM 0.039 0.002 0.017 0.006 0.114 0.051 0.075 0.017 0.021 0.094 −−−



MAX 0.044 0.004 0.020 0.008 0.120 0.055 0.080 0.022 0.027 0.104 10°



END VIEW



RECOMMENDED SOLDERING FOOTPRINT



3X



2.90



0.90



0.95



3X 0.80 PITCH DIMENSIONS: MILLIMETERS



2.



STYLE 6: PIN 1. BASE EMITTER 3. COLLECTOR STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE



XXXM



2.



PIN 1.



STYLE 16: PIN 1. ANODE CATHODE 3.



1



CATHODE



XXX = Specific Device Code M = Date Code = Pb−Free Package



STYLE 22: RETURN 2. OUTPUT 3. INPUT STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE



*This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ ”, may or may not be present.



GENERIC MARKING DIAGRAM* STYLE 1 THRU 5: CANCELLED



STYLE 9: PIN 1. ANODE 2. ANODE



3. CATHODE



STYLE 15: PIN 1. GATE 2. CATHODE



20 3. ANODE



STYLE 11: PIN 1. 2. NO CONNECTION 3. SOURCE ANODE 3. CATHODE STYLE 13: STYLE 14: PIN 1. SOURCE PIN 1. 2. CATHODE CATHODE 3. CATHODE−ANODE STYLE 12: PIN 1. 2. DRAIN 2. GATE 3. GATE 3. ANODE CATHODE 2. CATHODE STYLE 17: PIN 1. 3. ANODE NO STYLE 19: STYLE 20: CONNECTION PIN 1. CATHODE PIN 1. CATHODE 2. ANODE 2. ANODE 2. ANODE STYLE 18: PIN 1. 3. CATHODE 3. CATHODE−ANODE 3. NO GATE CONNECTION 2. CATHODE STYLE 23: PIN 1. 3. ANODE ANODE STYLE 25: STYLE 26: PIN 1. ANODE PIN 1. 2. ANODE CATHODE 3. CATHODE 2. CATHODE 2. ANODE STYLE 24: STYLE 8: PIN 1. 3. GATE 3. NO CONNECTION PIN 1. GATE ANODE 2. DRAIN



STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECT OR



DOCUMENT NUMBER: DESCRIPTION:



98ASB42226B SOT−23 (TO−236)



Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.



PAGE 1 OF 1



ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019



www.onsemi.com



onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.



PUBLICATION ORDERING INFORMATION



2N3903, 2N3904



LITERATURE FULFILLMENT: Email Requests to: [email protected] onsemi Website: www.onsemi.com



◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910



Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative



2. Transistor PNP (2N3906)



2N3906



®



SMALL SIGNAL PNP TRANSISTOR



ABSOLUTE MAXIMUM RATINGS Symbol VCBO



Parameter Collector-Base Voltage (IE = 0)



www.onsemi.com 1



Value



Unit



-60



V



2N3903, 2N3904



VCEO



Collector-Emitter Voltage (IB = 0)



-40



V



VEBO



Emitter-Base Voltage (IC = 0)



-6



V



Collector Current



-200



mA



Ptot



Total Dissipation at TC = 25 oC



625



mW



Tstg



Storage Temperature



IC



Tj



Max. Operating Junction Temperature



-65 to 150



o



150



o



C C



February 2003



2N3906 THERMAL DATA Rthj-amb • Thermal Resistance Junction-Ambient Thermal Resistance Junction-Case Rthj-Case •



Max Max



o



200 83.3



C/W o



C/W



ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol



Parameter



Test Conditions



Min.



Typ.



Max.



Unit



ICEX



Collector Cut-off Current (VBE = 3 V)



VCE = -30 V



-50



nA



IBEX



Base Cut-off Current (VBE = 3 V)



VCE = -30 V



-50



nA



V(BR)CEO∗



Collector-Emitter Breakdown Voltage (IB = 0)



IC = -1 mA



-40



V



V(BR)CBO



Collector-Base Breakdown Voltage (IE = 0)



IC = -10 µA



-60



V



V(BR)EBO



Emitter-Base Breakdown Voltage (IC = 0)



