Minggu 1 - Pendahuluan PDF [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

MIKROPALEONTOLOGI GL-2261 Khoiril Anwar Maryunani [email protected]



PENENTUAN WAKTU ? WAKTU APA ? BAGAIMANA CARANYA ?



2



PUSTAKA •  Pringgoprawiro & Kapid, 2000 : “Foraminifera; Pengenalan Mikrofosil dan Aplikasi Biostratigrafi”; Penerbit ITB. •  Kapid R., 2003 : ”Nannoplankton Gampingan, Pengenalan dan Aplikasi Biostratigrafi”, Penerbit ITB •  Dewi & Kapid , 2004 : ”Ostracoda, objek alternatif untuk studi mikropaleontologi”, Penerbit ITB



PUSTAKA



11



What is a fossil ? - any evidence of preexisting life Kinds of Fossils: Fossilized bodies and/or parts: the organism is preserved in some manner.



brittle star



pollen grain



mosquitoes in amber 12



FOSIL •  Sisa-sisa kehidupan termasuk jejaknya yang terawetkan secara alamiah dan berumur lebih tua dari Holosen atau sekitar 10.000 taun yang lalu



ammoni te



brittle star



artefak



pollen grain



human skull



mosquitoes in amber 15



Microfossils



conodonts diatoms pollen



Index Fossils 16



foraminifera



radiolaria



http://www.ucl.ac.uk/GeolSci/micropal/



Fossils & Biostratigraphy The art and science of telling time from rocks. Traditional core of paleontology, and of geology. The geologic time scale is all based on fossils, relative time scale. Most paleontologists working in industry do biostratigraphy. 17



18



PALEONTOLOGI, MIKROPALEONTOLOGI, MIKROFOSIL



•  PALEONTOLOGI –  Ilmu pengetahuan yg mempelajari sisa-sisa organisme purba, baik dari fosilnya maupun jejak-jejak kehidupannya



•  MIKROPALEONTOLOGI –  Cabang paleontologi yang khusus membahas semua sisa sisa organisme yg mikroskopis



•  MIKROFOSIL –  Fosil berukuran mikro, sehingga untuk mempelajarinya diperlukan alat bantu (mikroskop)



PALEONTOLOGI BERDASAR MACAM OBYEK STUDINYA Tumbuh – tumbuhan Hewan / Binatang Manusia



: PALEOBOTANI Palinologi : PALEOZOOLOGI Vertebrata Invertebrata : PALEOANTHROPOLOGI



BERDASAR UKURAN OBYEK STUDINYA



Makrofosil



Megafosil : MAKROPALEONTOLOGI Mikrofosil : MIKROPALEONTOLOGI Nannofosil :



}



MIKROFOSIL •  Pengertian: sisa-sisa mikro-organisme yang telah membatu dan berumur lebih tua dari Holosen serta untuk mempelajarinya harus memakai alat (mikroskop). Mereka dapat berupa sisa-sisa mikro-organisme atau bagian kecil dari organisme yang besar. •  Secara biologi mereka berbeda satu sama lain (bacteria, protists, fungi, animals, dan plants), dan dikelompokan dalam satu kelompok studi karena untuk mendapatkanya, contoh batuan harus diproses dengan cara tertentu dan mempelajarinya harus dengan mikroskop.



Mikroskop binokuler, reflected light - Foraminifera



Mikroskop binokuler, transmited light - Pollen Tipe mikroskop dan contoh jenis mikrofosil yang dapat diamatinya



Mikroskop binokuler, polarisasi - Nannofosil gampingan



SISTIMATIKA DAN HUBUNGAN ANTAR MIKROFOSIL •  Because microfossils are an arbitrary grouping based on methods of study, no single classification of them will suffice except at the highest levels. The systematics of prokaryotes and protists has long been confused and multifaceted at all levels •  The relationships among life forms are complex. A satisfactory overview of what kinds of life there are on Earth is still ephemeral. Six domains of life have been proposed: (1) Archaebacteria; (2) Eubacteria; (3) Protista; (4) Animalia; (5) Plantae; and (6) Fungi.



