Training Vibrasi [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

TEORI DASAR



ANALISA VIBRASI



Oleh : DARYANTO Predictive Maintenance – CRM PT KRAKATAU STEEL - CILEGON



TUJUAN MONITORING GETARAN 1. Menentukan kondisi mekanis mesin. 2. Merencanakan jadwal pemeliharaan. 3. Memeriksa hasil repair/overhaul.



4. Menghentikan mesin untuk mencegah gangguan serius. 5. Lokalisasi gangguan. 6. Pengesahan aspek keselamatan.



What Is Vibration Caused By ? Imperfections in the Machine: Design



Assembly



Manufacture



Operation



Installation



Maintenance



What Are Some Common Machine Problems? That Generate Mechanical Vibration: ● Misalignment ● Unbalance ● Worn belts & pulleys ● Bearing Defects ● Hydraulic Forces ● Aerodynamic Forces ● Reaction Forces ● Reciprocating Forces ● Bent Shafts ● Rubbing ● Gear Problems ● Housing Distortion ● Certain Electrical Problems ● Frictional Forces What Are Some Common Machine Problems That Amplify Mechanical Vibration (But Don't Cause It):



• •



Resonance Looseness



The Raw Signal



The Actual Signals Used To Generate



The Resulting FFT



1x rpm w/ amplitude of 1.8 (pk-pk), '+' peak on y-axis 2x rpm w/ amplitude of 0.45 (pk-pk) 3x rpm w/ amplitude of 0.05 (pk-pk), '-' peak on y-axis



FFT Analysis



What Vibration "Characteristics" Do We Measure ? AMPLITUDE – How Much movement Occurs



FREQUENCY – How Often The Movement Occurs How many “cycle” in a period of time: a second or a minute



PHASE - In What Direction Is The Movement Relative To Other Locations On The Machine At A Given Moment In Time



AMPLITUDO v rms [inch/ s] 0,80



a rms [g] 0,80



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



0,78



0,78



0,76



0,76



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



0,74



0,74 0,72



0,72



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 0,43 inch/ s



0,70 0,68



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 0,342 g



0,70 0,68



0,66



0,66



0,64



0,64



0,62



0,62



0,60



0,60



0,58



0,58



0,56



0,56



0,54



0,54



0,52



0,52



English or Metric - G's (1 g = force of gravity)



0,50



0,50



0,48



0,48 0,46



0,46



(2955,00 / 0,43)



0,44



0,44



M



0,42



0,42



0,40



0,40



0,38



0,38



0,36



0,36



0,34



0,34



0,32



0,32



English or "Imperial": Inches per Second (ips -or- in/sec)



0,30 0,28



(2955,00 / 0,342) M



0,30 0,28 0,26



0,26 0,24



0,24



Metric: Millimeters per Second (mm/sec)



0,22 0,20



0,22 0,20 0,18



0,18 0,16



0,16



Conversion::1 ips = 25.4 mm/sec



0,14 0,12



0,14 0,12 0,10



0,10



0,08



0,08



0,06



0,06



0,04



0,04



0,02



0,02



0,00



0,00 0



s rms [mils] 1,60



1000



2000



3000



4000



5000



6000



7000



8000



9000



10000



11000



12000



13000



14000



15000



16000



17000



18000



19000



20000



21000



22000



23000 24000 f [cpm]



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



1,55 1,50 1,45



(2955,00 / 1,378)



1,40



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 1,378 mils



M



1,35 1,30 1,25 1,20 1,15 1,10 1,05 1,00 0,95 0,90 0,85 0,80 0,75 0,70 0,65 0,60



English or 'Imperial' Units: Mils (1 mil = 0.001")



0,55 0,50 0,45



Metric Units::Microns (1 um = 0.001 mm)



0,40 0,35 0,30



Conversion::1 Mil = 25.4 um



0,25 0,20 0,15 0,10 0,05 0,00 0



1000



2000



3000



4000



5000



6000



7000



8000



9000



10000



11000



12000



13000



14000



15000



16000



17000



18000



19000



20000



21000



22000



23000 24000 f [cpm]



0



1000



2000



3000



4000



5000



6000



7000



8000



9000



10000



11000



12000



13000



14000



15000



16000



17000



18000



19000



20000



21000



22000



23000 24000 f [cpm]



Displacement, Velocity and Acceleration



English Units:



Metric Units:



Displacement = mils Velocity = in/sec Acceleration = g's Frequency = cycles/min



Displacement = um Velocity = mm/sec Acceleration = g's Frequency = cycles/min



Displacement = (19,231 x V) / F



Displacement = (19,231 x V) / F



Velocity = 0.000052 x D x F



Velocity = 0.000052 x D x F



Acceleration = 0.00027 x V x F



Acceleration = 0.0000107 x V x F



Vibration Amplitude Measurement The following definitions apply to the measurement of mechanical vibration amplitude.