IE = -10 µA



-6



V



VCE(sat)∗



Collector-Emitter Saturation Voltage



IC = -10 mA IC = -50 mA



IB = -1 mA IB = -5 mA



-0.25 -0.4



V V



VBE(sat)∗



Base-Emitter Saturation Voltage



IC = -10 mA IC = -50 mA



IB = -1 mA IB = -5 mA



-0.85 -0.95



V V



DC Current Gain



IC = -0.1 mA IC = -1 mA IC = -10 mA IC = -50 mA IC = -100 mA



VCE = -1 V VCE = -1 V VCE = -1 V VCE = -1 V VCE = -1 V



hFE∗



fT NF



CCBO



-0.65 60 80 100 60 30



300



Transition Frequency



IC = -10mA VCE = -20 V f = 100 MHz



Noise Figure



VCE = -5 V IC = -0.1 mA f = 10 Hz to 15.7 KHz RG = 1 KΩ



4



dB



Collector-Base Capacitance



IE = 0



6



pF



VCB = -5 V



www.onsemi.com 2



f = 100 KHz



250



MHz



2N3903, 2N3904



CEBO



Emitter-Base Capacitance



IC = 0



VEB = -0.5 V



td



Delay Time



IC = -10 mA VCC = -3V



tr



Rise Time



ts



Storage Time



tf



Fall Time



IC = -10 mA VCC = -3V



f = 100 KHz



25



pF



IB = -1 mA



IB1 = -IB2 = -1 mA



35



ns



35



ns



225



ns



72



ns



∗ Pulsed: Pulse duration = 300 µs, duty cycle ≤ 2 %



2/5



2N3906



TO-92 MECHANICAL DATA mm



inch



DIM. MIN.



TYP.



MAX.



MIN.



TYP.



MAX.



A



4.32



4.95



0.170



0.195



b



0.36



0.51



0.014



0.020



D



4.45



4.95



0.175



0.194



E



3.30



3.94



0.130



0.155



e



2.41



2.67



0.095



0.105



e1



1.14



1.40



0.045



0.055



L



12.70



15.49



0.500



0.609



www.onsemi.com 3



2N3903, 2N3904



R



2.16



2.41



0.085



0.094



S1



1.14



1.52



0.045



0.059



W



0.41



0.56



0.016



0.022



V



4 degree



6 degree



4 degree



6 degree



2N3906



TO-92 AMMOPACK SHIPMENT (Suffix"-AP") MECHANICAL DATA mm DIM.



MIN.



inch



TYP.



MAX.



MIN.



TYP.



MAX.



A1



4.80



0.189



T



3.80



0.150



T1



1.60



0.063



T2



2.30



0.091



d



0.48



0.019



www.onsemi.com 4



2N3903, 2N3904



P0



12.50



12.70



12.90



0.492



0.500



0.508



P2



5.65



6.35



7.05



0.222



0.250



0.278



F1,F2



2.44



2.54



2.94



0.096



0.100



0.116



delta H



-2.00



2.00



-0.079



W



17.50



18.00



19.00



0.689



0.709



0.748



W0



5.70



6.00



6.30



0.224



0.236



0.248



W1



8.50



9.00



9.25



0.335



0.354



0.364



W2



0.50



H



18.50



H0



15.50



16.00



H1 D0



0.079



0.020



20.50



0.728



16.50



0.610



0.807 0.630



25.00 3.80



4.00



4.20



0.650 0.984



0.150



0.157



0.165



t



0.90



0.035



L



11.00



0.433



I1



3.00



delta P



-1.00



0.118 1.00



-0.039



0.039



2N3906



www.onsemi.com 5



2N3903, 2N3904



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics © 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com



DATA SHEET www.onsemi.com



3. Transistor NPN



General Purpose Transistors NPN Silicon



2N3903, 2N3904 Features



• Pb−Free Packages are Available*



MAXIMUM RATINGS Rating



Symbol



Value



Unit



Collector−Emitter Voltage



VCEO



40



Vdc



Collector−Base Voltage



VCBO



60



Vdc



Emitter−Base Voltage



VEBO



6.0



Vdc



Collector Current − Continuous



IC



200



mAdc



Total Device Dissipation



PD 625 5.0



mW mW/°C



1.5 12



W mW/°C



@ TA = 25°C Derate above 25°C Total Device Dissipation @ TC = 25°C Derate above 25°C Operating and Storage Junction Temperature Range



PD



TJ, Tstg



−55 to +150



°C



THERMAL CHARACTERISTICS (Note 1) Characteristic



Symbol



Max



www.onsemi.com 6



Unit



2N3903, 2N3904



Thermal Resistance, Junction−to−Ambient



RJA



200



°C/W



Thermal Resistance, Junction−to−Case



RJC



83.3



°C/W



Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Indicates Data in addition to JEDEC Requirements.



