Solutions Gas Turbine Theory 4 PDF [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Lecturer's Solutions Manual



GAS TURBINE THEORY 4TH EDITION



by



H Cohen, G F C Rogers and H I H Saravanamutoo







© Addison Wesley Longman 1 9 9 6 Lecturers adopting the main text are permitted to photocopy the pack as required.



Preface



·



Since



for



the



introduction



solutions



processing



properly



All



systems



printed



problems



involved.



done



is



to



It



calculations



is



This



then



students



be



very



I



will



glad



am



C ar l e t o n



gas



the



received.



now



and



made



I



am



turbine



by



digital



an



perhaps



Second



Edition



The



it



glad



to



do



calculations



computer



originally



historical



done



on



a



1972



advent



convenient



u n d e r s t an d i n g



of



in



of



to



requests



modem



p r e p ar e



word



these



in



a



so.



c arr i e d



and



of



out



the



the



rule



in



i n d u s t ry



p u rp o s e



of



engineering



s i g n i fi c an c e



slide



many



and



that



these



principies



all



many



are



of



were



these



former



questions.



m an u a l



are



has



provide



were



examination



been



format



s i g n i fi c an t



universally



who



have



of



will



be



available



p e rm i tt e d



tackle



to



h e ar



indebted



to



the



of



to



U n i v e r s i ty ,



to



photocopy



problems



any



Mr



for



instructors



the



befare



corrections



P.M.



his



adopting



material,



looking



but



a t



the



it



the



is



main



text,



hoped



manual.



I



that



will



needed.



Reddy,



formerly



invaluable



a



graduate



as s i s t a n c e



in



student



p r e p ar i n g



at



this



manual.



H.I.H.



SARA VAN AM U T T O O



Ottawa,



Gas Turbine Theory



F e b r u ary



1 9 9 6



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



1996



















Problem 2 . T



4



5



LD A D



ir,



( -, - 1 )



To2 - T. = :� ( ( �:)



'



-



1]



288 [ 1 1 f.! - 1] = 345.598 K



= 0.82



Compressor and turbine work required per unit rnass flow is :



Wtc



=



C,,a(To2 - Ta)



=



Cp,(Tos - To4)



'7m.



1.005



Ta3 - Ta4



X



=



345.598



=



x 1.147



308.992 K



0_98







Ta4 = 1 1 5 0 - 309 = 8 4 1 K 1�'



"""



Po.)



To3 - To• = 'IT To3 [1 - ( p



l



03) 1



3 08 . 9 9 2 = 0 . 8 7



X



1150



Pog 3



Po



=



) ¡]



/ l



[1 - (



Po4



4.382



Pa4



Pa3 = 1 1 . 0 - 0 . 4 = 1 0 . 6 bar



Pa4



=



2.418 b a r ,



P o s = r, 1



Ta4 - Tas = 0.89 x 8 4 1 [1 - (



)



t]



= 148.254 K



2.418



Gas Turbine Theory



4th edition e ADDISON WESLEY LONGMAN



ISBN: O 582 23632 O



1996 �



lspecific power output ·:



WN



= 1 . 1 4 7 x 0.98 x 1 4 8 . 2 5 4 = 1 6 6 . 64 k W s/Kg



. H c n c e mass flow required



20



X



l a3



=



=



1 2 0 . 0 1 9 Kg/Sec



1 66 _ 6 4



To2



=



+



288



To3 - To2



=



3 45 . 6 = 633.6 K



1 1 5 0 - 633.6 = 5 1 6 . 4 K



Theoretical f = 0 . 0 1 4 1 5 ( from



Fig.



2.15 )



Actual f = 0 . 0 1 4 1 5 / 0 . 9 9 = 0.01429



i



. S . F . C . = 3:0/ = 3600 x 0 . 0 1 4 2 9 = 0.308 kg/kW-h N



Gas Turbine Theory



1 66 . 6 4



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



1996



ij







I



Problem 2.8



T3 = T or T



and let e



+



sr



= (P Pi2 ) � =



Compressor



=



work



(Ps)7 p_.



