MATEMATIKA 1 BAB 7 Teknik Diferensial [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Teknik Diferensiasi Definisi Derivative Aturan Dasar Diferensiasi Asal Aturan Diferensiasi Aturan Fungsi Khusus ©Ruminta, 2006



Definisi Derivative Proses menemukan/mendapatkan derivative dari sebuah fungsi disebut diferensiasi. Deivative dari fungsi f(x) : 1



f ( x + h )− f ( x ) f ' ( x ) = lim h→ 0 h atau



2



f ′( x) = lim ∆x → 0



f ( x + ∆x) − f ( x) ∆x ©Ruminta, 2006



Notasi Derivative Jika fungsi y = f(x) derivative-nya dinyatakan : d f ( x0 )



1



f ′ ( x0 ) ,



2



dy d , f (x), dx dx



3



dx



, D ( f )( x0 ) , Df ( x0 )



y' ,



f ' ( x).



dy df = f ′ ( x ) = y′ = dx dx d f ( x ) = Df ( x ) = Dx f ( x ) dx ©Ruminta, 2006



Contoh



1



Tentukan derivative dari fungsi f(x) = x2 - x



f ( x + h) − f ( x ) f ' ( x) = Lim h →0 h



2 xh + h 2 − h = Lim h →0 h



( x + h) 2 − ( x + h) − ( x 2 − x ) = Lim h →0 h



= Lim(2 x + h − 1)



x 2 + 2 xh + h2 − x − h − x 2 + x = Lim h→0 h



= 2x −1



©Ruminta, 2006



h →0



Contoh



2



Tentukan derivative dari fungsi



f ( x ) = 3x + 2 3( x + h) + 2 − 3x + 2 = Lim h →0 h



f ( x + h) − f ( x ) f ' ( x) = Lim h →0 h



3( x + h) + 2 − 3 x + 2 3( x + h) + 2 + 3 x + 2 = Lim * h →0 h 3( x + h) + 2 + 3 x + 2



3 x + 3h + 2 − 3 x − 2 = Lim h →0 h( 3( x + h) + 2 + 3 x + 2 )



3 = Lim h→0 ( 3( x + h) + 2 + 3x + 2)



3h = Lim h →0 h( 3( x + h) + 2 + 3 x + 2 )



3 = 2( 3 x + 2 )



©Ruminta, 2006



Grafik Derivative dari Fungsi



Jika f(x) naik (slope positif) Tangen horizontal (slope =0)



Jika f(x) turun (Slope negatif)



©Ruminta, 2006



Derivative Fungsi Tidak Ada



Sudut



Tangen vertikal



©Ruminta, 2006



Diskontinue



Aturan Dasar Diferensiasi 1



d (c ) = 0 dx



Konstanta



2



d d ( cu ) = c (u ) dx dx



Perkalian konstanta



3



D(x) = 1



Derivative f(x)=x adalah 1.



4



D ( f + g) = D ( f ) + D ( g)



d d d atau ( u + v ) = (u ) + (v) dx dx dx



Penjumlahan dan perbedaan 5



D ( fg) = D ( f ) g+ fD ( g)



atau



Produk



d d d ( uv ) = u (v) + v (u ) dx dx dx



©Ruminta, 2006



( )



6



d n x = nx n −1 dx



7



D f ( g ( x ) ) = D ( f ) ( g ( x ) ) D ( g)( x )



(



)







8



Pangkat



d f (g( x )) dx



Rantai



= f ′ ( g ( x ) ) g′ ( x )



⎛ f ⎞ gD ( f ) − fD ( g) D⎜ ⎟ = g2 ⎝ g⎠



atau



d d v (u ) − u (v) d ⎛u⎞ dx dx = ⎜ ⎟ dx ⎝ v ⎠ v2 Hasi bagi



9



( )



D f



-1



1 = D(f )



