Pohon Merentang [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

POHON (TREE) Matematika Diskrit



Definisi • Pohon (tree) adalah :



 Graf tak-berarah terhubung yang tidak mengandung sirkuit a



b



a



b



c



d



c



d



e



f



e



f



G1



G2



G1 dan G2 adalah pohon (tree)



a



b



a



b



c



d



c



d



e



f



e



f



G3



G4



G3 dan G4 adalah bukan pohon



• Hutan (forest) adalah :



 Graf tak terhubung yang tidak mengandung sirkuit, dalam hal ini setiap komponen di dalam graf terhubung tersebut adalah pohon Matematika Diskrit



1



Sifat-sifat Pohon Misalkan G = (V,E) adalah graf tak-berarah sederhana dan jumlah simpulnya n, maka : 1. 2. 3. 4. 5.



6.



G adalah pohon Setiap pasang simpul di dalam G terhubung dengan lintasan tunggal G terhubung dan memiliki m = n -1 buah sisi G tidak mengandung sirkuit dan memiliki m = n – 1 buah sisi G tidak mengandung sirkuit dan penambahan satu sisi pada graf akan membuat hanya satu sirkuit G terhubung dan semua sisinya adalah jembatan (jembatan adalah sisi yang bila dihapus menyebabkan graf terpecah menjadi dua komponen)



Jika hutan F dengan k komponen mempunyai m = n – 1 buah sisi Matematika Diskrit



2



Contoh Sebuah pohon mempunyai 2n buah simpul berderajat 1, 3n buah simpul berderajat 2 dan n buah simpul berderajat 3. Tentukan banyaknya simpul dan sisi di dalam pohon tersebut ! Penyelesaian : Berdasarkan lemma jabat tangan : jumlah semua simpul di dalam graf adalah 2 kali jumlah sisi di dalam graf tersebut (2n x 1) + (3n x 2) + (n x 3) = 2 |E| 11n = 2 |E| …………………………… (1) Jumlah sisi pada sebuah pohon adalah jumlah simpul minus satu, sehingga : |E| = (2n + 3n + 1) – 1 = 6n – 1 ………………… (2) Persamaan (1) dan (2) menjadi : 11n = 2 (6n – 1) 11n = 12n – 2 n=2 Jadi :  Jumlah simpul pada pohon 6n = 6 x 2 = 12 buah simpul  Jumlah sisi 6n – 1 = 11 buah sisi



Matematika Diskrit



3



Pohon Merentang (Spanning Tree) • Pohon merentang adalah :



 Subgraf dari graf terhubung berbentuk pohon



T2 T3 T4 T1 G Graf lengkap G dengan 4 buah pohon merentangnya, T1, T2, T3 dan T4



• •



Setiap graf terhubung mempunyai paling sedikit 1 buah pohon merentang Cabang (branch) adalah :  Sisi dari graf semula (sisi pada pohon merentang)







Tali-hubung (chord atau link) dari pohon adalah :  Sisi dari graf yang tidak terdapat di dalam pohon merentang







Komplemen pohon adalah :  Himpunan tali-hubung beserta simpul yang bersisian dengannya



Matematika Diskrit



4



Pohon Merentang (Spanning Tree) • Jika n buah simpul dan m buah sisi maka :  Untuk graf terhubung :



 Jumlah cabang : n – 1  Jumlah tali hubung : m – n + 1



 Untuk graf tak-terhubung dengan k komponen :  Jumlah cabang : n – k  Jumlah tali-hubung : m – n + k



• Rank graf G adalah :



 Jumlah cabang pada pohon merentang dari sebuah graf G



• Nullity graf G adalah :



 Jumlah tali hubung pada graf G



• Sehingga : jumlah sisi graf G = rank + nullity • Nullity graf sering diacu sebagai bilangan siklomatik atau



bilangan Betti pertama



• Sirkuit fundamental (fundamental circuit) adalah :