Makhluk Hidup



JENIS MIKROFOSIL



ORGANISME PEMBENTUK MIKROFOSIL Organic-walled microfossils:



Acritarchs Chitinozoa Dinoflagellates Scolecodonts Spores and pollen Inorganic-walled microfossils: Calcareous nannoplankton: coccolithophores and Discoasters Foraminifera Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa Diatoms Silicoflagellates and chrysophytes Ciliophora: tintinnids and calpionellids Ostracods Conodonts



PLANKTONIK FORAMINIFERA



30



BENTHONIK FORAMINIFERA



31



NANNOPLANKTON



32



POLEN & DINOFLAGELATA



33



OSTRACODA



34



RADIOLARIA & DIATOMAE



35



CONODONTS & LARGE FORAMS



36



SPONGE SPICULES (Phylum Porifera) Geologic range: Cambrian to Recent Composition: Calcareous or siliceous Size: Significance: Siliceous skeletons can accumulate to form chert Morphology: Shapes vary. but may be needlelike (monaxon or one axis), three-pointed (triaxon), four-pointed (tetraxon), or shaped like a jack (from the game of ball and jacks) with six radiating needle-like points or rays Sponge spicules (hexactine). May also be curved. Environment: Attached to the sea floor. Most are marine.



Jenis Mikrofosil & Batuannya



38



KONDISI HIDUP MATI PROSES SETELAH MATI AKUMULASI TERKUBUR PROSES SETELAH TERKUBUR



PROSES DIAGENETIK



FOSIL



PROSES EROSI REDEPOSISI



KETERDAPATAN FOSIL DALAM BATUAN ORGANISME HIDUP Setelah mati mungkin Rusak, hancur, lenyap, tidak terawetkan



Tidak lenyap, segera terkubur



TIDAK MEMBENTUK FOSIL Terkumpul di tempat semula hidup (in situ)



MEMBENTUK KUMPULAN / ONGGOKAN FOSIL Terangkut, terkumpul di tempat lain (ex situ)



FOSIL BIOCOENOSIS



FOSIL THANATOCOENOSIS Yang mungkin berupa



INDIGENEOUS



EXOTIC



Terpindahkan tetapi masih pada lingkungan yang sama



Terpindahkan ke lingkungan yang lain



REMANIE Berasal dari batuan yang lebih tua : REWORKED : LEAKED atau lebih muda



Biocoenose & Thanatocoenose •  BIOCOENOSE Kumpulan organisme yg hidup, tumbuh, berkembang biak dlm suatu tempat atau lingkungan yg sama (biotope)



•  THANATOCOENOSE Kumpulan organisme yg mati (fosil) yang berasal dari biotope yg berbeda-beda, karena proses transportasi dpt terendapkan dlm batuan sedimen yg sama 41



Biocoenoses



All the interacting organisms that live together in a specific habitat or biotope, forming an ecological community.



Thanatocoenosis



An assemblage of organisms or their parts brought together after their deaths, as for example, by flowing water; 'death assemblage'



Biocoenoese



Thanatocoenoese



44



DISPLACED FOSSILS Fosil yg dijumpai pada lapisan yg bukan habitatnya



•  Reworked Fossils : Fosil tua yang terdapat pada lapisan yang lebih muda



•  Introduced Fossils : Fosil muda yg dijumpai pada lapisan yg lebih tua



Tidak dapat dipergunakan untuk kepentingan biostratigrafi 45



STUDI MIKROFOSIL •  MORFOLOGI : Studi tentang bentuk dasar, bentuk umum, bentuk khusus, rupa, ukuran dari cangkang / sisa organisme •  KLASIFIKASI : Pembagian mikrofosil menjadi sejumlah taxon atas dasar morfologinya •  KISARAN STRATIGRAFI: Keberadaan / perkembangan takson sepanjang waktu geologi •  PALEOEKOLOGI/BATIMETRI : Hubungan timbal balik antara organisme yang membentuk mikrofosil dengan lingkungan tempat hidupnya semula.



KLASIFIKASI MIKROFOSIL •  KLASIFIKASI : Penentuan posisi organisme dalam taksonomi •  TAKSONOMI : Pembahasan tentang hierarchi / perjenjangan kelompok organisme



•  CONTOH TAKSONOMI Kingdom Phylum



Order



Subphylum Class Subclass Suborder Superfamily



: Orbitoididae



Family Genus Species



Protista : : Protozoa : Sarcodina Rhizopoda : Foraminiferida : : Rotaliina :



Subgenus



: Cycloclypeus Katacycloclypeus : : Cycloclypeus (Katacycloclypeus) annulatus MARTIN



KONSEP SPESIES •  Spesies menurut ilmu biologi •  Spesies menurut paleontologi



Dimana, Bagaimana & Untuk Apa Belajar (Mikro) Fosil ?