Funfsi Invers ©Ruminta, 2006



Contoh 1



2



Konstanta



f ( x) = 5 f ′( x) = 0 f ( x ) = 3 x8



( )



f ′( x) = 3 8 x 7 = 24 x 7 3



4t 2 d ⎡ 4x2 ⎤ 4 d 2 ⎡⎣ x ⎤⎦ f ( x) = = ⇒ f ′( x) = ⎢ ⎥ 5 dx ⎣ 5 ⎦ 5 dx



4 8x = ( 2x) = 5 5 ©Ruminta, 2006



Contoh



Penjumlahan dan pengurangan



d d d ⎡⎣ f ( x ) ± g ( x ) ⎤⎦ = [ f ( x) ] ± [ g ( x) ] dx dx dx 1



x2 1 f ( x) = − + 17 5 3 x 1 2 1 f ( x) = x − x 5 3







1 2



+ 17



1 1 1 ′ f ( x) = 2 * x + (− )(− ) x 5 3 2 2 1 ′ f ( x) = x + 3 5 6x 2







3 2



©Ruminta, 2006



+0



2



f ( x) = x3 − 4 x + 5 d 3 d d ⇒ f ′( x) = x − 4x + 5 dx dx dx 2 ′ ⇒ f ( x) = 3x − 4 + 0



⇒ f ′( x) = 3 x 2 − 4 3



f ′( x) = 0 + 12 x = 12 x 11



f ( x) = 7 + x



12



©Ruminta, 2006



11



Contoh 1



n −1



Pangkat



f ( x) = x



7



f ′( x) = 7 x 2



h′( x) = n [ f ( x) ]



6



(



f ( x) = 3x + 4 x = 3x + 4 x 2



(



1 2 ′ f ( x) = 3 x + 4 x 2 3x + 2 = 2 3x + 4 x



)



−1 2



2



)



12



(6x + 4)



©Ruminta, 2006



⋅ f ′( x)



Contoh 1



Produk



d d d ⎡⎣ f ( x ) ⋅ g ( x ) ⎤⎦ = [ f ( x)] g ( x) + [ g ( x)] f ( x) dx dx dx



y = (3 x 2 − 2 x −1 )(4 x3 + 5) dy d d = (3 x 2 − 2 x −1 ) (4 x3 + 5) + (4 x3 + 5) (3 x 2 − 2 x −1 ) dx dx dx dy = (3 x 2 − 2 x −1 )(12 x 2 ) + (4 x 3 + 5)(6 x + 2 x −2 ) dx



dy = 36 x 4 − 24 x + 24 x 4 + 8 x + 30 x + 10 x −2 dx dy = 60 x 4 + 14 x + 10 x −2 dx ©Ruminta, 2006



2



f ( x) = (3x − 2 x 2 )(5 + 4 x) d 2 d ′ f ( x) = (3 x − 2 x ) (5 + 4 x) + (5 + 4 x) (3 x − 2 x 2 ) dx dx = (3x − 2 x 2 )4 + (5 + 4 x)(3 − 4 x) = −24 x 2 + 4 x + 15



3



Let h( x) = (3x − 2 x 2 )(5 + 4 x)... find h′( x) f ( x) = 3 x − 2 x 2 ⇒ f ′( x) = 3 − 4 x g ( x) = 5 + 4 x ⇒ g ′( x) = 4 ( fg )′ = f g′ + fg ′ ∴ h′( x) = f ′g + fg ′



⇒ h′( x) = (3 − 4 x)(5 + 4 x) + (3 x − 2 x 2 )(4) ⇒ h′( x) = −24 x 2 + 4 x + 15 ©Ruminta, 2006



Contoh 1



Hasil bagi



d ⎡ f ( x) ⎤ ⎢ ⎥= dx ⎣ g ( x) ⎦



5x − 2 y= 2 x +1



g ( x)



d d f ( x ) f ( x ) g ( x) ] − [ ] [ dx dx [ g ( x)]2



d d 2 ( x + 1) (5 x − 2) − (5 x − 2) ( x + 1) dy dx dx = dx ( x 2 + 1) 2 2



dy ( x 2 + 1)(5) − (5 x − 2)(2 x) = dx ( x 2 + 1) 2 dy (5 x 2 + 5) − (10 x 2 − 4 x) = dx ( x 2 + 1) 2 dy −5 x 2 + 4 x + 5 = dx ( x 2 + 1) 2 ©Ruminta, 2006



2



f ( x) =



5x − 2



x2 + 1 d d 2 2 ( x + 1) (5 x − 2) − (5 x − 2) ( x + 1) dx dx f ′( x) = ( x 2 + 1)2 =