Average = 0.637 Peak Amp.



Root Mean Square Amplitude (RMS) is the square root of the average of the squared values of the waveform. In the case of the sine wave, the RMS value is 0.707 times the peak value



FREQUENCY v rms [inch/ s] 0,50



v rms [inch/ s] 0,50



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



0,48



0,48



0,46



0,46 (2955,00 / 0,43)



0,44



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 0,43 inch/ s



M 0,42



(1,00 / 0,43)



0,44



RPM : 2953 (49,22Hz) M(x) : 1,00 - (2955,00 cpm) M(y) : 0,43 inch/ s



M 0,42



0,40



0,40



0,38



0,38



0,36



0,36



0,34



0,34



0,32



0,32



0,30



0,30



0,28



0,28



0,26



0,26



0,24



0,24



0,22



0,22



0,20



0,20



0,18



0,18



0,16



0,16



0,14



0,14



0,12



0,12



0,10



0,10



0,08



0,08



0,06



0,06



0,04



0,04 0,02



0,02



0,00



0,00 0



v rms [inch/ s] 0,50



1000



2000



3000



4000



5000



6000



7000



8000



9000



10000



11000



12000



13000



14000



15000



16000



17000



18000



19000



20000



21000



22000



23000 24000 f [cpm]



0,0



0,2



0,4



0,6



0,8



1,0



1,2



1,4



1,6



1,8



2,0



2,2



2,4



2,6



2,8



3,0



3,2



3,4



3,6



3,8



4,0



4,2



4,4



4,6



4,8



5,0



5,2



5,4



5,6



5,8



6,0



6,2



6,4



6,6



6,8



7,0



7,2



7,4



7,6



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BH4\ 103 Mac h. spec tr. >600 22/ 11/ 2011 9:10:07



0,48 0,46 (49,25 / 0,43)



0,44



RPM : 2953 (49,22Hz) M(x) : 49,25 Hz (1,00 Orders) M(y) : 0,43 inch/ s



M 0,42 0,40 0,38 0,36



Frequency Unit Cycles / Second (Hertz) Hertz x 60 = Cycles / Minute (CPM) Order



0,34 0,32 0,30 0,28 0,26 0,24 0,22 0,20 0,18 0,16 0,14 0,12 0,10 0,08 0,06 0,04 0,02 0,00 0



20



40



60



80



100



120



140



160



180



200



220



240



260



280



300



320



340



360



380



f [Hz]



400



7,8 8,0 Orders [-]



Recommended Frequency Ranges for Different Amplitude Units



Displacement Units: < 600 cpm (< 10 Hz) Velocity Units: 300 - 120,000 cpm (5 - 2,000 Hz) Acceleration Units: > 60,000 cpm (> 1,000 Hz)



Spectrum Resolution =



Max Frequency (Fmax) # of Lines of Resolution



Lines of Resolution : 200, 400, 800,1600, 3200, 6400, 12800



Fmax = # Lines / Time Sample Fmax [Hertz] = 800 / 0.1 seconds = 8000 Hz Fmax [CPM] = 8,000 Hz x 60 = 480,000 cpm



Contoh Perhitungan Frekuensi



Compressor Schematic Motor Speed = 3580 rpm



Frequency Name



Calculation



Frequency



4-Lobe Rotor Speed



3580 x 48T/36T



4773 rpm



4-Lobe Pass Frequency



4773 x 4



19092 cpm



6-Lobe Rotor Speed



4773 x 4T/6T



3182 rpm



6-Lobe Pass Frequency



3182 x 6



19092 cpm



Bull Gear Mesh Freq:



3580 rpm x 48T



171,840 cpm



Pinion GMF



4773 x 36T



171840 cpm



2x GMF



2 x GMF



343,680 cpm



3x GMF



515,520 cpm



Standar ISO 2372



Standar ISO 10816-3



Standar ISO 10816-3



VIBRATION TRANSDUCERS The Proximity Probe



The Velocity Probe



Velocity Transducer



The Accelerometer



Piezo-Electric Accelerometer



Accelerometer Tranduser



Prinsip Kerja Gambar diagram sederhana dari tipe accelerometer dengan sebuah penguat didalamnya. Apabila tranduser ini ditempelkan pada bagian mesin yang bergetar, maka getaran mekanis tersebut diteruskan melalui Case insulator ke bahan piezoeletric, sehingga bahan tersebut mengalami tekanan sebanding dengan getarannya Bahan piezoelectric tersebut mempunyai kemampuan untuk menimbulkan muatan listrik sebagai respon terhadap gaya mekanis yang bekerja terhadapnya. Getaran mekanis yang menghasilkan gaya akan mengenai bahan piezoeletric dan bahan tersebut akan menimbulkan muatan listrik yang seband¬ing dengan besarnya percepatan dari getaran tersebut. Muatan listrik yang ditimbulkan oleh bahan piezoelectric tersebut sangat kecil jika dibandingkan dengan output velocity tranduser. Karena muatan listrik yang ditimbulkan langsung oleh bahan piezoelectric begitu kecil, maka di dalam tranduser ini dibuat rangkaian penguat electronik untuk memperkuat muatan listrik yang dihasilkan oleh bahan piezoelectric, tersebut. Besarnya muatan yang dihasilkan langsung oleh bahan piezoelectric biasanya dalam picocoulombs per g. Sedangkan besarnya sinyal yang dihasilkan setelah melalui penguat, mempunyai sensitivitas 50 mv per g



PENGAMBILAN DATA VIBRASI



RUANG LINGKUP PENGUKURAN VIBRASI 1. Kelompok penggerak mula (prime mover) – mesin-mesin yang mampu mengolah daya sendiri. Contohnya: Elektric Motor, Steamturbin, Gasturbin, Hydraulic & Pneumatic Motor dll. 2. Kelompok sistem transmisi – peralatan untuk memindahkan daya. Contohnya : Gearbox, Coupling, V-Belts dll. 3. Kelompok mesin bukan penggerak mula – peralatan produksi yang harus digerakkan oleh penggerak mula. Contohnya : Compressor, Centrifugal Pump, Hydraulic Pump, Fans, Reciprocating Pump, Cooling Tower Fans, Rolling Machines dll.



Persiapan untuk pengukuran vibrasi



MACHINE DATA SHEET 1. Plant Name



2. Train Name 3. Machine Name 4. Machine Description



5. Machine Sketch 6. Position 7. Direction



8. Measurement Units 9. Point Identification 10. Coupling Type



11. RPM 12. Number of Gear Teeth 13. Bearings (Type, manufacture, Number of balls/Series Number)



MENENTUKAN ARAH PENGUKURAN



Horizontal machines



Vertical machines



ANALISA DATA VIBRASI



Following is an example of forcing frequency calculation for a gear-driven machine:



Let us assume that the motor/gear/fan components have the following element counts: Elements of Component



Number of Elements



Motor Cooling Fan



Fan Blades



11



Motor Rotor



Rotor Bars



42



Drive Pinion



Gear Teeth



36



Driven Gear



Gear Teeth



100



Fan



Fan Blades



9



Machine Component



Let us assume that the motor is again running at 1780 RPM. Divide the drive pinion tooth count by the driven gear tooth count:



or



Next, multiply this ratio by the motor shaft RPM to find the fan shaft RPM;



We would now say that the fundamental frequency of the motor is 1780 CPM and the fundamental frequency of the fan is 640.8 CPM. Motor Shaft Rotation



Elements



Forcing Frequency, CPM



Fan Shaft



1



1,780



Motor Cooling Fan



11



19,580



Driven Gear



Motor Rotor



42



74,760



Fan



Drive Pinion



36



64,080



Rotation



Elements



Forcing Frequency CPM



1



640.8



100



64,080



9



5,767.2



Formulas for Calculating Belt Frequencies: You can calculate belt RPM with the following: 3.14 x PS1 x PD1/BL = Belt RPM - or 3.14 x PS2 x PD2/BL = Belt RPM Belt Length = 1.57 x (PD1 + PD2) + 2(SD) PS = Pulley rpm (PS1 = Driver Pulley Speed, PS2 = Driven Pulley Speed) PD = Pulley diameter (PD1 = Driver Pulley Dia., PD2 = Driven Pulley Dia) SD = Distance between shaft centers BL = Belt Length



