Solutions Manual For John e Freunds Mathematical Statistics With Applications 8th Edition by Miller [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Solutions Manual for John E Freunds Mathematical Statistics With Applications 8th Edition by Miller Full Download: https://downloadlink.org/p/solutions-manual-for-john-e-freunds-mathematical-statistics-with-applications-8th-editi



Chapter 3 3.1



(a) No, because f(4) is negative; (b) Yes; (c) No, because f(1) + f(2) + f(3) + f(4) =



18 is 19



less than 1. 3.2



3.3



(a) No, because f(1) is negative; (b) Yes; (c) No, because f(0) + f(1) + f(2) + f(3) + f(4) + f(5) is greater than 1. f ( x )  0 for each value of x and k



 f ( x)  k (k  1) (1  2    k )  k (k  1)  2



2



x 1



3.4



(a) c(1  2  3  5)  1; thus C 



k ( k  1) 1 2



1 15



5 5 5  12  (b) c  5     1  1 ; thus, c   2 3 4  137 k







(c)



f ( x)  c



x 1



k



x



2



 cS ( k ,2)



x 1



1 k ( k  1)(2k  1) 6 6 Thus, for f ( x ) to be a distribution function, c  , k 0. k ( k  1)(2k  1)



From Theorem A.1 we obtain S (k ,2) 







(d)



 x 1



f ( x)  c







1   x 1 4







x



The right-hand sum is a geometric progression with a = 1 and r = 1/4. For x = 1 to n, this sum equals n



1 1   4 1/ 4 1 Sn    as n   . Therefore, c  3 . 1 3/ 4 3 1 4



3.5



For f ( x )  (1  k )k x to converge to 1, 0 < k < 1.



3.6



For c > 0, f(x) diverges. For c = 0, f(x) = 0 for all x, and it cannot be a density function



3.9



(a) No, because F (4)  1;



23



(b) No, because F (2)  F (1);



(c) Yes.



Copyright © 2014 Pearson Education, Inc.



Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com



24



3.10



Mathematical Statistics, 8E



f (0) 



4 1  ; 20 5



f (1) 



x0 0  x 1



 0 1 / 5  F ( x)   4 / 5  1



3.11 (a)



5 1 1 1 1 1   ; (b)   ; 6 3 2 2 3 6 0 elsewhere.



3 (b) 4 3 1 1 (e)   4 4 2



3.13 (a)



3.14



1 x  2 2 x



f (1) 



1 1 1 1 , f (4)  , f (6)  and f (10)  , 3 6 3 6



1 x  2 2 x3 3 x  4 4 x5 5 x 3 1 1   4 2 4



(f)



3 4 , f (2)  , 25 25



 0  3 / 25   7 / 25 F ( x)   12 / 25 18 / 25   1



F (1) 



(c) f (1) 



x 1



F ( x)   0  1 / 15   3 / 15   6 / 15 10 / 15   1



3.12



2  6 12 3 4 1   , F (2)   20 20 5 20 5



1



(c)



1 2



(d)



1



1 3  4 4



3 1  4 4



f (3) 



5 6 7 , f (4)  , f (5)  25 25 25



x 1 1 x  2 2 x3 3 x  4 4 x5 5 x



6 3 14 7 24 12 36 18 50  , F (2)   , F (3)   , F (4)   , F (5)   1 , checks 50 25 50 25 50 25 50 25 50



3.15 (a) P ( x  x1 )  1  P( x  x1 )  1  F ( x1 ) for i = 1, 2, …, n (b) P ( x  x1 )  1  P( x  xi )  1  F ( xi 1 ) for i = 2, …, n and P ( x  x1 )  1



Copyright © 2014 Pearson Education, Inc.



Chapter 3



3.16



25



0  1 F ( x )   ( x  2) 5 1 



3.17 (a)







5



2 x7 7 x



7



f ( x )dx 







(b)



x2



1



1 1 7 1 dx  x  (7  2)  1 5 5 2 5 2







1



2



 5 dx  5 (5  3)  5 3







3.18 (a) f ( x )  0, 0  x  , and







 f ( x )dx   e 0



x



dx  e0  1



0











(c) P ( x  1)  e  x dx e1 1



1



3.19 (a) f ( x )  0, 0  x  1 and



 f ( x )dx  1 0



0.5



(c) P (0.1  x  0.5) 



 3x dx  0.124 2



0.1 3.2



3.20 (a)



 2



 3.2 1 1 1  yz ( y  1)dy    y   (8.32  4)  0.54 8 8 2  2 8



 3.2 1 1 1  yx ( y  1)dy    y   (8.32  7.105)  0.1519 8 8 2  2.9 8 2.9 3.2



(b)







 y 1  y2  1  1 1  t2 1  y2 (t  1)dt    y     y    4    y  4  8 8 2 8 2  2 8 2  8  2 y



3.21







0    1  y2 F ( y)     y  4  8  2 1 



y2 2 y4 4 y



 1  3.2 2  3.2  4   0.54 (a) F (3.2)   8 2 



Copyright © 2014 Pearson Education, Inc.