T1 Q C p - ( c - 1)



'le



= ( Q - éi.Q)Cp Ts



Turbine work



= ( Q - e:.. Q )



Heat supplieci



� But T3 - Ts



=



then heat supplied



. W ith



=



Ts - T�



.



e,



'11



(1-



D



when T3 = T



+ sr



(Ts - Ts)



Ts '11



(1 -



= ( Q - éi. Q ) e, (Q - e:.. Q ) ( T



�)



Ts n« ( 1 - � )



+ e:..T) f'Jt



(1 -



i) -



(T3



=



T + éi. T )



Q 1i ( c - 1)



coolmg : ,., =



'7c



( Q - e:.. Q ) ( T •



+ e:..T)



f'J t ( l -



i)



T



1



T 'lt ( 1 - -) - .!..1. ( c - 1) Without cooling : '1 =



e



'7c



T 'lt ( 1 -



l)



These efficiencies are equal w hen:



( Q T 1 / '1 c ) ( c - 1 )



��







(Q - e:.. Q ) ( T



_



+ e:.. T ) 'l t ( l - �) -



Gas Turbine Theory



(T¡/r¡c)(c - 1 ) T 'l t ( l -



l)



n



4th edition



ISBN: 0 582 23632 ()



© ADDISON WESLEY LONGMAN 1996



l::!:i



i



_·.!_



1



+



( 1 - �)(T



6T) - T



6Q or



T



1 - - = - - -



Q



T+6T



6Q



6T/T



Q =



+



.



ó.T /T



and mdependent of r7c & '7c:



1



e = 6i.J' = 1 . 66 8



for the given plant :



1 e - 1



=



& ( 1 - -) e



0.668



=



0.401



W i t h cooling :



_ l _



T1/'1c:(c - 1)



11



i



-



(1·-



�)(1



= l _



+ �)



t)



T '1 t ( l -



= l _ 0.516



(288/0.87)(0.668)



11 0.95



X



1.25



X



1000



X



0.9



0.401



X



11 = 48.40%



Without cooling:



1J



=



l _



1 00 0



( a)



=



(288/0.87)(0.668) X



0.9



X



38.72%



0.401



T h e percentage increase in efficiency :



9.68



=



� = 2 5 . 0 0 ;1 0



38.72 L)\Vithout c o o l i n g the specific power output



1



i v N = C p [ T 11 t ( l - � ) - T ( c - 1 ) ] e '7 c 28�



=



Cp [ 1 00 0



X



0 . 90



X



0.40 -



X



0.668]



0.8,



=



1 3 8 . 8 6 8 Cp C h u / l b



\Vith c o o l i n g specific work o u t p u t :



ivN



=



cp [ ( 1 - il Q ) ( 1 + ó.T ) T 11 t ( l - �) - Ti ( e - 1 ) ] T



Q



= Cp [ ( 0 . 9 5



1'



X



1.25



X



1 00 0



e



X



0.9



X



1J c



288 0.401) . 0.87



X



0.668]



= c p ( 4 2 8 . 5 6 8 - 2 2 1 . 1 3 1 ) = 2 0 7 . 4 3 7 cp Ch u/lb



Gas Turbine Theory



4th edition



ISBN: 0 582 23632 0







© ADDISON WESLEY LONGMAN 1996



E::::j



i}(b) The percentage in�rease in speci.6.c work output



68.569



=



=



49.3%



138.868



Plant with no heat e x ch an g e r :



Gain in specific work output would be unchanged.



ficiency



requires



would



be



a much



much



greater



less,



because



increase



a rise



of heat



in



input



cycle



in



the



Gain in ef­



temperature



combustion



chamber than is the case when a heat exchanger is fitted.



In other



11,words, if no heat exchanger is fitted, the higher temperature of the



exhaust gases is wasted.



N.B.:



[ 1 - 1 / ( l - �)(1 % increase in



+



�>]



efficiency: =



[(T/T1)(r¡ 0 r¡,/c) -



1]



% increase in specific work output:



[ ( 1 - AQ/Q)(l



[ 1 - (T1/T)



Gas Turbine Theory



+



AT/T) - 1]



x ( e/ r¡ 0 r¡,)]



4th edition



ISBN: O 582 23632 O



© ADDJSON WESLEY LoNGMAN 1996







o











illiproblem 2 . 9



8LEE..!> ¡.