( x 2 + 1)5 − (5 x − 2)2 x ( x + 1) 2



3



2



=



(5 x 2 + 5) − (10 x 2 − 4 x) ( x + 1) 2



5x − 2 ... find h′( x) 2 x +1 f ( x) = 5 x − 2 ⇒ f ′( x) = 5



2



=



−5 x 2 + 4 x + 5 ( x 2 + 1) 2



Let h( x) =



g ( x) = x 2 + 1



⇒ g ′( x) = 2 x



⎡ f ⎤′ (5)( x 2 + 1) − (5 x − 2)(2 x) ⎢g⎥ = 2 2 + ( x 1) ⎣ ⎦ ©Ruminta, 2006



⎡ f ⎤′ f ′g − fg ′ ⎢g⎥ = 2 ⎣ ⎦ [g] 2 − 5 x + 4x + 5 h′ ( x) = ( x 2 + 1) 2



4



f ( x) =



5x − 2 x2 + 1



d d 2 ( x + 1) (5 x − 2) − (5 x − 2) ( x + 1) dx dx f ′( x) = ( x 2 + 1)2 2



=



( x 2 + 1)5 − (5 x − 2)2 x ( x + 1) 2



2



=



(5 x 2 + 5) − (10 x 2 − 4 x) ( x + 1) 2



©Ruminta, 2006



2



=



−5 x 2 + 4 x + 5 ( x 2 + 1) 2



Contoh



d [ f ( g ( x))] = f ′( g ( x)) g ′( x) dx



Rantai 7



1



2



⎛ 2x −1 ⎞ G ( x) = ⎜ ⎟ 3 5 x + ⎝ ⎠ 6⎛ 2 x − 1 ⎞ ( 3 x + 5 ) 2 − ( 2 x − 1) 3 ⎞ ⎛ ⎟ G′( x) = 7 ⎜ ⎟ ⎜⎜ 2 ⎟ ⎝ 3x + 5 ⎠ ⎝ ( 3x + 5) ⎠ 6 6 91( 2 x − 1) 13 ⎛ 2x −1 ⎞ = G′( x) = 7 ⎜ ⎟ 2 8 ⎝ 3x + 5 ⎠ ( 3x + 5) ( 3x + 5) y = u 5 2 , u = 7 x8 + 3 x 2



(



)



5 = u 3 2 ⋅ 56 x 7 + 6 x 2 32 5 8 2 = 7 x + 3x ⋅ 56 x 7 + 6 x = 140 x 7 + 15 x 7 x8 + 3 x 2 2



(



) (



) (



©Ruminta, 2006



)(



)



32



3



1) f ( x) = (3x − 5 x 2 )7 du u = 3x − 5 x 2 → = 3 − 10 x dx dy 7 y=u → = 7u 6 du



4



2) f ( x) = 3 ( x − 1) 2



y



dy = 7(3x − 2 x 2 )6 (3 − 10 x) dx



dy 2 = u dx 3



2



du 2 u = x −1 → = 2x dx 2 = u3



dy = 7u 6 (3 − 10 x) dx



1



dy 2 − 3 → = u du 3







1 3



(2 x) −



dy 2 2 = ( x − 1) dx 3 dy 4x = 1 dx 3( x 2 − 1) 3 ©Ruminta, 2006



1 3



(2 x)



Aturan Fungsi Khusus 1



2



dx r = rx r −1, r ∈ dx d sin ( x )



= cos ( x )



dx 3



d cos ( x ) dx



4



d tan ( x ) dx



5



= − sin ( x )



=



d arcsin ( x ) dx



1 cos2 ( x ) =



6



d arctan ( x ) dx



=



1 1+ x 2



7



d ex = ex dx



8



da x = a x ln ( a ) dx



9



1 1− x 2



©Ruminta, 2006



d ln ( x ) dx



1 = x



Contoh 1



4) f ( x) = sin(2 x) du u = 2x → =2 dx dy y = sin(u ) → = cos(u ) du



2



dy = 2cos(u ) = 2cos (2 x) dx



5) f ( x) = tan( x 2 − 1) du = 2x dx dy y = tan(u ) → = sec2 (u ) du



u = x2 − 1 →



dy = sec2 (u )(2 x) = 2 x sec2 ( x 2 − 1) dx



©Ruminta, 2006



Diferensiasi Fungsi Sinus d sin ( x ) dx



= cos ( x )



sin ( x + h ) − sin ( x ) h



=



sin ( h ) h



⇒ lim



h →0



sin ( x ) cos ( h ) + cos ( x ) sin ( h ) − sin ( x )



cos ( x ) + sin ( x )



sin ( x + h ) − sin ( x )



h →0



lim



=



sin ( h ) h



h



h



cos ( h ) − 1 h = cos ( x ) since Ingat bahwa :



= 1 (shown dan earlier) and lim



cos ( h ) − 1



h →0



©Ruminta, 2006



h



= 0 (exercise).