26



Mathematical Statistics, 8E



 1  2.92 (b) F (3.2)  F (2.9)  0.54    2.9  4   0.54  0.3881  0.1519 8 2  4



3.22 (a) 1 



4



c x1/2 4 dx  c x 1/2 dx  c  4c 1/ 2 0 x 0











0



(b)



 Px  



1  4



1/4



4



1 x



0



1



P ( x  1)  1 



4



1



0



3.23



1 x 2  0  1 F ( x)   x 2  1



dx 



x



c



1 4



1 1/2 1 x 1/ 4 1 1 1 x dx     4 4 1/ 2 0 2 2 4







dx  1 



1 1 1 x  0 2 2



F ( x) 



x0 0 x4 4 x



1 1 1 1 1 1 F      and 1 = F (1)  1   4 2 2 4 2 2 z



3.24



z







F ( z )  k ze  z dz  k z



0



1



2e



u



du 



0



z k k [1  e  u ]  (1  e  z ) 2 2



k=2



z0



3.25



 0 F ( z)    zz 1  e



3.26



1/ 4 3 1 1 5  P  x    (3x 2  2 x 3 )     0 4 16 32 32



z0



1



1 1  3 1 1 P  x    6 x (1  x )dx  (3x 2  2 x 3 )  1      4 4 2 1/ 2 2  1/2







x



3.27







F ( x )  6 x (1  x )dx  3x  2 x 2



3



0



 Px  



1 3 2 5  and P  x       4 16 64 32



0  x0  2 3 F ( x )  3 x  2 x 0  x  1  1 x 1  1 3 2 1   1      2 4 8 2



Copyright © 2014 Pearson Education, Inc.



Chapter 3



27



x



3.28



x2 2







F ( x )  x dx  0



0 to 1



x2  x 1 x2 3 1 1   (2  x )dx    2 x     2 x   2 1 2  21 2 2 2 x



F ( x) 







 2x 



x2 1 2



1 3



1 to 2



0 x0   2 x  0  x 1  2 F ( x)   2  2x  x  1 1  x  2  2  1 2 x  x



3.29



F ( x) 



1



1



 3 dx  3 x



0 to 1 F ( x ) 



0



 0  1  x  3  1 2 to 4 F ( x )    3 1  3 ( x  1)   1



1 F ( x )  ( x  2) 3 1  (x 1 3



1



3.30 (a)







0.8



(b)



1.2



x dx 







(2  x )dx 



1



x0 0  x 1 1 x  2 2 x4 4 x



 x2 1 x 2  1.2  1 1    2x      0.32)    2.4  0.72  2    0.36    2 0.8  2 1 2 2



F (1.2)  F (0.8)  2(1.2) 



 (0.8)2  (1.2) 2 1  2  2 



 2.4  0.72  1  0.32  0.36



3.31



x0 0  x 1 1 x  2 2 x3 3 x



F ( x)  0 x2 4 1 1 F ( x)  x  2 4 3 x2 5 F ( x)  x   2 4 4 F ( x)  1 F ( x) 



1 4 3 F (2)  4 F (1) 



F (3) = 1



Copyright © 2014 Pearson Education, Inc.



28



Mathematical Statistics, 8E



3.32 (a)



3.33



F (3)  F (2)  1  1  0



dF 1 1  , f ( x )  for 1  x  1 ; 0 elsewhere dx 2 2 1 1 1  1 P    x     1  ; P (2  x  3) = 0  2  2 2 2



3.34 (a)



(b) 3.35



1  1 3 1 1 F    F      ; 2  2 4 4 2



F (5)  1 



9 16  25 25



1  F (8)  1  1 



9 9  64 64



dF 18 for y  0; elsewhere  dy y 2 



5



(a)



3.37



18 9 5 9 16 ; dy   2    1  2 25 25 y y 3 3







(b)



18



y



2



dy  



8



9  9 9  0  2 64 64 y 8



P ( x  2)  F (2)  1  3e2  1  3(0.1353)  1  0.4074  0.5926 P (1  x  3)  F (3)  F (1)  1  4e2  1  2e 1  4e 2 =2(0.3679)  4(0.0498)  0.7358  0.1992  0.5366 P ( x  4)  1  F (4)  5e4  5(0.0183)  0.0915



3.38



dF  xe x for > 0; 0 elsewhere dx



3.39 (a) (b)



for 0  x  0.5



(c)



for 0.5  x  1



(d)



for x  1



3.40 (a)



3.41



for x  0



f ( x )  0;



F ( x)  0 1 F ( x)  x 2 1 1 3 1 F ( x )   x      x  1  2 2 4 2 f ( x)  0 1 (b) f ( x )  ; 2



1 (c) f ( x )  ; 2



(d) f ( x )  0



2  4 1 1 5 1 3  , P ( Z  2)  , P ( 2  Z  1)    8 4 4 8 4 8 1 1 and P (0  z  2)  1   2 2 P ( Z  2) 



Copyright © 2014 Pearson Education, Inc.