 Sirkuit yang terbentuk dengan penambahan sebuah tali-hubung pada pohon merentang



Matematika Diskrit



5



Router



Jaringan komputer



Matematika Diskrit



Subnetwork



Pohon merentang multicast



6



Pohon Merentang Minimum (Minimum Spanning Tree)



• Adalah pohon merentang yang berbobot minimum • Aplikasi misalnya pada :  Jalur rel kereta api yang menghubungkan sejumlah kota



• Algoritma yang digunakan : 1. Algoritma Prim 2. Algoritma Kruskal Matematika Diskrit



7



Pohon Merentang Minimum a 55



b 5



c



45



d



25



a 30



h



20



40



50



15



e 35



f



g 10



Graf yang menyatakan jaringan jalur rel kereta api



Matematika Diskrit



c



b 5



45



25



d



30



h



20



40



50



15



e 35



f



g 10



Pohon merentang yang mempunyai jumlah jarak minimum



8



Algoritma Prim Algoritma Prim : • Ambil sisi dari graf G yang berbobot minimum, masukkan ke dalam T • Pilih sisi e yang mempunyai bobot minimum dan bersisian dengan simpul di T, tetapi e tidak membentuk sirkuit di T. Masukkan e ke dalam T • Ulangi langkah-2 sebanyak n – 2 kali



Matematika Diskrit



9



Contoh a 30



d



10



a



b 50



45



35 20



25



f



Graf G



15



b



d 35 20



e 55



c



10



c



25



e



15



f Pohon merentang minimum dari graf G



Bobot pohon merentang minimum yang diperoleh dengan menggunakan algoritma Prim : 10 + 25 + 15 + 20 + 35 = 105



Matematika Diskrit



10



Tabel Pembentukan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim Langkah



Sisi



Bobot



1



(a,b)



10



2



(b,f)



25



Pohon merentang a 10 b a



10



b



25



f 3



(c,f)



15



a



10



b c



25 15



f Matematika Diskrit



11



Lanjutan Tabel Langkah



Sisi



Bobot



4



(d,f)



20



Pohon merentang a 10 b d



c 25



20



15



f 5



(c,e)



35



a



10



b



d 35 20



c



25



e 15



f Matematika Diskrit



12



Algoritma Kruskal Algoritma Kruskal : (Asumsi : sisi-sisi dari graf sudah diurut menaik berdasarkan bobotnya) 1. T masih kosong 2. Pilih sisi e yang mempunyai bobot minimum yang tidak membentuk sirkuit di T. Masukkan e ke dalam T 3. Ulangi langkah-2 sebanyak n – 1 kali



Matematika Diskrit



13



Contoh Selesaikan dengan menggunakan algoritma Kruskal a a 10 b 30



d



50



45



35 20



d



c



c



35



25



20



e 55



b



10



25



e



15



15



f



f Pohon merentang minimum dari graf G



Graf G



Sisi-sisi graf diurut menaik berdasarkan bobotnya : Sisi Bobot



(a,b)



(c,f)



(d,f)



(b,f)



(a,d)



(c,e)



(b,e)



(a,e)



(b,c)



(e,f)



10



15



20



25



30



35



40



45



50



55



Matematika Diskrit



14



Tabel Pembentukan Pohon Merentang Minimum Dengan Menggunakan Algoritma Kruskal Langkah



Sisi



Bobot



1



(a,b)



10



2



(c,f)



15



0



Pohon merentang a b c d e f



a



b c



d e



a



b c



d e



f



f 3



(d,f)



20



a



b c



e



d f



Matematika Diskrit



15



Lanjutan Tabel Langkah



Sisi



Bobot



4



(b,f)



25



Pohon merentang a b c e



d f 5



(a,d)



30



6



(c,e)



35



ditolak a b e



d



c



f



Bobot pohon merentang minimum yang diperoleh dengan menggunakan algoritma Kruskal : 10 + 25 + 15 + 20 + 35 = 105