Diferensiasi Fungsi Cosinus d cos ( x ) dx



= − sin ( x )



One gets ⎛π ⎞ ⎛π ⎞ ⎛π ⎞ Dcos ( x ) = D sin ⎜ − x ⎟ = cos ⎜ − x ⎟ ( −1) = − cos ⎜ − x ⎟ ⎝2 ⎠ ⎝2 ⎠ ⎝2 ⎠ = − sin ( x ) .



©Ruminta, 2006



Diferensiasi Fungsi Tangen d tan ( x ) dx



=



1 cos2 ( x )



⎛ sin ( x ) ⎞ d ⎜⎜ ⎟⎟ cos x d tan ( x ) ( )⎠ ⎝ = dx dx = =



cos ( x ) cos ( x ) − sin ( x ) ( − sin ( x ) ) cos2 ( x )



cos2 ( x ) + sin2 ( x ) cos2 ( x )



=



1 cos2 ( x )



©Ruminta, 2006



Diferensiasi Inverse Fungsi Trigonometri 1



d arcsin ( x ) dx



=



1 1− x 2



Jika L e t x = sin ( y ) . B y th e In v e rse F u n ctio n R u le ,



d a rcsin ( x ) dx



=



1 1 = = co s y d ( sin ( y ) ) ( )



1 1 − sin



2



(y )



=



1 1− x



dy 2



d arctan ( x ) dx



=



1 1+ x 2



Let xx == tan tan(y) Jika ( y ) . By the Inverse Function Rule, d arctan ( x ) dx



=



1 = cos2 ( y ) d tan ( y ) dy ©Ruminta, 2006



=



1 1 = . 2 2 1 + tan ( y ) 1 + x



2



.



Diferensiasi Fungsi Exponensial 1



d ex = ex dx h h 0 e x +h − e x e − 1 e − e x = ex = ex ⎯⎯⎯ → e h →0 h h h



e h − e0 Ingat definisi dari bilangan e lim =1 since, by the definition of the naturan number e, h →0 h 2



da x = a x ln ( a ) dx



Jika a = e Write x



One gets: Maka x



da = dx



(



d e



x ln( a )



dx



( ) = e x ln(a ) and dan menggunakan aturan rantai use the Chain Rule.



ln a x



)=e



x ln( a )



ln ( a ) = a x ln ( a ) . ©Ruminta, 2006



3



f (x + h ) − f (x ) d [ f (x )] = hlim →0 h dx



( )



e x+h − e x d x e = lim h →0 h dx



exeh − ex = lim h →0 h



(



)



e x e h −1 = lim h →0 h



h e −1 x = e lim = ex(1) = ex h→ 0 h



©Ruminta, 2006



Aturan Diferensiasi Fungsi Exponensial Aturan 1:



( )



d x x e =e dx Aturan 2:



d f( x ) = e f( x ) ⋅ f′(x) e dx



(



)



©Ruminta, 2006



Contoh 1



Temukan derivative dari f(x) = x2ex .



f(x) = x 2 e x f ′(x) = x 2 e x + e x 2x f ′(x) = xe x (x + 2 )



2



3 2



Temukan derivative dari f(t) = (e + 2) t



(



f(t) = e + 2 t



3 2



)



1 3 t f′(t) = e + 2 2 e t 2



(



)



©Ruminta, 2006



3



Temukan derivative dari : f (x ) = x



e f ' (x ) = 2x f ' (x ) = f ' (x ) =



4



x 2 e x − e x (2x x



4



e x (2x ) − x 2 e x x



4



)



f ' (x ) =



f ' (x ) =



ex x2 x 2 e x − 2xe x4



e x (x − 2 ) x3



Temukan derivative dari f(t) = e 3x



f(x) = e 3x f′(x) = e 3x ⋅ 3 ©Ruminta, 2006



x



=



xe



x



(x − 2 ) x4



5



Temukan derivative dari : f(x) = e



f(x) = e



2x 2 +1 2x 2 +1



f ′(x) = e



f ′(x) = 4xe 6



(4x )