Chapter 3



29



3.42 (a)



1 ; 20



3.43 (a)



1 1 1   ; 6 12 4



3.44



(b)



1 1 3   ; 4 8 8



(c)



1 1 1 1    ; 6 4 12 2



(b) 0 ;



(c)



1 1 1 7    ; 12 6 24 24



(d)



1 1 1 28 7     6 24 40 120 30



(d) 1 



1 119  120 120



c(2  5  10  1  4  9  2  5  10  10  13  18)  1 1 c 89



3.45 (a) (c) 3.46 (a)



1 29 1 5 (10  9  10)  (1  4)  ; (b) 89 89 89 89 1 55 (9  5  10  13  18)  89 89 k (0  2  8  0  1  2)  1 f(3, 1) differs in sign from all other terms



3.47 0 0 y



1 2



3.48 (a) (b) (c)



0 1 30 1 15



x 1 2 1 1 30 15 1 1 15 10 1 2 10 15 density



y 1 2 3 1 1 1 0 30 10 5 1 2 3 8 30 15 10 15 1 3 3 1 10 10 5 joint distribution function 0



0 1 2



P ( x  , y  )  0 P ( x  , y   )  1 F (b, c)  F ( a , c )  three probabilities F (b, c)  F ( a , c )  xy 2  x x ( x  y )dy dx  k  x 2 y  dx 2   x  0 x 0



1 x



3.49



3 1 10 2 15 1 6



k







1







 x3 x3  k k  x3   x 3   dx  k 2 x 3 dx   1 2 2 2  0 0 1







1







k=2



Copyright © 2014 Pearson Education, Inc.



30



Mathematical Statistics, 8E



1/2 1/2  x



3.50



24



  0



1/2



xy dy dx  24



0



 0



2 xy 2 1 / 2  x 1  dx  12 x   x  dx 2  0 2 0 1/2







 x2 x2 x4  1 / 2 1 1 x  1  12   x 2  x 3  dx  12      12     4  3 4 0  32 24 64  8 0 12 12 1   (6  8  3)  64  3 3  64 16 1/2







3.51



1 2



(a) (b) (c)



3.52



(a)



1/2



1 2 2 4 5 1 2     1  2 3 3 9 9  1 2 1 1 1 1 3 1 2          2 3 3 2 3 3 9 3 F ( x, y )  2 xy for x  0, y  0, x  y  1 1 1 1 2   2 2 2



y



1



y



1 1 dx dy  dx dy y y0 1/4 1/2  y 1/2







3.53







 



1  1  ln 2=1-0.3466=0.6534 2



3.54



2 2 2 2 2 2 F  2 xe  x  2 ye y  4 xy  x e  y  4 xye  ( x  y ) y x and f ( x, y )  0 elsewhere



2



3.55



 2 xe







dx 2 ye



1



3.56



e 2



3.58



1



 y2



4   dy   e  u du     e  u   1 







2



4  ( e1  e 4 )2 1 



F 2 F  e x  e x y  e  x  y x  0, y  0 x xy = 0 elsewhere 3



3.57



2



2



 x2



x  0, y  0



 dx e dy    e  x  2 3



X







y



2



3 2 3 2   (e  e ) 2



F (b, d )  F (a , d )  F (b, c )  F ( a , c )



Copyright © 2014 Pearson Education, Inc.



Chapter 3



31



3.59 a = 1, b = 3, c = 1, d = 2 F (3,2)  F (1,2)  F (3,1)  F (1,1)  (1  e3 )(1  e 2 )  (1  e 1 )(1  e 2 )  (1  e 3 )(1  e 1 )  (1  e 1 )(1  e 1 )  (1  e2 )  (1  e 3 )  (1  e 1 )   (1  e 1 )  (1  e2 )  (1  e 1 )  (1  e 2 )(1  e1 )  (1  e3 )  (1  e 1 )  ( e 1  e 2 )( e 1  e 3 )  0.074