Matematika Diskrit



16



Pohon Berakar (Rooted Tree) a



• Adalah pohon yang sebuah simpulnya diperlakukan sebagai akar dan sisisisinya diberi arah menjauh dari akar • Akar mempunyai derajat masuk dan derajat keluar sama dengan nol dan simpul-simpul lainnya berderajat masuk sama dengan satu



b e



f



Sebagai konvensi



a



 Simpul yang mempunyai derajat keluar sama dengan nol



b



• Simpul dalam atau simpul cabang adalah : e h i j Matematika Diskrit



g Pohon berakar



h i j



• Daun atau simpul terminal adalah :



 Simpul yang mempunyai derajat keluar tidak sama dengan nol



c



d



c



d



g f Arah panah pada sisi dapat dibuang 17



Pohon Berakar (Rooted Tree) • Sembarang pohon tak-berakar dapat diubah menjadi pohon berakar dengan memilih sebuah simpul sebagai akar • Pemilihan simpul yang berbeda menjadi akar menghasilkan pohon berakar yang berbeda pula f



e



a



g c Pohon tak-berakar



a



d c



e



g



f b sebagai akar



Matematika Diskrit



g



h a



c



e sebagai akar



18



Terminologi pada Pohon Berakar •











Child atau children (Anak) dan parent (orangtua)  Child dari simpul x jika ada sisi dari simpul x ke y  Parent dari simpul y adalah simpul x  Pada gambar di samping :    



Simpul b,c dan d  children dari simpul a Simpul e dan f  children dari simpul b Simpul a  parent dari simpul b,c dan d Simpul b  parent dari simpul e dan f



Path (lintasan)



a b



 Lintasan dari simpul vi ke simpul vk adalah runtunan simpule simpul v1, v2 ,…, vk sedemikian hingga vi adalah parent dari vi+1 f untuk 1  i  k  Panjang lintasan adalah jumlah sisi yang dilalui dalam suatu lintasan, yaitu k – 1. h i j  Pada gambar di samping :  Lintasan dari a ke j adalah a,b,e dan j  Panjang lintasan dari a ke j adalah 3



c



d



g k l



m



Descendant (Keturunan) dan ancestor (leluhur)



 x adalah ancestor dari simpul y jika terdapat lintasan dari simpul x ke simpul y di dalam pohon  Descendant dari simpul x adalah simpul y  Pada gambar di samping :  Simpul b adalah ancestor dari simpul h  Simpul h adalah descendant dari simpul b



Matematika Diskrit



19



Terminologi pada Pohon Berakar •











Sibling (saudara kandung)



 Sibling satu sama lain adalah simpul yang mempunyai parent sama  Pada gambar di samping :



a



 Simpul f sibling dari e  Simpul g bukan sibling dari e karena parent berbeda



b



Subtree (subpohon)



 Subtree dengan x sebagai akarnya adalah subgraf T’ = (V’,E’) sedemikian hingga V’ mengandung x dan semua keturunannya; E’ mengandung sisi-sisi dalam semua lintasan yang berasal dari x  Pada gambar di samping :  V’ = {b,e,f,h,i,j}  E’ = {(b,e), (b,f), (e,h), (e,i), (e,j)}  b : simpul akar



Degree (derajat)



d c



e



h i



g



f



k



j l



m



 Derajat sebuah simpul pohon berakar adalah jumlah subtree (jumlah child) pada simpul tersebut  Derajat pohon berakar merupakan derajat keluar  Pada gambar di samping :



 Derajat simpul a : 3, simpul b : 2, simpul c : 0 dan simpul d : 1  Derajat tertinggi (maksimum) : 3



Matematika Diskrit



20



Terminologi pada Pohon Berakar • Leaf (daun)



 Adalah simpul yang berderajat nol (tidak mempunyai child)  Pada gambar di samping :  Merupakan leaf : simpul c,f,h,i,j,l dan m



• Internal nodes (simpul dalam)



 Adalah simpul yang mempunyai child  Pada gambar di samping :



 Merupakan internal nodes : simpul b,d,e,g dan k



b



• Level (tingkat)



 Akar mempunyai level = 0  Level simpul lainnya = 1 + panjang lintasan dari akar ke simpul tersebut



• Height (tinggi) atau depth (kedalaman)