49



Continent



Rifting Passive Margin



Active Margin



Island arc



Collision



Plate Tectonic conceptual model of basin evolution



50



PASSIVE CONTINENTAL COLLISION



MARGIN



ACTIIVE CONTiNENT AL MARGIN



ISLAND ARC



51



52



PRE RIFT ROCK (BASEMENT) 53



Conglomeratic sandstone interval within transition Brani and Sangkarewang (synrift ; tongue of fluvial channel to lacustrine)



54



Papery shale interlaminated with thin calcareous sand (van Houten cycle) of lacustrine sediments; Sangkarewang Formation; maximum rift 55



Parambahan coal open pit: FluvialLacustrine Deltaic of lower Sawahlunto Formation : Potential reservoir and seal from late synrift



56



MIKROFOSIL DALAM GEOLOGI •  Biostratigrafi / umur •  Lingkungan pengendapan •  Korelasi



STRATIGRAPHY •  Ilmu pemerian batuan dan hubungannya dalam ruang dan waktu (Hedberg, 1976) •  Metoda, teknik, dan prinsip-prinsip Stratigrafi merupakan aplikasi stratigrafi untuk semua batuan (terutama sedimen), dan dipakai didalam studi: geometri, struktur, runutan, dan sejarah dari sekelompok batuan •  Dasar dari segala penelitian/investigasi geologi



ASAL KLASIFIKASI STRATIGRAFI •  Pada mulanya tujuan stratigrafi adalah menyusun sejarah bumi dengan membagi dalam selang-selang waktu tertentu •  Untuk pembagian perioda-perioda digunakan kriteria litologi (Lithostratigrafi) dan paleontologi (Biostratigrafi)



Kandungan fosil diyakini sebagai pembagi waktu yang benar



61



62



Ideal species for biostratigraphic correlation •  Ideal “Index Fossil” –  –  –  –  – 



Abundant Geographically widespread Relatively short range in time (rapid evolutionary turnover) Wide range of environments Morphologically distinctive



•  Problem – abundant and widespread taxa are often (but not always) resistant to extinction – therefore, longranging 63



•  Guide Fossils : Fosil pemandu/fosil penunjuk fasies/fosil pengenal lingkungan (bentik/palynomorf) •  Pengenal lingkungan •  Korelasi lokal



•  Indicators Fossils : •  Spesies benthik untuk penentuan zona bathymetrik



64



Development of Geologic Time Scale •  • 



Understanding the geological relationships of different rock unit Nicolaus Steno in 1669 described two basic geologic principles (steno’s principals). –  The first stated that sedimentary rocks are laid down in a horizontal manner, –  the second stated that younger rock units were deposited on top of older rock units



• 



William Smith, in 1815 produced a geologic map of England in which he successfully demonstrated the validity of the principle of faunal succession.



Development of Geologic Time Scale



•  The Earth devided into a number of periods - the Geological time-scale, according to the rock types and sort of fossils found in each one. •  These divisions are pretty arbitrary, like any manmade divisions, but they at least can serve as useful labels. •  The Paleozoic, the era of "ancient life" is characterized by fossils of invertebrates, primitive tetrapods, etc; the Mesozoic or era of "middle life", by fossils of dinosaurs etc, and the Cenozoic or era of "recent life" by mammals and modern plants and invertebrates.



Fig. 10.7



68



MEASURING TIME Time is measured by observation of change: 1.  CYCLIC PROCESSES 2.  UNDIRECTIONAL PROCESSES



69



GEOLOGIC CYCLES AS TIME MEASUREMENT •  Astronomical cycles: Earth rotation, etc •  Sedimentary cycles: Varves, Sea level changes •  Magnetic Reversals (binary scale) •  Tectonic Cycles?



70



UNDIRECTIONAL PROCESSES AS TIME MESUREMENT •  Salinity of oceans •  Earth heat decay (Cooling curve) •  Organic Evolution •  Isotope/ Radio-activity Decay Assumption: rate of decay is known and a closed system



71



From Pearson et al., 1997, p. 297: "Planktonic foraminifera from ODP site 871, Limalok Guyot, illustrating the GlobigerinoidesOrbulina transition. 1. Globigerinoides trilobus, spiral side, showing supplementary aperature. . . 2. G. trilobus, umbilical side. The primary aperature is hidden in the central umbilical depression. . . 3. G. bisphericus, showing enlarged final chamber. . . 4, 5. Praeorbulina sicana (two views of same specimen). Four small aperatures are present in the suture around the base of the final chamber. . . 6. Another specimen of Praeorbulina sicana . . . 7. Praeorbulina curva. Note spherical morphology and multiple slit-like aperatures. . . 8. Praeorbulina globerosa, showing bispherical morphology . . . 9, 10. Praeorbulina glomerosa- circularis transitional specimens. . . 11-14. Praeorbulina circularis, showing variation in the proportion of the test occupied by the final chamber. . . 15. The end-form of the lineage, 73 Orbulina universa, with entire sphere . . . scale bars are 100 µm."