*For additional information on our Pb−Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. COLLECTOR 3 2 BASE 1 EMITTER



TO−92 CASE 29 STYLE 1 1



12



3 STRAIGHT LEAD BULK PACK



2



3 BENT LEAD TAPE & REEL AMMO PACK



MARKING DIAGRAMS 2N 390x YWW



x = 3 or 4 Y = Year WW = Work Week = Pb−Free Package (Note: Microdot may be in either location)



www.onsemi.com 7



2N3903, 2N3904



ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.



www.onsemi.com 8



2N3903, 2N3904 © Semiconductor Components Industries, LLC, 2012



August, 2021 − Rev. 9



1



Publication Order Number:



2N3903/D ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic



Symbol



Min



Max



Unit



Collector−Emitter Breakdown Voltage (Note 2) (IC = 1.0 mAdc, IB = 0)



V(BR)CEO



40







Vdc



Collector−Base Breakdown Voltage (IC = 10 Adc, IE = 0)



V(BR)CBO



60







Vdc



Emitter−Base Breakdown Voltage (IE = 10 Adc, IC = 0)



V(BR)EBO



6.0







Vdc



IBL







50



nAdc



ICEX







50



nAdc



20 40 35 70 50 100 30 60 15 30



− − − − 150 300 − − − −



OFF CHARACTERISTICS



Base Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) Collector Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) ON CHARACTERISTICS DC Current Gain (Note 2) (IC = 0.1 mAdc, VCE = 1.0 Vdc)







hFE 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904 2N3903 2N3904



(IC = 1.0 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 50 mAdc, VCE = 1.0 Vdc) (IC = 100 mAdc, VCE = 1.0 Vdc) Collector−Emitter Saturation Voltage (Note 2) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc



VCE(sat)



Base−Emitter Saturation Voltage (Note 2) (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc)



VBE(sat)



Vdc − −



0.2 0.3 Vdc



0.65 −



0.85 0.95



SMALL−SIGNAL CHARACTERISTICS Current−Gain − Bandwidth Product (IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz)



fT 2N3903 2N3904



MHz 250 300



− −



Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz)



Cobo







4.0



pF



Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)



Cibo







8.0



pF



Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)



hie 2N3903 2N3904



Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)



k 1.0 1.0



8.0 10 X 10−4



hre 2N3903 2N3904



Small−Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)



0.1 0.5



5.0 8.0 −



hfe 2N3903 2N3904



Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)



50 100



200 400



1.0



40



− −



6.0 5.0



td







35



ns



tr







35



ns



hoe



Noise Figure (IC = 100 Adc, VCE = 5.0 Vdc, RS = 1.0 k , f = 1.0 kHz)



NF 2N3903 2N3904



mhos dB



SWITCHING CHARACTERISTICS Delay Time Rise Time



(VCC = 3.0 Vdc, VBE = 0.5 Vdc, IC = 10 mAdc, IB1 = 1.0 mAdc)



www.onsemi.com 9



2N3903, 2N3904 Storage Time



2N3903 2N3904



(VCC = 3.0 Vdc, IC = 10 mAdc, IB1 = IB2 = 1.0 mAdc)



Fall Time



ts



− −



175 200



ns



tf







50



ns



2. Pulse Test: Pulse Width 300 s; Duty Cycle 2%.



ORDERING INFORMATION Package



Shipping†



2N3903RLRM



TO−92



2000 / Ammo Pack



2N3904



TO−92



5000 Units / Bulk



TO−92 (Pb−Free)



5000 Units / Bulk



TO−92



2000 / Tape & Reel



TO−92 (Pb−Free)



2000 / Tape & Reel



TO−92



2000 / Ammo Pack



TO−92 (Pb−Free)



2000 / Ammo Pack



TO−92



2000 / Ammo Pack



2N3904RLRPG



TO−92 (Pb−Free)



2000 / Ammo Pack



2N3904RL1G



TO−92 (Pb−Free)



2000 / Tape & Reel



TO−92



2000 / Ammo Pack



TO−92 (Pb−Free)