2x 2 + 1



Temukan derivative dari f (x ) = e f ' (x ) = e



5x



f ' (x ) = e



5x



f ' (x ) = e



5x



f ' (x ) =



2 x2 +1



5e



( )



d 5x dx -1 1 ⋅ (5x ) 2 (5) 2 5 ⋅ 2 5x ⋅



5x



2 5x ©Ruminta, 2006



5x



Diferensiasi Logaritma d ln ( x ) dx



1 = x



Jika Let x = e y . Use Makathe : Inverse Function Rule to get:



d ln ( x ) dx



1 1 1 = = y = . y e x d e



( )



dy



©Ruminta, 2006



Aturan Diferensiasi Fungsi Logaritma Aturan 1:



d 1 ln x = dx x



(x ≠ 0 )



Aturan 2: d [ln f(x)] = f′(x) dx f(x)



f(x) > 0



©Ruminta, 2006



Contoh 1



Temukan derivative dari f(x)= xlnx.



f(x) = xlnx 1 f ′(x) = x + lnx ⋅ 1 x



f ′(x) = 1 + lnx 2



Temukan derivative dari g(x)= lnx/x g(x)



g ′ (x)



=



lnx x



1 x − lnx x = x 2



⋅1



g ′ (x)



=



1 − lnx x



©Ruminta, 2006



2



3



Temukan derivative dari : y = x²lnx . ⎛ 1 ⎞ ⎟ + (lnx)(2x) ⎝ x ⎠



y’ = x² ⎜



y’ = x + 2xlnx Atau y’ = x(1+2lnx) 4



Temukan derivative dari y = ln (x + 4 ) − ln (x − 3)



1 1 y' = − x +4 x −3



x -3 x+4 − y' = (x + 4 )(x − 3 ) (x + 4 )(x − 3 ) −7 y' = (x + 4 )(x − 3 ) ©Ruminta, 2006



5



[



Temukan derivative dari : y = ln (x + 1)(x + 2)



[( y = ln (x + 1) + 6ln (x + 2 ) 6 (3x ) 2x y′ = + (x + 1) (x + 2 ) (



)(



)] (



)



2



6 y = ln ⎡ x 2 + 1 x 3 + 2 ⎤ = ln x 2 + 1 + ln x 3 + 2 ⎢⎣ ⎥⎦



2



3



2



2



3



Now get a common denominato r. y′ = y′ =



y′ =



y′ =



(



( )( (x + 1)(x + 2 ) (x + 2 )(x 2x x 3 + 2



2



)



+



3



(



2



(x



)



3



( )( (x + 1)(x + 2 ) (x + 2 )(x 2x x 3 + 2 3



2x 4 + 4x 2



)(



+1 x3 + 2



+



) + 1)



6 3x 2 x 2 + 1 2



) + 1)



6 3x 2 x 2 + 1 3



2



18x 4 + 18x 2



) + (x



3



)(



)



+ 2 x 2 +1



20x 4 + 18x 2 + 4x



(x



2



)(



+1 x3 + 2



)



©Ruminta, 2006



3



)



6



(



6



)



]



(



= ln x 2 + 1 + 6ln x 3 + 2



)



6



Temukan derivative dari : y = x(x + 1)(x2 + 1) Langkah 1 Buat ln pada dua sisi persamaan



ln y = ln x(x + 1)(x2 + 1) Langkah 2 Kembangkan persamaan tersebut



ln y = ln x(x + 1)(x2 + 1) ln y = ln x + ln(x + 1) + ln(x2 + 1) Langkah 3 Diferensiasi kedua sisi (eksplisitkan ln y )



ln y = ln x + ln(x + 1) + ln(x2 + 1) y′ 1 1 2x = + + 2 y x x +1 x +1 1 2x ⎞ ⎛1 Langkah 4: Pecahkan y ‘. y′ = y⎜ + + 2 ⎟ x x + 1 x + 1 ⎠ ⎝ ©Ruminta, 2006



Langkah 5: Substitusikan y pada persamaan tersebut.



y = x(x + 1)(x2 + 1) 1 2x ⎞ ⎛1 + 2 ⎟ y′ = x(x + 1)(x 2 + 1)⎜ + ⎝ x x +1 x +1 ⎠



[



]⎞⎟



⎛ x(x + 1)(x 2 + 1) x(x + 1)(x 2 + 1) 2x x(x + 1)(x 2 + 1) + + y′ = ⎜ ⎜ x x + 1 x 2 +1 ⎝