·(



1



1



f



4 288



�oz -



r,



=



[ 3 . 8 /�



= 157.3 K



- 1]



0.85



= 3 . 8 0 - 0 . 1 2 = 3 . 6 8 bar



?03



?03



= 3 . 68



r. 1



T03



-



T04 = 1050 x 0.88 [ 1 - ( 3 . � 8 ) ']



= 256.87 K



N et work output



_



iv - 1J m (Load)



[(



m -



) ( mCpa(Toz - Ta) l me Cpg To3 - To4) - _....;.._ ...;_



n-« m ,00 = 0 . 9 8



[



(m - 1 . 5 )



X



1.147



X



X



( c o m. p . r o t o r )



1 . 00 5



X



15i.3]



256.87 0_99



2 00 = 2 8 8 . i 3 m - 4 3 3 . 1 - 1 5 6 . 5 m



m = 4.i88 kg/sec



(a)



W i t h no bleed fíow:



N e t work output



_ _ [ ... " _ 1.005 X 1 5 7 . 3 ] - 0.98 x 4 . , 8 8 1 . 1 4 , x ... 5 6 . 8 , - ----0.99 = 6 3 3 . 1 1 k\V



(b)



T h e power output with no b l e e d = 6 3 3 . l l k\V.



m, Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



e ADDISON



WESLEY LONGMAN



1996







_.







�roblem 2.10



lk.1



t_----1_







H.E



�------



7



s



R



F======�HP�t==========�T



LP�



,__ �-----2 '



3



n - 1



1



= -



For compression : n .



4



(1 -



=



1)



1)



=



'l oo t



n



0.66



=



= 0.4518 0.88



1



'7ooc



1



n -



For e x p a n s i ó n :



(1 -



0.88



X



X



1.66



0.66



=



0.3498



1.66



1 1



To2 - To1 = Ta1 [ ( P Poi o2)



":



- 1



=



To• - To3 = 300[2°-•sis - 1]



Q



500



To6 - Tos = C = m



.·.



=



T06



=



[



o 4518 l 2 · - 1 = 114 K



(given)



3



10



X



=



· · . 180



p



310



110.3 K



and To5 = 700 K



To4 = 4 1 0 . 3 K







]



X



535.2 K



5.19



1235.2 K



Po3 = 2 x 1 4 . 0 - 0.34 = 27.66 bar



Po4



=



2 x 2 7 . 66



=



5 5 . 3 2 bar



Pos = 5 5 . 3 2 - (0.27



Po1



=



14.0



+



0.34



+



+



1 . 0 3 ) = 54.02 bar



0.27



=



1 4 . 6 1 bar



P o s = 3.697 Po1 3498]



1



Tos - To1 = 1 2 3 5 . 2 [1 -



(



) o.



= 453.3 K



3.697



iTo1



= i81.82 K



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



© ADDISON WESLEY LoNGMAN 1996







ltower output



=



=



mcp [2.T061 -



= 180 X 5 J 9 x 229.0



ÁT034 - Á T 0 1 2 ]



2 1 3 99 6 kW or 2 1 3 . 9 96 MW



. Therrnal e ffi ciency



%



2 1 3 . 996



=



= 0.4279 or 42.8 500



H . E . effectiveness



=



Tos - To.



To1 - To.e



=



700



410·3



=



-



O. 7798 or 78%



7 8 1 . 8 - 410.3



n �



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



1996











C3



=



=



336.87



=



p



pCr



1.596



2.755



2.41



1 99 . 5



1.140



1.581



2.78



2.43



177.5



1.140



1.581



2.78



2.43



176



7 2 . 4 m/s,



T3



=



399.1 K



= 3 3 6 . 8 7 m/s



� a = J 1 . 4 x 0.287 x 399.1 x



M



P,



To/T, Po/P,



10



3



= 400.44 m/s



0.841



4 00 . 4 4 ,



72.4 tan B = . 329



=



0.22



f3 = 1 2 ° 2 4



a



• Gas Turbine Theory



4th edition



ISBN· O 582 23632 O



© ADDJSON



WESLEY LONGMAN



1996







�, •



fim) Problem 4.5



T O?:/



-



.