2000 / Ammo Pack



Device



2N3904G



2N3904RLRA 2N3904RLRAG



2N3904RLRM 2N3904RLRMG



2N3904RLRP



2N3904ZL1 2N3904ZL1G



†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



+3 V



DUTY CYCLE = 2% +10.9V



275 10 k



- 0.5 V < 1 ns



CS < 4 pF*



* Total shunt capacitance of test jig and connectors



www.onsemi.com 10



300 ns



2N3903, 2N3904 Figure 1. Delay and Rise Time Equivalent Test Circuit



+3 V t1 10 < t1 < 500 s DUTY CYCLE = 2%



+10.9V 275 10 k



0 CS < 4 pF*



1N916 - 9.1 V′



< 1 ns



* Total shunt capacitance of test jig and connectors



Figure 2. Storage and Fall Time Equivalent Test Circuit



TYPICAL TRANSIENT CHARACTERISTICS



1.0



2.0 3.0



5.0 7.0 10



20 30



50 70 100



200



1.0



IC, COLLECTOR CURRENT (mA)



2.0 3.0



5.0 7.0 10



20 30



50 70 100



IC, COLLECTOR CURRENT (mA)



www.onsemi.com 11



5 5 200



2N3903, 2N3904



Figure 5. Turn−On Time



Figure 6. Rise Time



5 5 1.0



2.0



3.0



5.0 7.0 10 20



30



50 70 100 200



1.0



2.0



3.0



5.0 7.0 10 20



30



50 70 100 200 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 7.



Storage Time Figure 8. Fall Time



TYPICAL AUDIO SMALL−SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS



0 0.1



0.2



0.4



1.0



2.0



4.0



10



20



40



0 0.1



100



0.2



0.4



1.0



2.0



4.0



10



20



f, FREQUENCY (kHz)



RS, SOURCE RESISTANCE (k OHMS)



Figure 9.



Figure 10.



www.onsemi.com 12



40



100



2N3903, 2N3904



h PARAMETERS (VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C) 300



100 50



200 20 10



100 70



5



50 2 30 0.1



0.2 0.3 0.5 1.0 2.0 3.0 5.0 IC, COLLECTOR CURRENT (mA)



1 0.1



10



0.2 0.3 0.5 1.0 2.0 3.0 5.0 IC, COLLECTOR CURRENT (mA) Figure 12. Output



Figure 11. Current Gain



10



Admittance 20



10



10



7.0 5.0



5.0 3.0 2.0



2.0



1.0



1.0



0.5



0.7 0.2 0.1



0.2 0.3



0.5



1.0



2.0 3.0



5.0



0.5 0.1



10



0.2 0.3



IC, COLLECTOR CURRENT (mA)



0.5



1.0



2.0 3.0



5.0



10



IC, COLLECTOR CURRENT (mA)



Figure 13. Input Impedance



Figure 14. Voltage Feedback Ratio



TYPICAL STATIC CHARACTERISTICS 2.0



°C TJ = +125



VCE = 1.0 V



+25°C



1.0



0.7 - 55°C



0.5 0.3 0.2



0.1 0.1



0.2



0.3



0.5



0.7



1.0



2.0



3.0



5.0



7.0



10



IC, COLLECTOR CURRENT (mA)



www.onsemi.com 13



20



30



50



70



100



200



2N3903, 2N3904



Figure 15. DC Current Gain 1.0 TJ = 25°C 0.8



IC = 1.0 mA



10 mA



30 mA



100mA



0.6



0.4



0.2 0 0.01



0.02



0.03



0.05



0.07 0.1



0.2



0.3



0.5



0.7



1.0



2.0



3.0



5.0



7.0



10



IB, BASE CURRENT (mA)



Figure 16. Collector Saturation Region 1.2



1.0



TJ = 25°C VBE(sat)@ C I /IB =10



1.0



°C +25°C TO +125



0.5 VC FOR V CE(sat)



0.8



°C - 55°C TO +25



0 VBE @ VCE =1.0 V



0.6



-0.5



0.4



-1.0



°C - 55°C TO +25 °C +25°C TO +125



VCE(sat)@ C I /IB =10 0.2 0 1.0



VB FOR V BE(sat)



-1.5 -2.0 2.0



5.0



10



20



50



100



200



0



IC, COLLECTOR CURRENT (mA) Figure 17. “ON”



Voltages IC, COLLECTOR CURRENT (mA)



Figure



18. Temperature Coefficients



www.onsemi.com 14



20



40



60



80



100 120 140



160 180 200



PACKAGE DIMENSIONS TO−92 (TO−226) CASE 29−11 ISSUE AM



SCALE 1:1



DATE 09 MAR 2007



1



12



2



3



3



1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.