3.60



F (2,2)  F (1,2)  F (2,1)  F (1,1)  (1  e4 )(1  e 4 )  (1  e1 )(1  e 4 )  (1  e 1 )(1  e4 )  (1  e 1 )(1  e 1 )  (1  e4 )  (1  e 4 )  (1  e 1 )  (1  e 1 )  (1  e 4 )  (1  e1 )  (1  e4 )( e1  e 4 )  (1  e 1 )( e1  e 4 )  ( e 1  e 4 )( e 1  e 4 )  ( e 1  e 4 )2



3.61



F (3,3)  F (2,3)  F (3,2)  F (2,2)  (1  e3  e 3  e 6 ) (1  e 2  e 3  e5 )  (1  e 2  e2  e 5  (1  e 2  e2  e 4 )  e 4  2e 5  e 6  ( e2  e 3 )2



QED



3.62 x = 1, 2 y = 1, 2, 3 z = 1, 2 (1  2  2  4  3  6  2  4  4  8  6  12)k  1 1 k 54 1 1 (1  2)  54 18 1 14 7 (8  6)   54 54 27



3.63 (a) (b)



1 9 1 (1  2  2  4)   ; 54 54 6



3.64 (a)



(b) 0;



(c) 1



1 1 z 1 y  z



3.65



  0 0



1 1 z



xy (1  z ) dx dy dz



0



1



  2 (1  y  z)



2



y (1  z ) dy dz



0 0



1 1 z 1 y  z



k



  0 0



xy (1  z ) dx dy dz  1 k = 144



0



Copyright © 2014 Pearson Education, Inc.



32



Mathematical Statistics, 8E 1/2 1/2  x 1 x  y



3.66



   0



3.68 (a)



0



144 xy (1  z ) dz dy dx  0.15625



0



1 3



1/2 1/2 1/2



   (2 x  3 y  z) dz dy dx 0



0



0



  



1 3 1 3 1 3



1/2 1/2



 0



0



1/2 1/2



 z2 1 / 2 (2 3 ) x  y z  dy dx   2 0  



1



3



   x  2 y  8  dy dx 0



1/2



 0



0



3 2 1  1/ 2 1   xy  y  y  0 dx  4 8 3



1/2



1



3



1



  2 x  16  16  dx 0



1 1 3 1 1 6 1        3  16 32 32  3 32 16



3.69 (a) (b) (c)



3.70 (a)



(b)



1 3 , g (1)  4 4 5 1 1 h (1)  , h (0)  , h(1)  8 4 8 1/ 8 1 1/ 2 4 f ( 1 1)   ; f (1 1)   1/ 8 1/ 2 5 1/ 8 1/ 2 5 g ( 1) 



1 1 1 1 7 1 1 1 7     ; g (1)     12 4 8 120 15 6 4 20 15 1 1 1 g (2)    24 40 15 g (0) 



h (0) 



1 1 1 7 ;    12 6 24 24



h (2) 



1 1 7 ;   8 20 40



h (1) 



h (3) 



1 120 f (2 1) 



1 / 40 1  21 / 20 21



1 / 12 5 1/ 4 15 ; w(1 0)  ;   56 / 120 28 56 / 120 28 1 / 120 1 w(3 0)   56 / 120 56



w(2 0) 



(c)



f (0 1) 



(d)



w(0 0) 



1/ 4 10 ;  21 / 40 21



1 1 1 21    4 4 40 40



f (1 1) 



10 ; 21



Copyright © 2014 Pearson Education, Inc.



1/ 8 15  56 / 120 56



Chapter 3



3.71 (a) (b) (c) (d) (e)



3.72 (a)



33



xy xy (1  2)  for x  1,2,3 ; y  1,2,3 108 36 xz xz n ( x, z )  (1  2  3)  for x  1,2,3 ; z  1,2 108 18 x x g ( x )  (1  2  3)  for x  1,2,3 36 6 z / 64 z φ ( z 1,2)   for z  1,2 2 / 36 3 yz / 36 yz ψ ( y , z 3)   for y  1,2,3 ; z  1,2 1/ 2 18 m( x, y ) 



g (0) 



5 1 1 , g (1)  ; g (2)  12 2 12



2/9 4  7 / 18 7 1/ 6 3 f (1 1)   7 / 18 7 f (0 1) 



(b)



3.73 (a)



f ( x) 



(b)



f (0) 



 0  5 / 12  G( x)   11 / 12  1 0  F ( x 1)  4 / 7 1 



(b)



1 x  2 2 x x0 0  x 1 1 x



1 1 1 1 1 for x  1, 1 ; g ( y )  for y  1, 1 ;   , independent 2 2 2 2 4



2 1 1 2 , f (1)  , g (0)  , g (1)  3 3 3 3 1 2 1 2 not independent f (0,0)     3 3 3 9



y2  2 1 1 1 1 (2 x  y ) dy   2 xy    (4 x  2)  (2 x  1) for 0  x  1 40 4 2 0 4 2 = 0 elsewhere 2



3.74 (a)



x0 0  x 1







11   y   1  1 4 2 f y    (2 y  1) for 0  y  2 1 3  4 6  2 2 = 0 elsewhere



Copyright © 2014 Pearson Education, Inc.