1/



------- �,







� lll'



288



.6.To13 =



[



o 286 l 4 · - 1



= 175.1 K



0_80 pqU:2 2



.6.To13 = X



Cp



. ' .



U2



10



U:2



_



2



-



= 175.1



3



1.005



X



175.1



X



l . 0 4 x 0 . 90



103



_



..



s



-l.8,6x10



m/s



= 433



433



= 0 . 68 9 m



d = íT



To3



=



200



X



+



= 175.1



To2



. M At tip =l.O



2 8 8 = 4 63 . 1 K 2



'T1



= 'l



a= �



C2



v' l . 4



= a =



463 . 1



.l 2 = T 0 2 x



0.287



X



393.7



+



385.9



X



1



X



. =385.9K



1.2 103



m/s



��'7'



C2w = 0 . 90



X



U2



=



0 . 90



433



X



c?r



= 393.72 - 389.72



C2r



= 55.97



=



=



389.7



m/s



3133.6



m/s



W i t h a 50% loss in impeller



, 11 1 = 0 . 9 0



1



.6.T 012 = 0 . 90 x 1 7 5 . 1 = 1 5 7 . 5 9 K 5 Paz



� =



[



1



+



157.5913·



ro1



Gas Turbine Theory



= 4 . 60 7 288



.



4th edition



ISBN: O 58?. 23632 O



©



ADDISO� WESLEY LONGMAN



1996







Po2 = 1



-



p;



Po.,



('



=



+ 1) �



=



4.607 bar



3·5



=



= 1.2







1.893



2 _ 4.607 _



p. 2



_



-



1 00



1 . 8 9 3 - 2 . 4 3 4 bar X



P'l - 0.287



m



4.60'T



X



2.434 385.9



X



= P Ac2r



. .



=



A .



2·198



14.0



=



.1138 1r



x



2



= 0.1138 m 2.198



h =



3



kg/m



X



55.97



_



x 100 - 5.257 cm 0_689



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



© ADDISON WESLEY LONGMAN 1996







t



Problem 5 . 1



• l o 8 · I



I S o



200



D



mOAC10 = mCr,AT



At m e a n 'radius,



1 . 00 5 .'.



ACw



X



=



20



10



X



3



=



X



m/s



108.1



200



0_93 2 00 - 1 0 8 . 1 Cow



=



=



45.95



m/s



22 45.95



tan a0



=



=



0.307



150 ,



200 - 45.95



=



tan a1 =



1 . 02 7



ª1



= 45º44



150



With free vortex, Cwr



=



constant i , e .



Cwu



=



constant



2So



Tip Cow



X



.'.



2 5 0 = 46.0



X



Cow = 3 6 . 8



Gas Turbine Theory



200



m/s



4th edition



JSRN: O 582 23632 O



e ADDISON



WESLEY LONGMAN



1996







-A C



=



.ó.Cwu



constan] . ' .



u



_



1 08 . 1 x 200 _ 86



w -



-



_:/ . 4 m s



250



º • ao = 1 3 46



36.8



= 0.245,



tan ao = 150 ·



.



250 - 36.8



• 0



tan



= 1.421,



=



a1



= 54 53



a1



150 250 - (36.8 tan



+



86.4)



, 0



= 0.845,



=



a2



= 40 1 4



a2



150



+



36.8 tan



86.4



,



=



=



a3



0.821,



a3



=



39°26



150 \ 4 4



.·\



·-



\



\ '



\./ -




- 1 4 4



I S O



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



1996







..,



I







Problem 5 . 3



With no inlet guide vanes the inlet velocity is axial.



(a)



e



V



140 x 140



_ "88 _



T



-



1



-



X



2



1.005



X



B ,,



_ 27



- -



1 03



a =



.JilIT =



.'.



V = 0.95 x 3 3 4 . 4 = 3 1 7 . 7 m/s



v



2



= u



2



V l . 4 x 0 . 2 8 i x 2 7 8 . 2 5 x 1 03



2



+ c



. ' .



U



K



.-5



u



.- .