STRAIGHT LEAD BULK PACK



STRAIGHT LEAD BENT LEAD BULK PACK TAPE & REEL AMMO PACK



NOTES:



A



B



R P L SEATING PLANE



INCHES



K



D



XX G



J



H



V



C SECTION X−X



1



N



MIN



MAX



MIN



MAX



A



0.175



0.205



4.45



5.20



B



0.170



0.210



4.32



5.33



C



0.125



0.165



3.18



4.19



D



0.016



0.021



0.407



0.533



G



0.045



0.055



1.15



1.39



H



0.095



0.105



2.42



2.66



J



0.015



0.020



0.39



0.50



K



0.500



---



12.70



---



L



0.250



---



6.35



---



N



0.080



0.105



2.04



2.66



---



P



N



MILLIMETERS



DIM



0.100



---



2.54



R



0.115



---



2.93



---



V



0.135



---



3.43



---



NOTES:



A



R



B



1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.



BENT LEAD TAPE & REEL AMMO PACK



P SEATING PLANE



K



MILLIMETERS



XX



DIM



MIN



MAX



A



4.45



5.20



B



4.32



5.33



C



3.18



4.19



D



0.40



0.54



G



2.40



2.80



J



0.39



0.50



K



12.70



---



N



2.04



2.66



G V 1



C N T



SECTION X−X



P



1.50



4.00



R



2.93



---



V



3.43



---



STYLES ON PAGE 2 DOCUMENT NUMBER: STATUS:



98ASB42022B ON SEMICONDUCTOR STANDARD



Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.



NEW STANDARD: © Semiconductor Components Indus tries, LLC, 2002



October, 2002



DESCRIPTION:− Rev. 0



C ase Outline Number:



http://onsemi.com TO−92 (TO−226)



STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR



STYLE 27: PIN 1. MT 2. SUBSTRATE 3. MT



STYLE 6: PIN 1. GATE 2. SOURCE & SUBSTRATE 3. DRAIN



STYLE 32: PIN 1. BASE 2. COLLECTOR 3. EMITTER



PAGE 3XXX



1



2. INPUT 3. OUTPUT STYLE 4:



1



OF



STYLE 15: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2



PIN 1. CATHODE



STYLE 11: PIN 1. ANODE 2. CATHODE & ANODE 3. CATHODE



TO−92 (TO−226)



CASE 29−11 STYLE 3:



STYLE 21: PIN 1. COLLECTOR 2. EMITTER 3. BASE



8:



PIN 1. VCC 2. GROUND 2 3. OUTPUT STYLE 31: PIN 1. GATE 2. DRAIN 3. SOURCE STYLE 2: PIN 1. BASE 2. EMITTER 3.COLLECTOR STYLE 7: PIN 1. SOURCE 2. DRAIN 3. GATE STYLE 12: PIN 1.MAIN TERMINAL 1 2. GATE 3. MAIN TERMINAL 2 STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER STYLE 22: PIN 1. SOURCE 2. GATE 3. DRAIN



DOCUMENT NUMBER: STATUS:



3. ANODE STYLE 9: PIN 1. BASE 1 2. EMITTER 3. BASE 2



STYLE 16: PIN 1. ANODE 2. GATE 3. CATHODE



STYLE 26:



2. CATHODE



PIN 1. ANODE 2. ANODE STYLECATHODE PIN 1. 2. 3.