 Adalah level maksimum dari suatu pohon  Nama lain : panjang maksimum lintasan dari akar ke daun  Pada gambar di samping :



Level 0



a



e



c



d



1



2



g



f



k



h i j



l



m



3 4



 Pohon mempunyai height atau depth : 4



Matematika Diskrit



21



Ordered Tree (Pohon Berakar Terurut) • Adalah pohon berakar yang urutan children penting • Sistem universal dalam pengalamatan simpulsimpul pada pohon terurut adalah dengan memberi nomor setiap simpulnya seperti penomoran bab (beserta subbab) di dalam sebuah buku 0 1



1.1



1.2



2.1



2.2.1



Matematika Diskrit



3



2



2.2 2.3



3.1



3.2



3.3



3.4



2.2.2



22



Pohon m-ary • • • •



Adalah pohon berakar yang setiap simpul cabangnya mempunyai banyak n buah child (anak) Jika m = 2  Pohon biner (binary tree) Pohon m-ary dikatakan pohon penuh (full) atau pohon teratur jika setiap simpul cabangnya mempunyai tepat m buah child Penggunaan pohon m-ary       



Penurunan kalimat (dalam bidang bahasa) Direktori arsip di dalam komputer Struktur organisasi Silsilah keluarga (dalam bidang genetika) Struktur bab atau daftar isi di dalam buku Bagan pertandingan antara beberapa tim sepak bola dll C:/ My Documents



My Pictures



Winter.bmp Matematika Diskrit



My Music



Fall.jpg



Windows



Program Files



Prop.doc VB6 Office Win zip



Adobe



Cookies



Struktur direktori arsip di dalam sistem operasi Windows



23



Jumlah Daun pada Pohon m-ary Penuh • Pada pohon m-ary penuh dengan tinggi (height) h, jumlah daun (leaf) adalah : mh • Jika T bukan pohon m-ary penuh  jumlah daun  mh • Jumlah seluruh simpul pohon m-ary pada pohon m-ary penuh dengan tinggi h : level 0  jumlah simpul = m0 = 1 level 1  jumlah simpul = m1 level 2  jumlah simpul = m2 … level h  jumlah simpul = mh sehingga jumlah seluruh simpul adalah :



m h 1  1 S  m  m  m  m  m 1 0



1



2



h



• Sehingga jumlah seluruh simpul untuk T bukan pohon m-ary penuh :



m h 1  1 S m 1



Matematika Diskrit



24



Hubungan Jumlah Daun dan Simpul Dalam pada Pohon m-ary Penuh • Misalkan : i = banyaknya simpul dalam t = banyaknya simpul daun di dalam pohon biner penuh m = banyaknya simpul child • Sehingga : (m – 1) i = t - 1 m-ary m1



m



i1



i t



Matematika Diskrit



t1







t2



m2 … …



mn in tn



25



Contoh • •



Kita akan menyambungkan 19 buah lampu pada satu stop kontak dengan menggunakan sejumlah kabel ekstensi yang masing-masing mempunyai 4 outlet. Penyelesaian : Diketahui : t = 19  banyaknya simpul daun m = 4  pohon 4-ary Karena penyambungan merupakan pohon 4-ary dengan stop kontak sebagai akar pohon, maka : (m – 1) i = t – 1 (4 – 1) i = 19 -1 i=6 Jadi dibutuhkan 6 buah kabel ekstensi Stop kontak Outlet 1



k1 k2



Outlet 2







Outlet 3



Outlet 4



k19



Pohon 4-ary pada penyambungan lampu dengan kabel Matematika Diskrit



26







Pohon Biner







Adalah pohon yang setiap simpul cabangnya mempunyai paling banyak 2 buah child (anak) Left subtree (sub pohon kiri) adalah :







Right subtree (sub pohon kanan) adalah :







Skewed tree (pohon condong) adalah :







Skew left (pohon condong kiri) adalah :







Skew right (pohon condong kanan) adalah :







Full binary tree (pohon biner penuh) adalah :