=



2



=



2



311.1



2 -



=



140



=



3 3 4 . 4 m/s



81333.3



2 8 5 . 2 m/s 285.2



x D x N







=



285.2



=



D



.'.



= 1í







.'.



(b)



Po



- -



P



3·5



(T º) -



-



T



-



-



0 . 90 8 m



100



= 0.454 m or 4 5 . 4 0 cm



Tip radius 3·5



,w



X



288



(



)



- 1 1"8 . ..



2 7 8 . 25



1.01 P =



= 0 . 8 9 5 bar 1.1�8



P



=



0.895



o



Dhub



A =



·-



I



9-3



X



- I



= 0.60



:íT



(



= 1.l2l



1 00



X



11 3 -



k CJ' / m 3 o



11 • ..;.�







0.908 = 0 . 5 4 5 m



X



.,



")



0.908· - 0.545·



.,



= 0 . 4 1 4 3 m"



4 m



=



1 . 1 2 1 x 0 . 4 1 4 3 x 140



=



6 5 . 0 2 or m



=



65 k g / s



3·5



Po2 ( e)



- =



[ 1



+



0.89 x 2 0 ]



= 1.2335



Poi



288



D Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



19%







.



D ( el)



At the root we have axial inlet velocity .



Free vortex gives con­



stan t work at all radii and constant axial velocity. --' - · ·



1 7 1 ·



U h = 0 . 60



1



m/s



285.2 = 1 7 1 . 1



X



1



=



mU �Cwn l 03



mCp�T 3



_



Cp�T x 10



� e,,, -



3 _



1.005 x 20 x 10 171.1



171.1 a1



=



=



. . .



1.2221



X



s



0.93 I



o



a1



/ .3 m



-



un tan



126



_



-



=



50



44



140 171.1-126.3 tan



a2



=



,



=



0.320,



a2



=



0



17



46



140



At tip



C)



�Cw



=



126.3



X



0 . 60



=



75.78



285.2 tan



a1



=



. . .



= 2 . 03 7 1



m/s º a1



=



63



, 50



140 285.2 - 7 5 . 7 8 tan



o-







Power input



,



=



=



1.4958,



a2



=



0



56



14



140



= 65 x 1.005 x 20 = 1 3 0 6 . 5 k\.V



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



© ADDISON WESLEY LONGMAN 1996







!ffl'Problem 5 . 4



n-l



-



n



-



To2







O 325



� 0.88 -



·



= ( 4.0)o.32s = 1.569



To1



�Ton= 2 8 8 [ 1 . 5 6 9 - 1] = 163.9 K



1 63 . 9



=



N um b er of stages



=



6.556



i.e. 7 stages



25 6. T



1 63 . 9



=



f



=



2 3 . 4 K/stage



1



stages



# o



288



Tout



(DF'or first stage



:



- T¡n



=



1.0812



Ti«



=



=



23 . 4 _ 08 - l. -12 288



325



(R)º·



288



+



R¡irJt



• '.



F or last stage



Tout



+



= 1.271



:



1 63 . 9



=



451.9 K



4 5 1 . 9 - 23.4 = 428.5 K;



Tout



= 1.0546



r: =



1.0546



325



(R)º·



Rza.,t = 1 . 1 7 8



!' I



/



'



·



1



/• . . •



,



/



>--�



_,,,,/_/ I



I G S



.N-c = 1022 - 0 . 0 1 x 1 1 8 = 1 0 0 9 . s K 2 p



Poi



8.0



8.0



P« =



l, .



= 4



(T



01



/T�)



(1200/1009.5)



Gas Turbine Theory



4



= 4.008 bar 1.995



4th edition



ISBN: O 582 23632 O



©



ADOISON WESLEY LONGMAN



1996







49



e, 2



p



4.008



=



0.287



X X



1 00



k







1 02 2



=



1.366



m



/ g



3



m



36



=



C a :: = C2A3



= 348 m/s



(agrees with



given 346 m/s)



1 . 3 6 6 x 0.0756



At the root, for free vortex design, we ha ve:



rm = 0.2037 = l . l 7 r;



0.1741



( C w 2 ) ,.



=



(C,a::)m



rm r;



X



=



537.6



Ca:: is constant at 346 m/s.