34



Mathematical Statistics, 8E



1



3.75 (a)



1 1 1 1 (2 x  y ) dx  ( x 2  xy )  (1  y ) for 0  y  2 0 4 40 4







= 0 elsewhere



(b)



1 (2 x  1) 1 f ( x 1)  4  (2 x  1) for 0  x  1 1 2 (2) 4 = 0 elsewhere 1 x



3.76 (a)



f ( x )  24



 0



 y xy 2 y 3  1  x ( y  xy  y 2 )dy  24     2 3 0 2



 12(1  x )2  12 x (1  x )2  8(1  x )3  12(1  x )3  8(1  x )3  4(1  x )3 4(1  x )3 f ( x)   0



0  x 1 elsewhere



1 y



(b)



g ( y )  24



 ( y  xy  y 0



2



1   )dy  24  y (1  y )  y (1  y )2  y 2 (1  y ) 2  



 1  24(1  y ) 1  (1  y )   2



 1 y y   24 y    (1  y )  2 2  12 y (1  y )2   0



f ( x, y )  f ( x )  g ( y ) not independent



3.77



1



(a)



g ( x) 



  ln x 0



1



1



 y dy  ln y x  ln1  ln x   x



y



(b)



h( y ) 



1



1



1



 y dx  y ( y  0)   0 0



0 x 1 elsewhere



0 x 1 elsewhere



1  1  (  ln x ) not independent y



Copyright © 2014 Pearson Education, Inc.



0 y 1 elsewhere



Chapter 3



35



( x1  x2 )e  x3 x1  x2 f ( x2 x1 , x3 )   1 1  x2  x1   x e  2  2 2



3.78 (a)



1 2  x2  2  6 x 1    f  x2 ,2   3  5  3  1 1   0 3 2 



elsewhere



 1  x ( x1  x2 )e x3    x2  e 3    2 g ( x2 , x3 x1 )  1  x2  0  2



(b)







3.79



0  x2  1



g ( x) 







0  x2  1, x3  0 elsewhere



x 



G( x) 



f ( x, y ) dy



-







f ( x, y ) dy  F ( x, )



0 



1  e x 2 G ( x )  F ( x, )    0



x0 elsewhere







3.80



M ( x1 , x3 ) 







f ( x1 , x2 , x3 ) dx2  F ( x1 , , x3 )



  



G ( x1 ) 



  f ( x , x , x ) dx 1



2



3



2



dx3  F ( x1 , , )



 



(a)



(b)



0 1  M ( x2 , x3 )   x1 ( x1  1)( 1  e x3 ) 2 1  e x3 0   1 G ( x1 )   x1 ( x1  1) 2  1



x1  0 or x3  0 0  x1  1, x3  0 x1  1, x3  0



x1  0 0  x1  1 1  x1



Copyright © 2014 Pearson Education, Inc.



36



3.81



Mathematical Statistics, 8E



1  x  g ( x1 )   1 2  0 x e 3  0



1  x  h ( x2 )   2 2  0



0  x1  1 elsewhere elsewhere



f ( x1, x2 , x3 )  g ( x1 )  h( x2 )  φ ( x3 )



not independent



m( x1 , x3 )  g ( x1 )φ ( x3 ) n ( x2 , x3 )  h( x2 )φ ( x3 )



independent independent



3.82



(a)



(b)



(b)



1  g ( x, y )   6 0 1



π /4 6



 1



0  x  2, 0  y  3 elsewhere



π 24



5 5 3 , g (1)  , g (2)  14 28 28 3.28 3 6 / 28 6 1 / 28 1 φ (0 0)   , φ (1 0)   , φ (2 0)   10 / 28 10 10 / 28 10 10 / 28 10 g (0) 



3.83



Heads 0 1 2 3 4



3.84



1 1 1 2 2 3 (a)



elsewhere



x3  1



φ ( x3 )  



(a)



0  x2  1



Tails 4 3 2 1 0



Probability 1/16 4/16 6/16 4/16 1/16



2 3 4 3 4 4



3 4 5 5 6 7



x f ( x)



3 1/6



0 1 / 6  2 / 6 F ( x)   4 / 6 5 / 6  1



4 1/6



5 2/6



H-T 4 2 0 2 4



6 1/6



7 1/6



x3



3 x  4 4 x5 5 x  6 6 x7 7 x



Copyright © 2014 Pearson Education, Inc.