Pohon biner penuh dengan tinggi h memiliki jumlah daun sebanyak 2h , dan jumlah seluruh simpul adalah :



 Pohon yang akarnya adalah left child (anak kiri)  Pohon yang akarnya adalah right child (anak kanan)  Pohon yang semua simpulnya terletak di bagian kiri saja atau bagian kanan saja  Pohon yang condong ke kiri



 Pohon yang condong ke kanan



 Pohon biner yang setiap simpulnya mempunyai tepat 2 buah child (anak), kiri dan kanan, kecuali simpul pada level bawah



Pohon biner penuh



S  2 0  21  2 2    2 h  2 h 1  1 Matematika Diskrit



27



Balance Binary Tree (Pohon Biner Seimbang) • Adalah pohon biner yang perbedaan tinggi antara subpohon kiri dan subpohon kanan maksimal 1 • Pada pohon biner seimbang dengan tinggi h, semua daun berada pada level h atau h – 1 • Untuk membuat pohon seimbang, tinggi pohon secara keseluruhan harus dibuat seminimal mungkin • Untuk memperoleh tinggi minimum, setiap level harus mengandung jumlah simpul sebanyak mungkin



Pohon biner seimbang



Matematika Diskrit



Pohon biner seimbang



Bukan Pohon biner seimbang



28



Pohon Ekspresi • • •



Adalah pohon biner dengan daun menyatakan operand dan simpul dalam (termasuk akar) menyatakan operator Tanda kurung tidak lagi diperlukan bila suatu ekspresi aritmetik direpresentasikan sebagai pohon biner Pohon ekspresi digunakan oleh compiler bahasa tingkat tinggi untuk mengevaluasi ekspresi yang ditulis dalam notasi :  Infix



 Operator berada di antara 2 buah operand



 Prefix (polish notation)



 Operator mendahului 2 buah operand-nya



 Postfix (inverse polish notation)







 Kedua operand mendahului operatornya



Contoh :



 (a + b)*(c/(d + e))  *+ab/c+de  ab+cde+/*



Matematika Diskrit



* +



a



/



b



+



c d



e Pohon ekspresi dari (a + b)*(c/(d + e))



 infix  prefix  postfix



29



Contoh Pembentukan pohon ekspresi (a + b)*(c/(d + e)) * /



+



+



c d







(i)



e



+



d (ii)



a e



+



b



a



(iii)



/



b (iv)



+



c d



e



Urutan prioritas pengerjaan operator :



1. Perkalian (*) dan pembagian (/)  lebih tinggi 2. Penjumlahan (+) dan pengurangan (-)



Matematika Diskrit



30



Pembentukan Pohon Ekspresi dari Notasi Postfix 1. Setiap elemen (operand dan operator) dari notasi postfix yang panjangnya n disimpan di dalam tabel sebagai elemen P1 , P2 , …, Pn 1



2



3



4



5



6



7



8



n=9



a



b



+



c



d



e



+



/



*



2. Tumpukan S menyimpan pointer ke simpul pohon biner (tumpukan tumbuh dari kiri ke kanan) 



Arah pertumbuhan tumpukan



Matematika Diskrit



31



Algoritma pembentukan pohon ekspresi dari notasi postfix



Matematika Diskrit



32



Contoh (1) Terapkan algoritma BangunPohonEkspresiDariPostfix untuk membangun pohon ekspresi dari notasi postfix a b + c d e + / *



1. Mulai dari elemen postfix pertama, P1 , karena P1= ‘a’ = operand, buat simpul untuk P1, push pointer-nya ke dalam tumpukan S