X



1.17



=



629 m/s



Hence:



D C2,. = V629



2



+ 346



2



= 7 1 7 . 9 m/s



2



718



T2,.



=



=



1200 -



975.3 K



2294 320



U,.



= - =



273.5 m/s



1.17



V:z,.



=



J ,...... 3 4 _ 6 _ _ + _ ( _ 6 2 9 2 7 3 .5 ) 2 2



=



a2,.



=



V,RT2r = J 1 . 3 3 3 X 0 . 2 8 7 X 975.3 X 10



496.1 m/s



3



=



6 1 0 . 8 6 m/s



496.1 ( Mu2 ) ,. =



= 0.812 6 10.8 6







�ill1v'



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



© ADDISON WESLRY I.Ol'GMAN 1996















�_,,roblem 7 . 4



\J



1



1



V



0:2



=



constant



=



Cwzr



(1)



(2)



constant



Ca-:. = Cw2 cot



From ( 2 ) , since



c.zr =



constant



c.2



and



0:2



= ( c.2)m



( r;) 2



Also U = Um. (



.!.._) rm



2



u - = tan



Now, �



0:2



tan f32



-



Caz 2



tan f3-:. = tan



0:2



-



Um



(.!.._)



(Ca2)m



rm/



2



tan a: :: = ( t a n a: -:. ) m. = tan 5 8 º 2 3 ' = 1 . 6 2 4



Um.



(



)



,



=



tan 5 8 ° 2 3



, - tan 2 0 º 2 9



=



1 . 6 2 4 - 0.37 4



=



1.25



Ca: m



( � . B . F l o w c o e ffi c i e n t ( C 11 / U ) m = 0 . 8 far this mean diameter design)



2



H e n c e tan f32 = 1 . 6 2 4 - 1 . 2 5 ( � ) rm



Gas Turbine Theory



2



4th edition



ISB?\T: O 582 ?3632 O



e ADDISON



WESLEY LONGMAN



!996 �



.::n •



1







h>



/h



(�)2



(�);



tan



root



1.164



1.357



0.709



35°20'



tip



0.877



0.769



o







/J2



W e therefore ha ve un twisted nozzles.



Cw2r== constant where x = sin



202



= sin



258°231



= 0.726 With



o 2 =constant, we also have C 02 r==constant.



�ence



C02



= (C



0



2)m (



r�):



This with



U = Um.



yields



( �)



rm



2



r



tan



/J2



. tan 02 -



(-



):+1 ( M )



rm



e a2



2



m



1



root



1 . 3 00



0.662



33°30



tip



0.797



0.056



3º12



1



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



e ADDISON



WESLEY LONGMAN



1996











�oblem 7 . 5



Assuming isen tropic expansion,



A v'2G; m =



X



R



For t h e g i v e n inlet conditions m is a m á x im u m when



(Ti



2



- �T



1 -



) T ( J - ..., ) / ( -r - 1 ) - 1 + 1 T./.. 1



w



01



1



3



1



3TJ



=O i.e. when:



= O



3



1 ?



T3 =



(To1 - .ó.Tw)



._



1 + 1



lence,



writing K



= A�



X



�(��-l) 01



( T o 1 - !);.T



� [ ( ) ., 1



w



But



CP R



=



2



) ., : 1



(



) ., : 1



2



-



1 + 1



1 + 1



(



2



\ l J



1 + 1 1



1



, - 1



Gas Turbine Theory



4th edition



ISBN: O 582 ?.3632 O



©



ADDISON WESLEY LoNG"AN



1996











, AP01



m



ma:



A ,r,



(,r, �01



----



r,h/'l-1)



- u�



)



l.±! ( 2



..,-i



111



v'Tcñ



AP01



2



i ( R



)



¡



) :r�i (l _



+



�T"')



1



2 :;-=-i ( j



-



1)



l.±!