Chapter 3



3.85



3.86



3.87



37



P( H ) 



2 3 1 6 1 2 2 12 8 , P (1)  , P (2)  3, , ,  , P (3)  27 27 3 3 3 27 27



(a)



P (0) 



(b)



1 6 12 19    27 27 27 27



 0  1 / 27  F ( x )   7 / 27 19 / 27   1  0 0.40  F (V )  0.70 0.90   1



3.88 (a) (b)



x0 0  x 1 1 x  2 2 x3 3 x



7 20  27 27 19 8 (b) 1   27 27 (a) 1 



V 0 0 V 1 1V  2 2 V  3 3V



0.20  0.10  0.30 1  0.70  0.30



3.89 Yes; f ( x )  0 for x  2,3,12 and



12



 f ( x)  1 x2



3.90 S



3.91 (a) (c)



3.92



2 3 4 5 6 7 8 9 10 11 12 1/36 3/36 6/36 10/36 15/36 21/36 26/36 30/36 33/36 35/36 1 1 1 (228.65  227.5)  0.23 ; (b) (231.66  229.34)  0.464 ; 5 5 1 (232.5  229.85)  0.53 5



F ( x) 



(a) (b) (c) (d)



1 1  x3  1 (36  x 2 )dx  c  36 x   so that F(6) = 0 and F(6) = 1. 288 288  3  2







1 8 1 1 208 1 7 ( 72  )      288 3 2 288 3 2 27 1 1 1 1 107 1 757 1 325 F (6)  F (1)  1  (36  )   1       288 3 2 288 3 2 864 2 854 1 1  1  99 1 107 190 95 F (3)  F (1)  (108  9)       36    288 288 3 288 288 3 288  3 432 0 F ( 2) 



Copyright © 2014 Pearson Education, Inc.



38



3.93



3.94



Mathematical Statistics, 8E



(a)



1  x /30 1 e  x /30  c  c  e  x /30  1  e  x /30 e dx  c  30 30 1 / 30 F (18)  1  e 18/30  1  e 0.6  1  0.5488  0.4512



(b)



F (36)  F (27)  e 27/30  e 36/30  e 0.9  e1.2  0.4066  0.3012  0.1054



(c)



1  F (48)  e48/30  e 1.6  0.2019



F ( x) 



20,000 10,000 1   1 2 2( x  100) ( x  100) 2 10,000 1 1  F (200)   9 3002 10,000 3 f (100)  1   40,000 4



F ( x) 



(a) (b)



3.95 (a) (b) (c)







20,000



 ( x  100)



3



dx  c 



25 1  0.25  4 102 25 39 F (8)  1  2  64 8 25 25 25(25  16) 1 F (15)  F (12)  2  2   16 12 15 152  16



1  F (10) 



1 1 e x /3  1    x /3  1 x e  x /3dx  c    x  1  c  c  e  x  1 90 9 1/ 9 3 3 x



3.96



F ( x) 







c =1 (a)



F (6)  1  3e 2  1  3e 2  1  3(0.1353)  0.5491



(b)



1  F (9)  4e 3  4(0.0498)  0.1992



 3  2   3  3.97 (0,0,2)         3  0  0   2   3  2   3 (1,0,1)         9 1   0  1 



f (0,0) 



3 6 1 , f (0,1)  , f (0,2)  28 28 28



f (1,0) 



9 3 6 , f (2,0)  , f (1,1)  28 28 28



 3   2   3 (0,1,1)         6  0  1  1   3   2  3 (2,0,0)         3  2   0   0  3  2   3  (1,1,0)         6 1  1   0   3  2   3 (0,2,0)         1  0  2   0



Copyright © 2014 Pearson Education, Inc.



Chapter 3



39



3.98 (b) 0 1 9 1 3 1 4



0 y



1 2



3.99



x 1 1 9 1 6



2 1 36



1 3 3 1 , f (1,2)  , f (2,1)  , f (3,0)  8 8 8 8 1 3 3 1 g (0, 3)  , g (1,1)  , g (2,1)  , g (3,3)  8 8 8 8 f (0,3) 



3.100 (a)



Probability = 1/8



0.3 



3.101 (a)







(b)



0.3



 5e



5 pe  ps ds dp 



0.2 2



 ps



0.2











(b)







0.30



5 pe ps ds dp 



0.25 0



1 1  4 4



5  e 2 p 0.3 5 0.4 0.6  e e  0.3038 2 0.2 2



5e 2 p dp 



0.2



0.30 1



π



π 



 dp 2



0.3







1







0.30



1 5e  ps dp  5(1  e p ) dp 0 0.25 0.25











 5[ p  e  p ]0.30  5(0.30  e 0.30  0.25  e0.25 ]  0.01202



3.102 (a)



2 5



0.4 0.4



 0 0



2 (2 x  3 y ) dx dy  5



0.4



 (x



2



0



 



2 5



 3xy )



0.4 dy 0



0.4



 (0.16  1.2 y  dy 0



2 1.2(0.16)  (0.16)(0.4)     0.064 5 2



Copyright © 2014 Pearson Education, Inc.