a



2. Baca P2 , karena P2 = ‘b’ = operand, buat simpul untuk P2 , push pointer-nya ke tunpukan S



a



b



3. Baca P3 , karena P3 = ‘+’ = operator, buat pohon T dengan ‘a’ dan ‘b’ sebagai child (anak) + a Matematika Diskrit



b 33



4. Baca P4 , P5 , P6 , karena P4 , P5 , P6 = operand, buat pohon P4 , P5 , P6 Push pointer-nya ke dalam tumpukan S + a



c



e



d



b



5. Baca P7 , karena P7 = ‘+’ = operator, buat pohon T dengan ‘d’ dan ‘e’ sebagai child (anak) +



a



+



c d



b



e



6. Baca P8 , karena P8 = ‘/’ = operator, buat pohon T dengan ‘c’ dan ‘+’ sebagai child (anak) /



+ a Matematika Diskrit



+



b c d



e



34



7. Baca P9 , karena P9 = ‘*’ = operator, buat pohon T dengan ‘+’ dan ‘*’ sebagai child (anak) * +



a



/



b



+



c d



Matematika Diskrit



e



35



Contoh (2) Evaluasi pohon ekspresi berikut : *



+



3



/ +



24



4



8



4



Penyelesaian : Pohon ekspresi dievaluasi mulai dari bawah, tahapan evaluasi sbb : * * *



+



3



/



4



24 8



Matematika Diskrit



+



14



/



7



2



+ 3 4



4



24



1 2 36



Pohon Keputusan • Digunakan untuk memodelkan persoalan yang terdiri dari serangkaian keputusan yang mengarah ke solusi • Tiap simpul dalam menyatakan keputusan • Daun menyatakan solusi a:b a>b



a:b



a:b a>c



c>a>b



c>a>b



c>b



a:b



c>a>b c>b



b>c



b>c



c>a



a:b



b>a



a>c c>a>b



c>a>b c>a c>a>b



Pohon keputusan untuk mengurutkan 3 buah elemen



Matematika Diskrit



37



Contoh Diketahui 8 buah koin uang logam. Satu dari delapan koin ternyata palsu. Koin yang palsu mungkin lebih ringan atau lebih berat daripada koin yang palsu. Misalkan tersedia sebuah timbangan neraca yang sangat teliti. Buatlah pohon keputusan untuk mencari uang palsu dengan cara menimbang paling banyak hanya 3 kali saja Penyelesaian : Misalkan 8 koin itu dinamai a,b,c,d,e,f,g,h. Daun menyatakan koin yang palsu. Pohon keputusan untuk mencari koin yang palsu ditunjukkan sbb : ab = cd {abcd asli}



ab : cd



ab : ef ab = ef ab  ef {gh palsu} {ef palsu} a:g



ab = ef {cd palsu}



ae



ab : ef



ab  ef {ab palsu} a:e



c:e



a:e



aga=e {h palsu} h



ab  ef {efgh asli, palsu ada diantara abcd}



c=e



ce



a=e



ae



a b d c e f {a palsu} {g palsu} {f palsu} {e palsu} {d palsu} {c palsu} {b palsu} g



Matematika Diskrit



38



Prefix Code (Kode Awalan) • • • • •



Adalah himpunan kode (misalnya kode biner) sedemikian hingga tidak ada anggota kumpulan yang merupakan awalan dari anggota yang lain Mempunyai pohon biner yang bersesuaian Sisi diberi label 0 atau 1, semua sisi kiri diberi label 0 saja (atau 1 saja) sedangkan sisi kanan diberi label 1 saja (atau 0 saja) Barisan sisi-sisi yang dilalui oleh lintasan dari akar ke daun menyatakan kode awalan (ditulis di daun) Keguanaan untuk :  mengirim pesan pada komunikasi data  Setiap karakter di dalam pesan direpresentasikan dengan barisan angka 0 dan 1  Untuk pembentukan kode Huffman dalam pemampatan data (data compression) 0 0 0 Matematika Diskrit



1



1



1



0



01



10 11



000 001



1



Pohon biner dari kode prefiks (000, 001, 01, 10, 11)