EON



ERA



• Precambrian Eon: • Hadean referring to the hellish conditions of the early Earth. More recently, the term Priscoan, has been used to refer to the period where the geosphere was still forming an life had not yet come into being.



• Archean ("first", "primary") previously defined as: Archeozoic ("first life")and Azoic (lifeless)àPresent crustal structure, Planetary Ocean, Formation of the continents and archaic regime of Continental drift. Gaia (Chemically and thermally self-stabilizing biosphere) - Bioenergetic Processes Prokaryotes (Archaea, Eubacteria and Urkaria) - reducing atmosphere, Oxygen Crisis and the decline of the Archaea, colonial stromatolites



• Proterozoic ("age of first life")àEndosymbiosis (Eukaryotes). Continental drift (present regime) begins. Proterozoic Ice Ages - Precambrian Pangeas. The first Multicelluar organisms.



• The Phanerozoic Eon represents the time during which the majority of macroscopic organisms, algal, fungal, plant and animal, lived



Prokaryotes



Eukaryotes



The evolution of life can be divided into two very unequal periods: the very long Precambrian (lasting over 3 billion years), when life for the most part remained at the microbial grade of organization, and the much shorter Phanerozoic, encompassing the Paleozoic, Mesozoic, and Cenozoic eras (about 540 million years in all), when much more complex, multicellular life, has flourished



Summary The Divisions of Precambrian Time



Phanerozoic



The Phanerozoic Eon represents the time during which the majority of macroscopic organisms, algal, fungal, plant and animal, lived



•  The "zoic" part of the word comes from the root "zoo", which means animal. •  This is the same root as in the words Zoology and Zoological Park (or Zoo). •  "Cen" means recent, à “Age of Mammals “ •  "Meso" means middle, à”Age of Dinasours “ •  "Paleo" means ancient, à “Age of Fishes”



Paleozoic •  At its beginning, multicelled animals underwent a dramatic "explosion" in diversity, and almost all living animal phyla appeared within a few millions of years. •  At the other end of the Paleozoic, the largest mass extinction in history wiped out approximately 90% of all marine animal species



Paleozoic Era: Stratigraphy Firt foraminifea fusulinids



, Conodont



Small plant Graptolite, major extinction events



rapid evolution of many new types of invertebrate animals



Mesozoic Era: Stratigraphy



CENOZOIC STRATIGRAPHY Cenozoic ("Cen" means recent), spans about 65 million years, from the end of the Cretaceous and the extinction of non-avian dinosaurs to the present. The Cenozoic is sometimes called the Age of Mammals, because the largest land animals have been mammals during that time



Paleogene The Paleocene ("ancient recent life") epoch marks the beginning of the Paleogene Period and the Cenozoic era. The sea-level fell to expose dry land in much of inland North America, Africa, and Australia. South America however was cut adrift with its own unique evolving "ark" of birds, mammals, and reptiles. The name Eocene means the "dawn of recent life" Originally the Eocene was the first epoch of the Cenozoic, but then the Paleocene was erected as an earlier epoch. Life during the Eocene was pretty similar to that of the Paleocene, a warm tropic world, high sea-levels and island continents, invertebrates and plants similar to those today, while mammals continue to evolve and diversify along many lines The Oligocene Epoch (meaning "slightly recent") was the third and youngest division of the Paleogene, and the characterized by an increasing proportion of "modern" animals.



Neogene The Miocene or "less recent" is so called because it contains fewer modern animals than the following, Pliocene, epoch The name Pliocene means "more recent", and this was the most recent epoch of Tertiary period, lasting from about 5 to 2 million years ago



Quaternary This period saw the current ice age, the rise of man, and the extinction of most of the mammalian megafauna



Note: FO = first occurrence LO = last occurence



KEGUNAAN MIKROPALEONTOLOGI DLM INDUSTRI



•  •  •  •  •  •  • 



Penentuan umur batuan (sedimen) Penentuan lingkungan pengendapan Penentuan paleodepth/paleobathymetri Analisis iklim purba/paleoklimat Geohistory Analisis Studi Ketidakselarasan Korelasi Biostratigrafi 89



Penerapan Biostratigrafi & Mikropaleontologi pada Petroleum Industry Reservoir Clastic



Penentuan umur



Reservoir Carbonate



Carbonate Facies & Diagenesis



Penentuan Lingkungan Pengendapan Carbonate Rock Property (porositas) Geohistory



90



Stratigrafi & Biostratigrafi



91



92



KORELASI BIOSTRATIGRAFI



93