40



Mathematical Statistics, 8E



(b)



2 5



0.5 1







(2 x  3 y ) dx dy 



0 0.8



2 5







0.5







2 5



0.5



 (x



2



 3xy )



0



1 dy 0.8



(1  3 y )  (0.64  2.4 y ) dy 



0



2 5



0.5



 (0.6 y  0.36) dy 0



2 2  (0.3 y 2  0.36 y ) 0.5  (0.075  0.18)  0.102 0 5 5



3.103 (a)



(b)



g (0) 



3 6 1 , φ (1 0)  , and φ (2 0)  10 10 10 1 1 2 2 2 2 1 ( x  4 y ) dy dx  ( xy  2 y ) dx  ( x  2) dx 0 5 5 0.3 5 0.3



φ (0 0)  1 1



3.104 (a)



5 15 3 , g (1)  and g (2)  14 28 28







0.3 0















1 2  x2   2 x 5 2  0.3







21 0.09  2  0.6   (1.855)  0.742   2   5 5 2 2



1



(b)



2 2 g( x)  ( x  4 y ) dy  ( x  2) 50 5







g ( y x)  1 2.2



3.105 (a)



0.5



(2 / 5)( x  4 y ) 4 y  0.2 , g ( y 0.2)  (2 / 5)( x  2) 2.2 1



0.6



 (4 y  0.2) dy  2.2 (0.5  0.1)  2.2  0.273 0



48 47 188 48 4 16 , f (0,1)      52 51 221 52 51 221 4 48 16 48 4 16 4 3 1 , f (1,1)  , f (1,2)  f (1,0)        52 51 221 52 51 221 52 51 221



f (0,0) 



188  16 204 16  1 17 , g (1)    221 221 221 221



(b)



g (0) 



(c)



φ (0 1) 



16 / 221 16 1 / 221 1  , φ (11)   17 / 221 17 17 / 221 17



Copyright © 2014 Pearson Education, Inc.



Chapter 3



41



3.106 f ( p, s )  5 pe ps



0.2  p  0.4







(a)







5 p e  ps ds  5 p 0



s0



 5 e  ps  5e  ps   0 0 p



f ( p, s ) 5 pe  ps  pe  ps   g ( s) 5 0



(b)



3



1



 4e



(c)



 (1/4) s



ds   e  s /4 



0



3.107



0.2  p  0.4 elsewhere



for s  0 elsewhere



3  1  e0.75 0



(a)



 20  x x 1 20  x  dy   50 25 x x /2  0



(b)



1  20  x    25  x  2 φ( y x)   , 20  x x 50



(c)



1 1 2 (12  8)   4  6 6 3







1 / 6  0



φ ( y 12)  



10  x  20 elsewhere



6  y  12 elsewhere



2 (2 x  3 y ) 5 2 3y2  1 2  3 g ( x )   2 xy     2 x   5 2 0 5 2



3.108 f ( x, y ) 



3 4  x  5 5  0 h( y ) 



0  x 1 elsewhere



1 2 2 ( x  3 xy ) 0 5



(2 / 5)(1  3 y )  0 



0  y 1 elsewhere



f ( x , y )  g ( x )h ( y )



Copyright © 2014 Pearson Education, Inc.



42



Mathematical Statistics, 8E



 (20,000)3  f ( x1 , x2 , x3 )   ( x2  100)3 ( x2  100)3 ( x3  100)3  0 



3.109 (a)



100







(b)



0



20,000 dx1 ( x1  100)3 



100



 0



x1  0, x2  0, x3  0 elsewhere







20,000 20,000 dx2 dx3 3 ( x2  100) ( x3  100)3 200







3 3 1 1    4 4 9 16



5 9 4 5 7 9 9 8 6 1 3 5 0 2 1 7 0 8 4 5 2 0 2 1 3 1



3.110 (a)



(b)



5f 4 5s 9 5 7 9 9 8 6f 1 3 0 2 0 1 0 4 2 0 2 1 3 1 6s 5 7 8 5



(c)



The double-stem display is more informative.