39



Kode Huffman • • •



Pemampatan data dilakukan dengan mengkodekan setiap karakter di dalam pesan atau di dalam arsip dikodekan dengan kode yang lebih pendek Sistem kode yang banyak digunakan adalah kode ASCII (setiap karakter dikodekan dalam 8 bit biner) Cara pembentuka kode Huffman dengan membentuk pohon biner (dinamakan dengan pohon Huffman) yaitu : 1. Pilih 2 simbol dengan peluang (probability) paling kecil sebagai child kemudian kedua simbol tersebut dikombinasikan sebagai parent peluang penjumlahan dari kedua simbol tersebut 2. Pilih 2 simbol berikutnya termasuk simbol baru yang mempunyai peluang kecil sebagai child kemudian kedua simbol tersebut dikombinasikan sebagai parent peluang penjumlahan dari kedua simbol tersebut 3. Prosedur yang sama dilakukan pada 2 simbol berikutnya yang mempunyai peluang terkecil sebagai child kemudian kedua simbol tersebut dikombinasikan sebagai parent peluang penjumlahan dari kedua simbol tersebut Matematika Diskrit



40



Kode Huffman (Lanj.) • Kode Huffman tidak bersifat unik, artinya kode untuk setiap karakter berbeda-beda pada setiap pesan bergantung pada kekerapan kemunculan karakter tersebut di dalam pesan • Keputusan apakah suatu simpul pada pohon Huffman diletakkan di kiri atau di kanan menentukan kode yang dihasilkan (tetapi tidak mempengaruhi panjang kodenya)



Matematika Diskrit



41



Contoh (1) Representasikan string ‘ABACCDA’ dalam kode ASCII dan kode Huffman







Kode ASCII Simbol



Kode ASCII



A



01000001



B



01000010



C



01000011



D



01000100



String ‘ABACCDA’ direpresintasikan menjadi rangkaian : 01000001010000100100000101000011010000110100010001000001



Representasi 7 huruf tersebut membutuhkan 7 x 8 bit = 56 bit (7 byte)



Matematika Diskrit



42







Kode Huffman Simbol



Kekerapan



Peluang



A



3



3/7



B



1



1/7



C



2



2/7



D



1



1/7



Cara pembentukan kode Huffman : 1. Pilih 2 simbol dengan peluang paling kecil, yaitu simbol B dan D. Simbol tersebut dikombinasikan menjadi simbol BD dengan peluang 1/7 + 1/7 = 2/7 2. Pilih 2 simbol dengan peluang paling kecil, yaitu simbol C dan BD. Simbol tersebut dikombinasikan menjadi simbol CBD dengan peluang 2/7 + 2/7 = 4/7 3. Pilih 2 simbol dengan peluang paling kecil, yaitu simbol A dan CBD. Simbol tersebut dikombinasikan menjadi simbol ACBD dengan peluang 4/7 + 3/7 = 7/7 = 1



Matematika Diskrit



43



Pohon Huffman untuk pesan ‘ABACCDA’ ACBD (7/7) 0 A (3/7)



1



0110010101110



CBD (4/7)



Representasi 7 huruf tersebut membutuhkan 13 bit



1



0



C (2/7)



String ‘ABACCDA’ direpresintasikan menjadi rangkaian :



BD (2/7) 1



0 B (1/7)



Matematika Diskrit



D (1/7)



Simbol



Kekerapan



Peluang



Kode Huffman



A



3



3/7



0



B



1



1/7



110



C



2



2/7



10



D



1



1/7



111



44



Binary Search Tree (Pohon Pencarian Biner) • •



Adalah pohon biner yang setiap key diatur dalam suatu urutan tertentu Digunakan untuk melakukan operasi







Simpul pada pohon pencarian berupa field kunci (key) pada :







Key (kunci) adalah :







Key harus unik, karena itu tidak ada 2 buah simpul atau lebih yang mempunyai kunci yang sama Jika R adalah akar dan semua key yang tersimpan pada setiap simpul tidak ada yang sama maka : :







 Pencarian  Penyisipan  Penghapusan elemen  Data record atau  Data itu sendiri



 Nilai yang membedakan setiap simpul dengan simpul yang lainnya



 Semua simpul pada subpohon kiri mempunyai key lebih kecil dari key R  Semua simpul di subpohon kanan mempunyai key nilai lebih besar dari key R R