( ; + l ) .., - 1



R ; - 1



01



m ma :z:



I



-



1



4!! rJ¡+



T01



h-l)



r. b + l h - 1 ) 01



mma:z: v'Tcñ AP01



Hence



1- ( ( 2 ) (l _ � T ., ) ] � ;+



R



maximum mass



1



flow will vary



9varies with Poi/ Pos-



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



To1



with



N/v'Tcñ



because



�Tw







�roblem 8 . 1



Note :



In the problems for Chapter 8 , we are dealing with stagnation conditions at



all times and the su.ffix



'O'



has dropped throughout.



( o \o"'f' p



33-4



Flow compatibility is expressed by :



m� =



my"T;



P3



X



P3



P1



X



P1



{Ti



V ;¡;



and:



P3



��



p;



6.903







5.0



34.515



32.9



4.i



32.444



33.8



4.5



31.064



34.3







Frorn curves, equilibrium poin t is a t :



p.,



p:



=



4.835,



my'Tí = 3 3 4 P1



Gas Turbine Theory



.



n, =



0.795



'



4th edition



ISBN: O 582 23632 O



e



ADDISON WESLEY l,ONGMA.:



1996







1



.



Ps



- = 0. 95



X



4.835 = 4.59



P1



and from turbine characteristic graph : 'lt = 0.8497



33.4 x 1.01



m =



.



K = l . 98 8



Mo'o



/ g



s



v288 1



= mCpgAT3,c - -mCpaAT12



N et power output



'lm



1



Poutput



D



= 1 . 98 8



X



.



- 1 . 98 8



1.147



X



X



1 . 00 5



0.8497



X



288



X



[



1 1 0 0 [ 1 - (-1-) 4.59



1



( 4.835) D°



-



1



¡]



l



0.795



Poutput



= 6 7 5 . 1 8 9 - 4 1 1 . 6 2 0 = 263.989 Kw



Net power output



Gas Turbine Theory



ISBN: O



·"S2



=



264 Kw



4th edition



23632 O



©



ADDISON WESLEY LONGMAN



1996







.







Problem 8 . 2







¡



2 - 2 7



?3 r = -



and



f'J t



=



0.85



?-4



1



?3/?4



(?3/ ?4) r



ó.T3,4/T3



T,4/T3



vT•7T3



m,/T;,/ ?3



my'T¡/P•



2.00



1.189



0.135



0.865



0.930



88.2



164.05



2.25



1.2247



0.156



0.844



0.918



90.2



186.31



., �o .... . o



1.257



0.174



0.826



0.909



90.2



205.0



D



mvl'i



= 188



?4



when



?3 - = 2.270



(graphical solution)



?4



.



m� = 9 0 . 2



?3



�T3 T



4



= 0.85



[



Gas Turbine Theory



1 -



(



1



)



il =



0.1575



2.27



3



4th edition



ISBN: O 582 2�632 O



� ADDISON WESLEY LONGMAN



1996







'rom compatibility oí ffow :



{f;







;!;¡



1



= 90.2



Y Ti



e:



m



1



(A) P1



compatibility of w o r k :



sr sr T3 Cpgf'Jm - = -T¡



T3



6.T12



T1



e;



0.1575



T1



1.147



T1



T3 0.1762T1



. . . . . . . . . (B)



1]



P1



'7e



P1



0.98 T3



1.005



(�) 0.286



( mv'T1} �



X



=



�[(P2)0.2ss -



=



X



=







R- ( =



tlfi¡'l



(!







(A)



*



(



0.1 �62 ) {



*))



(B)



ffiflS



'"�.2



220



2.13



4.54



0.82



1.602



0.734



4.17



5.0



236



1.91



3.65



0.83



1.584



0.704



3.99



4.8



244



1.77



3.15



0.82



1 . 5 66



0.690



3.92



P2 Pi



hence



=



5.105



and



T3 Ti = 4 . 06 ,



from



graphical



solution



T3 = 1 1 7 0 K



Gas Turbine Theory



4th edition



ISBN: O 582 23632 O



©



ADDISON WESLEY LONGMAN



1996







� 1 ¡h ,c



'rro







bl em 8 . 3



At outlet of gas generator turbine



fj¡



m..;r; = my'Tj° x Ps x



r,



and



·



P3



�:



=



Y



P,.



1 - ,¡, [ 1 -



"f;



c ;P.fl 3



_ m .¡r¡ _ 4 T= my'Ti x _ P 3 { l _ 'lt [i _ (



P3



P4 TJ t



=



1



)



il } !