3.111 *=Station 105



* 54



o = Station 107



o



o o *



o * *



o o * *



o o *



o *



o



55 56 57 58



59



60



61 62



63



64 65 66 67 68 69



*



3.112 *=Lathe A



o



o *



*



*



o = Lathe B



* * o o o o * * * * * * * o o o o 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56



3.115



Class Limits 40.0  44.9 45.0  49.9 50.0  54.9 55.0  59.9 60.0  64.9 65.0  69.9 70.0  74.9 75.0  79.9



Frequency 5 7 15 23 29 12 8 1 100



Copyright © 2014 Pearson Education, Inc.



Chapter 3



3.116



Class Limits 3.0  4.9 5.0  6.9 7.0  8.9 9.0  10.9 11.0  12.9 13.0  14.9



43



Frequency 15 25 17 11 8 4 80



3.117 The class boundaries are: 39.95, 44.95, 49.95, 54.95, 59.95, 64.95, 69.95, 79.95; the class interval is 5; the class marks are: 42.45, 47.45, 52.45, 57.45, 62.45, 67.45, 72.45, 77.45. 3.118 The class boundaries are: 2.95, 4.95, 6.95, 8.95, 10.95, 12.95, 14.95; the class interval is 2; the class marks are: 3.95, 5.95, 7.95, 9.95, 9.95, 11.95, 13.95. 3.119



Class Limits 01 23 45 67 89 10  11 12  13



Frequency 12 7 4 5 1 0 1 30



Class Boundary 0.5  1.5 1.5  3.5 3.5  5.5 5.5  7.5 7.5  9.5 9.5  11.5 11.5  13.5



3.120



Class Limits 3.0  4.9 5.0  6.9 7.0  8.9 9.0  10.9 11.0  12.9 13.0  14.9



Frequency 15 25 17 11 8 4 80



Percentage 18.75% 31.25 21.25 13.75 10.00 5.00 100.00



3.121



Class Limits 40.0  44.9 45.0  49.9 50.0  54.9 55.0  59.9 60.0  64.9 65.0  69.9 70.0  74.9 75.0  79.9



Frequency 5 7 15 23 29 12 8 1 100



Percentage 5.0% 7.0 15.0 23.0 29.0 12.0 8.0 1.0 100.0



Class Mark 0.5 2.5 4.5 6.5 8.5 10.5 12.5



Copyright © 2014 Pearson Education, Inc.



44



3.122



Mathematical Statistics, 8E



Percentage Shipping Security Class Limits Department Department 43.3% 45.0% 01 30.0 27.5 23 16.7 17.5 45 6.7 7.5 67 3.3 2.5 89 100.0 100.0 The patterns seem comparable for the two departments.



3.123 Upper Class Boundary 44.95 49.95 54.95 59.95 64.95 69.95 74.95 79.95



Frequency 5 7 15 23 29 12 8 1 100



Upper Class Boundary 4.95 6.95 8.95 10.95 12.95 14.95



Frequency 15 25 17 11 8 4 100



3.124



3.125 Class Limits 1.5 3.5 5.5 7.5 9.5



Cumulative Frequency 5 12 27 50 79 91 99 100 Cumulative Frequency 15 40 57 68 76 80



Cumulative Percentage Shipping Security Department Department 43.3% 45.0% 73.3 72.5 90.0 90.0 96.7 97.5 100.0 100.0



Copyright © 2014 Pearson Education, Inc.



Solutions Manual for John E Freunds Mathematical Statistics With Applications 8th Edition by Miller Full Download:https://downloadlink.org/p/solutions-manual-for-john-e-freunds-mathematical-statistics-with-applications-8th-editi Chapter 3



3.126



(a)



3.127



(a)



45



Class Limits 01 23 45 67 8  13



Frequency 12 7 4 5 2 30



Class Limits 0  99 100  199 200  299 300  324 325  349 350  399



Frequency 4 3 4 7 14 6 38



(b) No. The class interval of the last class is greater than that of the others.



Class Marks 49.5 149.5 249.5 312.0 337.0 374.5



(b) Yes, [see part (a)..



3.130 The class marks are found from the class boundaries by averaging them; thus, the first class mark is (2.95 + 4.95)/2 = 3.95, and so forth. 3.135 The MINITAB output is: MIDDLE OF INTERVAL 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.02



NUMBER OF OBSERVATIONS 2 ** 5 ***** 4 **** 5 ***** 5 ***** 3 *** 2 ** 2 ** 2 **



3.136 The MINITAB output is: MIDDLE OF INTERVAL 40 45 50 55 60 65 70 75



NUMBER OF OBSERVATIONS 1 * 7 ******* 11 *********** 21 ********************* 21 ********************* 23 *********************** 10 ********** 6 ******



Copyright © 2014 Pearson Education, Inc.



Full download all chapters instantly please go to Solutions Manual, Test Bank site: TestBankLive.com