DRAIN GATE SOURCE SUBSTRATE



ISSUE AM STYLE 13: PIN 1. ANODE 1 2. GATE 3. CATHODE 2 STYLE 18: PIN 1. ANODE 2. CATHODE 3. NOT CONNECTED STYLE 23: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 28: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 33: PIN 1. RETURN



STYLE 14: PIN 1. EMITTER 2. COLLECTOR 3. BASE



STYLE 20: PIN 1.NOT CONNECTED 2. CATHODE 3. ANODE STYLE 25: PIN 1. MT 1 2. GATE 3. MT 2 STYLE 30: PIN 1. DRAIN 2. GATE 3. SOURCE STYLE 35: PIN 1. GATE 2. COLLECTOR 3. EMITTER



STYLE 19: PIN 1. GATE 2. ANODE & 3. CATHODE STYLE 24: PIN 1. EMITTER 2. COLLECTOR/A NODE 3. CATHODE STYLE 29: PIN 1. NOT CONNECTED 2. ANODE 3. CATHODE STYLE 34: PIN 1. INPUT 2. GROUND 3. LOGIC



DATE 09 MAR 2007 STYLE 5: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 10: PIN 1. CATHODE 2. GATE 3. ANODE



98ASB42022B ON SEMICONDUCTOR STANDARD



Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.



NEW STANDARD: © Semiconductor Components Indus tries, LLC, 2002



October, 2002



DESCRIPTION:− Rev. 0



http://onsemi.com TO−92 (TO−226)



2



C ase Outline Number:



PAGE 3XXX



2



OF



DOCUMENT NUMBER: 98ASB42022B PAGE 3 OF 3



ISSUE AM



REVISION ADDED BENT−LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.



DATE 09 MAR 2007



ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2007



March, 2007 − Rev. 11AM



Case Outline Number: 29



onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.



PUBLICATION ORDERING INFORMATION



TMP10N60A(G)/TMPF10N60A(G) LITERATURE FULFILLMENT: Email Requests to: [email protected] onsemi Website: www.onsemi.com



◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910



Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative



4. Transistor Mosfet



Features ▪ Low gate charge ▪ 100% avalanche tested ▪ Improved dv/dt capability ▪ RoHS compliant ▪ Halogen free package ▪ JEDEC Qualification



October 2012 : Rev0



www.trinnotech.com



1/56



TMP10N60A(G)/TMPF10N60A(G) N-channel MOSFET BVDSS



ID



RDS(on)



600V



10A



100



MH



2



dB



Min. Transition Frequency at f = 100MHz



fT



IC = 10mA; VCE = 5V Noise Figure at RS = 2kW IC = 200mA; VCE = 5V f = 1kHz; B = 200Hz



F



Typ.



Ratings (at TA = 25°C unless otherwise specified) Description



Symbol



Collector-Base Voltage (Open Emitter)



V



Collector-Emitter Voltage (VBE = 0)



V



Collector-Emitter Voltage (Open Base)



V



Emitter-Base Voltage (Open Collector)



V



BC847B



Units



CBO



50 CES



V



Collector Current (DC)



CEO



Max.



45 6



EBO



IC



100



mA



BC847B



Units



200



mA



Ratings (at TA = 25°C unless otherwise specified)



Description Collector Current (Peak Value)



October 2012 : Rev0



Symbol I



CM



Max.



www.trinnotech.com



10/56



TMP10N60A(G)/TMPF10N60A(G)



Emitter Current (Peak Value)



-IEM



I



Base Current (Peak Value) Total Power Dissipation upto Ta: 25°C



BM



250



Ptot



Storage Temperature



Tstg



mW



-



-55 to +150



Max.



150



=



500



K/W



15 5



nA µA



°C Junction Temperature



Tj



Thermal Resistance From Junction to Ambient



R



th (j-a)



Characteristics (Tj = 25°C unless otherwise specified)



Collector Cut off Current IE = 0; VCB = 30V IE = 0; VCB = 30V; Tj = 150°C



October 2012 : Rev0



< ICBO



www.trinnotech.com



11/56



TMP10N60A(G)/TMPF10N60A(G)



Base-Emitter Voltage IC = 2mA; VCE = 5V



VBE



IC = 10mA; VCE = 5V Saturation Voltage



VBE V



IC = 10mA; IB = 0.5mA



V



IC = 100mA; IB = 5mA



V



IE = Ie = 0; VCB = 10V



BE (sat)



CE (sat)



V Collector Capacitance at f = 1MHz



CE (sat)



CC



IC = 10mA; VCE = 5V



fT



Noise Figure at RS = 2KW IC = 200µA; VCE = 5V; f = 1kHz; B = 200Hz



F



DC Current Gain IC = 10mA; VCE = 5V



October 2012 : Rev0








100



MHz



Typ. Max.



2 10



dB



Typ. > Typ.