[



⎟ ⎠



⎛ x (x + 1)(x 2 + 1) x (x + 1)(x 2 + 1) 2x x (x + 1)(x 2 + 1) + y′ = ⎜ + 2 ⎜ x x 1 + x +1 ⎝



(



)



y ′ = (x + 1)(x 2 + 1) + x(x 2 + 1) + 2x [x (x + 1)]



(



y ′ = x 3 + x 2 + x + 1 + x 3 + x + 2x 3 + 2x 2 y ′ = 4x 3 + 3x 2 + 2x + 1 ©Ruminta, 2006



)



]⎞⎟ ⎟ ⎠



Diferensial Implisit y = 3 x3 − 4 x + 17 y diekspresikan secara explisit sebagai fungsi x.



y 3 + xy = 3 x + 1 y diekspresikan secara implisit sebagai fungsi x.



[ f ( x) ]



3



+ x [ f ( x) ] = 3x + 1



Diferensial dari fungsi y yang dinyatakan secara implisit disebut diferensial implisit ©Ruminta, 2006



Manfaat Diferensial Implisit Menemukan slope dari garis tangen dan garis normal Contoh menemukan slope dari garis tangen dan normal di titik (2,4)



©Ruminta, 2006



Contoh 1



Temukan diferensial implisit dari



[ f ( x)]



3



+ x [ f ( x)] = 3x + 1



3 [ f ( x) ] f ′( x) + f ( x) + xf ′( x) = 3 2



3 y 2 y′ + y + xy′ = 3



(



)



y′ 3 y 2 + x = 3 − y y′ =



3− y 3 y2 + x ©Ruminta, 2006



2



Temukan diferensial implisit dari 2y



dy ⎛ dy ⎞ = 2 x + cos( xy ) ⎜ x + y (1) ⎟ dx ⎝ dx ⎠



2y



dy dy = 2 x + cos( xy )( x ) + cos( xy ) y dx dx



2y



dy dy − cos( xy )( x ) = 2 x + cos( xy ) y dx dx



dy (2 y − x cos( xy )) = 2 x + y cos( xy ) dx



dy 2 x + y cos( xy ) = dx 2 y − x cos( xy )



©Ruminta, 2006



y 2 = x 2 + sin( xy )



3



Temukan diferensial implisit dari x3 + y 3 − 9 xy = 0 3x 2 + 3 y 2



dy dy − (9 x + y 9) = 0 dx dx



3x 2 + 3 y 2



dy dy − 9 x − 9 y) = 0 dx dx



3y2



dy dy − 9 x = 9 y − 3x 2 dx dx



dy (3 y 2 − 9 x) = 9 y − 3 x 2 dx dy 9 y − 3 x 2 = 2 dx 3 y − 9 x)



©Ruminta, 2006



4



Temukan diferensial implisit dari



y 3 + y 2 − 5 y − x 2 = −4



d d ⎡⎣ y 3 + y 2 − 5 y − x 2 ⎤⎦ = [ −4] dx dx d d d d d ⎡⎣ y 3 ⎤⎦ + ⎡⎣ y 2 ⎤⎦ − [5 y ] − ⎡⎣ x 2 ⎤⎦ = [ −4] dx dx dx dx dx dy dy dy 3y + 2 y − 5 − 2x = 0 dx dx dx 2



3y2



dy dy dy + 2 y − 5 = 2x dx dx dx



dy (3 y 2 + 2 y − 5) = 2 x dx



dy 2x = dx (3 y 2 + 2 y − 5) ©Ruminta, 2006



Diferensial Parsial Definisi Derivative Parsial dari Fungsi Dua Variabel Jika z = f(x,y), derivative parsian pertama dari f dinyatakan fx dan fy yaitu :



f x ( x, y ) =



uuur 0 ∆x lim



f y ( x, y ) =



uuur 0 ∆y lim



f ( x + ∆x, y ) − f ( x, y ) ∆x f ( x, y + ∆y ) − f ( x, y ) ∆y



©Ruminta, 2006



Definisi Derivative Parsial dari Fungsi Tiga Variabel Jika w=f(x,y,z), maka derivative parsial dinyatakansebagai berikut :