Matematika Diskrit



T1



Key T1 < key R Key T2 > key R



T2



45



Contoh Gambarkan ke dalam pohon biner pencarian untuk data masukan dengan urutan sbb : 50, 32, 18, 40, 60, 52, 5, 25, 70 • 50 32 18 5



• •



60 40



52



70







25 Skema pohon pencarian







Matematika Diskrit



Simpul di subpohon kiri 50 mempunyai key lebih kecil dari 50 dan simpul di subpohon kanan mempunyai key lebih besar dari 50 Pencarian selalu dimulai dari simpul akar Simpul di akar dibandingkan dengan nilai yang dicari (x). Jika kunci di simpul akar tidak sama dengan x, pencarian dilanjutkan di subpohon kiri atau subpohon kanan, bergantung pada nilai x lebih kecil dari key di akar atau x lebih besar dari key di akar Pembandingan dilakukan sampai nilai x sama dengan nilai suatu key atau tercapai sebuah daun



46







Traversal Pohon Biner



Misalkan T adalah pohon biner, akarnya R, subpohon kiri T1 dan subpohon kanan T2 maka ada skema mengunjungi simpulsimpul di dalam pohon biner T : 1. Preorder



 Kunjungi R (sekaligus memproses simpul R)  Kunjungi T1 secara preorder  Kunjungi T2 secara preorder



2. Inorder



 Kunjungi T1 secara inorder  Kunjungi R (sekaligus memproses simpul R)  Kunjungi T2 secara inorder



3. Postorder







 Kunjungi T1 secara postorder  Kunjungi T2 secara postorder  Kunjungi R (sekaligus memproses simpul R)



Proses yang dilakukan terhadap simpul yang dikunjungi misalnya  mencetak informasi yang disimpan di dalam simpul  Memanipulasi nilai, dll



Matematika Diskrit



47



Skema Mengunjungi Pohon Biner PREORDER



Langkah 1 : Kunjungi R



R



T1 Langkah 2 : Kunjungi T1 secara preorder



T2



INORDER



Langkah 3 : Kunjungi T2 secara preorder



R Langkah 2 : Kunjungi R



T1 Langkah 1 : Kunjungi T1 secara inorder POSTORDER



T1 Langkah 1 : Kunjungi T1 secara postorder



Matematika Diskrit



R



T2 Langkah 3 : Kunjungi T2 secara inorder



Langkah 3 : Kunjungi R



T2 Langkah 2 : Kunjungi T2 secara postorder



48



Penulusuran Pohon m-ary •



Preorder :







Inorder :







Postorder :



 Kunjungi R  Kunjungi T1, T2, …, Tn secara preorder



 Kunjungi T1 secara inorder  Kunjungi R  Kunjungi T2, T3, …, Tn secara inorder  Kunjungi T1, T2, …, Tn secara postorder  Kunjungi R R Skema pohon m-ary



T1



Matematika Diskrit



T2







Tn



49



Contoh (1) Tinjau pohon biner T di bawah ini : A B D



C E



H



F



G I



J



Lintasan : • Preorder : A, B, C, D, E, F, G, H, I, J • Inorder : D, B, H, E, A, F, C, I, G, J • Postorder : D, H, E, B, F, I, J, G, C, A



Matematika Diskrit



50



Contoh (2) Tinjau pohon ekspresi di bawah ini : * + a



/



b



d c



* e



Lintasan : • Preorder : * + a / b c – d * e f • Inorder : a + b / c * d - e * f • Postorder : a b c / + d e f * - *



Matematika Diskrit



f



(prefix) (infix) (postfix)



51



Contoh (3) Tentukan hasil kunjungan preorder, indorder dan postorder pada pohon 4-ary berikut : a



c



b e n



f



g



h



d i



j k l



o



p



m q



Lintasan : • Preorder : a,b,e,n,o,f,g,c,h,i,d,j,k,l,p,q,m • Inorder : n,e,o,b,f,g,a,h,c,i,j,d,k,p,l,q,m • Postorder : n,o,e,f,g,b,h,i,c,j,k,p,q,l,m,d,a



Matematika Diskrit



52



Latihan Soal



Matematika Diskrit



53