P3/ r,



P,..



0.85



1 · --------------------------------



l



(�) t



( -







1



)



i



{ 1



P37P,



-



'1t [ 1



-



(



p 3�



p.)



il }



t















1.3



1.0678



0.064



0.972



20.0



25.27



1.92



1.5



1.1067



0.097



0.958



44.0



63.22



1.664



1.8



1.1583



0.137



0.940



62.0



104.90



1.387



T h e value of P4/ Pa in the table is found from Pi



�n �a



P4 P3 P: = - - -?3 P-:.



r,



P4



= --



X



0.96



X



2.60



P3



',,, 3 3. t .



=



r, 2 . 4 9 6 -­ P3



º "'



t



I



e le



H e n c e curves - from which power t u r b i n e pressure ratio is r = 1 . 5 5



1



Gas Turbine Theory







4th edition



ISBN: O 582 7�632 O



© A•JDISON �ESLEY LONGMAN 1996







flnd gas generator turbine pressure ratio r = 1 . 6 1



Use work compatibility equation to find T3



T1 must be given .



Compressor efficiency from compressor characteristic once oper­



ating point found from "''(;1



= "''(;3 x �



X



¡Ti;



where T3 unknown, so trial and



error method required.



Gas Turbine Theory I S P. N :



O 582 'B612



i



1



'



j



1



4th edition O



.



.



1



j



'



© ADDISON WESLEY LONGMAN 1996



n







�Problem 8 . 4







�H}1



For gas generator turbine



and rJ t is constant.



mi{i



Thus :



=



« �)



frorn gas generator turbine characteristics.



Since power turbine is choking at all conditions considered, the gas generator turbine Dis operating at a fixed pressure ratio and hence fixed value of � :;; • .



At 95 % of speed, work compatibility yields



( a)



At 100 % s p e e d we have sirnilarly :



1



� '&



T �



3'4



=



CpaTl [ 4 . 6 3 . l>



- 1)



C



pa = _;..



rJ m. C p g 0 . 8 5 9



But:



_



rJ m C p g 0 . 8 5 9



(�T34)



1075



T1 0 . 5 4 6 5



9 5 % .s p e e d



( il T 3 4 ) T3 1 00 % .s pe e d



Therefore ;



T3 = 1 0 í 5 x



º·



0·863



5455



0.486



0.859



(b)



95



= 1214.5 K.



x



% mechanical speed at 273 K .



Gas Turbine Theory



4th edition



ISBN: O 58?. 23632 O



0



Jri:



�·95vm



(% design)



= 97.57 %



From the operating line � = 439,



273



285



6.T =



[4.29°·



-



R



= 4.29 and '7 e = 0.862



1 ) = 1 6 3 . 6 K.



0_862 439 m



=



X



0.76



y'273



= 20.19 Kg/s.



273 Power = 20.19 x 1.005 x 1 6 3 . 5 = 3 3 1 8 Kw.



4 3 3



- z�



-



I



o c,



1



Gas Turbine Theory



:



4th edition



ISBN: O 582 23632 O



©



ADDIS01' WESLEY LONGMAN



1996 �



1











i ili! P r o b l e m



Work



At



8 . 5



compatibility



design



point



yields



:



:



1



[ 4 :n- - 1 ] l



[ 1 - ( t ) Ll l



1 � = me - m b



mb



=



= 0.6622



1 - 0.6622



=



=



0.3378



mb vT i / Pi



m c vf 1 / P 1



m,



Therefore



at



design



point



:



m b vfí



P1



= 0 . 3 3 7 8 x 2 2 . 8 = 7 . 70



(me - mb)vT3



P3.jl - �



and



JTj



is



constant.



m, - mb (m, - mb)J



-



2



2



?3



JI -



1/r



(P3)d



Ji -



l / r 1 - rd.jl - 1/r�



rJI -



r y' l - 1 / r



1/r2



4Jl - 1 / 1 6



Jr� -



1



JI5



. . . . . . . . . . . . . ( 1 )



G as Turbine Theory



4th edition



ISBN: O 582 23632 O