∂w = f x ( x, y , z ) = ∂x



uuur 0 ∆x lim



∂w = f y ( x, y , z ) = ∂y



uuur 0 ∆y lim



∂w = f z ( x, y , z ) = ∂z



uuur 0 ∆z lim



f ( x + ∆x, y, z ) − f ( x, y, z ) ∆x f ( x , y + ∆y , z ) − f ( x , y , z ) ∆y f ( x, y, z + ∆z ) − f ( x, y, z )



©Ruminta, 2006



∆z



Contoh 1



Temukan diferensial parsial fx dan fy dari



f ( x, y ) = 5 x 4 − x 2 y 2 + 2 x 3 y Solusi



f ( x, y ) = 5 x 4 − x 2 y 2 + 2 x 3 y f x ( x, y ) = 20 x3 − 2 y 2 x + 6 yx 2 f y ( x, y ) = −2 x 2 y + 2 x3



©Ruminta, 2006



2



Temukan diferensial parsial fx dan fy dari f ( x, y ) =



xy at (2, −titik 2) (2, -2) pada x− y



Solusi f ( x, y ) =



xy at (2, −2) x− y



f x ( x, y ) =



( x − y ) y − xy ( x − y)



f x ( 2, −2 ) = f y ( x, y ) =



− ( −2 )



2



2



(2 − ( −2 )) 2



=



( x − y ) x + xy



f y ( 2, −2 ) =



( x − y) x2 ( x − y)2



=



2



=



xy − y 2 − xy ( x − y)



2



=



− y2 ( x − y)2



−4 − 1 = 16 4



=



x 2 − xy + xy ( x − y)



4 1 = 16 4 ©Ruminta, 2006



2



=



x2 ( x − y)2



3



Temukan diferensial parsial fx dan fy dari f ( x, y) = 3xy 2 − 2 y + 5 x2 y



Solusi



f ( x, y) = 3 xy 2 − 2 y + 5 x2 y f x ( x, y) = 3 y 2 + 10 xy f xx ( x, y) = 10 y f ( x, y) = 3 xy 2 − 2 y + 5 x2 y f y ( x, y) = 6 xy − 2 + 5 x2 f yy ( x, y) = 6 x f ( x, y) = 3 xy 2 − 2 y + 5 x2 y f x ( x, y) = 3 y 2 + 10 xy f xy ( x, y) = 6 y + 10 x f ( x, y) = 3 xy 2 − 2 y + 5 x2 y f y ( x, y) = 6 xy − 2 + 5 x2 f yx ( x, y) = 6 y + 10 x



©Ruminta, 2006



Derivative Tingkat Tinggi Derivative fungsi f(x) adalah f ´(x). Jika f ‘(x) mempunyai derivative, disebut derivative tingakt dua atau f ´´(x) Notasi



d2y f ′′( x) = 2 dx



Derivative tingkat 2 mempunyai derivative tingkat tiga dan derivative tingkat tiga mempunyai derivative tingkat empat dst Notasi



4 d3y d y (4) f ′′′( x) = 3 f ( x) = 4 dx dx ©Ruminta, 2006



n d y (n) f ( x) = n dx



Contoh 1



Temukan derivative tingkat dua dari f ′( x) =



( x − 1)(1) − x(1) −1 = ( x − 1) 2 ( x − 1) 2



f ′′( x) =



d ⎛ −1 ⎞ d −2 = − ( x 1) ( ) ⎜ ⎟ dx ⎝ ( x − 1) 2 ⎠ dx



x f ( x) = x −1



−2 f ′′( x) = −2( x − 1) (1) = ( x − 1)3 −3



2



f ( x) = 3 x5 − 2 x3 + 14



Temukan f ‘’’(x) dari :



f ′( x) = 15 x − 6 x 4



2



3 ′′ f ( x) = 60 x − 12 x



2 ′′′ f ( x) = 180 x − 12



©Ruminta, 2006



3



2x +1 Temukan derivative tingkat dua dari f ( x) = 3x − 2 2 ( 3x − 2 ) − 3 ( 2 x + 1) −7 −2 f ′( x) = = = −7 ( 3 x − 2 ) 2 2 ( 3x − 2 ) ( 3x − 2 ) f ′′( x) = 14 ( 3 x − 2 )



4



−3



( 3) =



42



( 3x − 2 )



3



Temukan f ‘’’(x) dari : f ( x ) = x 2 + 4 x + 4 f' ( x ) = 2x + 4 f '' ( x ) = 2 f ''' ( x ) = 0 ©Ruminta, 2006