Spectrum Interpretation (Troubleshooting chart) The following pages are designed to provide typical examples of the vibration spectrums that will result from different problems a machine might experience. They are probability based and field testing should always be performed regardless of how "sure" you are of the diagnosis. Remember: EVERY diagnosis made from an FFT interpretation can be characterized as:



An ASSUMPTION based on an ESTIMATE



Unbalance



Typical Radial FFT Generated By Unbalance



Single Plane Unbalance



Typical Radial FFT Generated By Unbalance



Two-Plane Unbalance



Typical Axial FFT Generated By Unbalance



Typical Radial FFT Generated By Unbalance



Overhung Rotor Unbalance



MISALIGNMENT



Misalignment



Typical FFT Generated By Angular Misalignment Definition: Shaft Centerlines Intersect But Are Not Parallel



Typical FFT Generated By Offset Misalignment Definition: Shaft Centerlines Are Parallel But Do Not Intersect



Angular Misalignment



Offset Misalignment



Belt-Drive Problems Pulley Misalignment



FFT Typical Of Pulley Misalignment This Condition Often Results In High Axial Vibration At Both Components 1x RPM.



Belt/Pulley Wear, Improper Tension & Belt Resonance



Typical FFT Showing Belt/Pulley Wear Problems



Pulley Eccentricity / Bent Shaft (Near Pulley)



Typical FFT Showing Pulley Eccentricity / Bent Shaft Near Pulley



Eccentricity Causes High Vibration At 1x RPM Of The Problem Component. Bent Shaft Near Pulley Causes Same Symptom



Bent Shaft @ Bearing



Typical FFT Generated By Shaft Bent Through The Bearing



Mechanical Looseness



- Bearing / Shaft (Bearing Looseness) - Bearing / Housing (Bearing Looseness) - Internal bearing clearances (Bearing Looseness) - Adjacent, fastened surfaces (Structural) - Areas of the base (Structural)



Housing Distortion (Soft Foot, Pipe Stress, etc.)



Typical Axial FFT Generated By Housing Distortion



Typical Radial FFT Generated By Housing Distortion



Soft Foot Or Other Housing Distortion Such As Pipe Stress Can Cause Bearings Within A Component To Misalign And Can Throw Off Normal Clearances



Structural Looseness



Typical Radial FFT Generated By Mechanical (Structural) Looseness



Looseness Allows Movement In The Direction Of The Looseness



Bearing Looseness



Typical Radial FFT Generated By Bearing Looseness



Bearing Looseness



Rolling Element Bearings Earlier Failure Stage Symptoms



Typical Enveloping Plot Showing Impacts At Bearing Defect Frequency



Typical Velocity FFT Showing Early Stage Bearing Defect



Defect Causes Impacts At A Frequency Equal To The Component Multiplier x RPM



Two Frequencies Are Produced. The Frequency Of The Bearing Assembly Resonance Affects The FFT Plot While The Frequency Of The Impacts Affects The Enveloping Plot



Rolling Element Bearings Later Failure Stage Symptoms



Typical Enveloping Plot Showing Impacts At Bearing Defect Frequency. Amplitudes May Actually Decrease As Bearings Continue To Worsen



Typical Velocity FFT Showing Early Stage Bearing Defect. Amplitudes Can Be Very Low In Early Stages. It Should Be Noted That The Acceleration Spectrum Will Show The High Frequency Peaks Far More Clearly Than The Velocity Spectrum



Hydraulic Problems: Recirculation & Flow Related Problems



Typical Spectrum Showing High Vane Pass Frequency ("VPF" = # of Vanes x RPM). Symptoms normally in the radial directions but may also be seen axially



Cavitation



Typical Spectrum Showing Cavitation (Random, Very Broad Haystack-Like Appearance). Symptoms normally in the radial directions but may also be seen axially. Cavitation - occurs when there is insufficient flow into or pressure out of a pump. This causes the fluid entering to literally be torn apart. Vacuum pockets are created and then implode. This occurs in a random, unpredictable manner and can be extremely destructive to the impeller and internal pump components



Flow Turbulence



Typical FFT Showing Flow Turbulence. Occurs In Compressors And High Pressure Blowers When Surging Or Load Variations Occur That The Machine Is Affected By. Often, A Reservoir Or Surge Suppressor Can Be Used To Eliminate This Feedback



AC Induction Motor Problems:



Elliptical Stator, Stator Weakness & Winding Shorts



Typical Spectrum Showing Indications Of Variation In Air Gap, Winding Shorts, Stator Weakness



Motor Construction



Winding Construction



Elliptical Rotor FLine = Electrical line frequency - 60 Hz(3600 cpm) or 50 Hz(3000 cpm) 2 x FLine = Torque Pulse Frequency P = # of poles on the motor FSynch = Synchronous electrical speed = 2 x FLine / P Fslip = Slip frequency = FSynch - rotor RPM (actual speed) FPole = Pole pass frequency = P x FSlip WSPF = # Winding Slots x RPM RBPF = # Rotor Bars x RPM



Typical Spectrum Showing Indications Of Eccentric Rotor. Similar To Eccentric Stator. Some Cases May Exhibit The Sidebands Seen Here; Others May Propagate Strictly At 2x Line Frequency



Phasing Problems



Loose Rotor Bars



One Possible Spectrum Caused By A Problem With A Short In One Of The Phases Or Feeder Cables



Spectrum Showing Pattern Of Peaks Separated By 2xLine Frequency (Sidebands) In High Frequency Range (30-90xRPM)



Winding Slot Pass Frequency or WSPF = # windings slot x RPM



Another Possible Spectrum Caused By A Problem With A Short In One Of The Phases Or Feeder Cables



Loose in Winding Slots, Iron, End Turns And/Or Connections



Velocity FFT Showing Pattern Of Peaks Separated By 2xLine Frequency (Sidebands) In High Frequency Range (30-90xRPM)



Envelope Plot Showing 2xLine Peak And Harmonics. This Indicates Impacts Occurring At 2xLine Frequency RBPF = rotor bar pass frequency = #Rotor Bar x RPM



DC Drives Problem



DC Drives Problem



"Normal" FFT Taken On DC Drive



Full-Wave Rectified Velocity Spectrum w/ Drive Problems FSCR : Freq. Silicon Controlled Rectifier



Half-Wave Rectified Velocity Spectrum w/ Drive Problems



Spectrum on DC Motor w/ Speed Fluctuations



Gear Problems:



PROGRAM PREDICTIVE MAINTENANCE 1. Data Collection •



Pemantauan getaran terjadwal (mingguan, bulanan, online)



2. Analysis (diperlukan Software) •



Domain frekuensi (harus tahu anatomi mesin)







Domain waktu







Frek. eksitasi getaran, database bantalan, gearbox dll



3. Diagnosis •



Prakiraan sumber masalah







Dibantu oleh Software







Human Interface (Tergantung pengalaman)



4. Langkah Perbaikan



ANALISA DATA VIBRASI 1. Trends Data v [inch/ s] 1,00



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 101 Ov erall v eloc ity >600



0,95



0,90



0,85 RPM : 0 M(x) : 01/ 06/ 2011 19:06:29 M(y) : 0,51 inch/ s



0,80 0,75



0,70



0,65



0,60



0,55



(01/ 06/ 2011 19:06:29 / 0,51) M



0,50



0,45



0,40



0,35



0,30



0,25 0,20



0,15



0,10



0,05



0,00 20/ 07/ 2009



07/ 09/ 2009



26/ 10/ 2009



14/ 12/ 2009



01/ 02/ 2010



22/ 03/ 2010



10/ 05/ 2010



28/ 06/ 2010



16/ 08/ 2010



04/ 10/ 2010



22/ 11/ 2010



10/ 01/ 2011



28/ 02/ 2011



18/ 04/ 2011



date



2. Waterfall Trends Data v rms [inch/ s]



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 103 Mac h. spec tr. >600 01/ 06/ 2011 19:06:44



(2955,00 / 0,38) M



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 0,38 inch/ s



0,44 0,42 0,40 0,38 0,36 0,34 0,32 0,30 0,28 0,26 0,24 0,22 0,20



01/ 06/ 2011



0,18 03/ 11/ 2010



0,16 0,14



19/ 09/ 2010



0,12



24/ 08/ 2010



0,10 17/ 07/ 2010



0,08 0,06



02/ 06/ 2010



0,04 04/ 05/ 2010



0,02



16/ 04/ 2010



0,00 0



1000



2000



3000



4000



5000



6000



7000



8000



9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000



f [cpm]



3. Single Spectrum v rms [inch/ s]



Fan/ blower No.21 - ARP\ Fan/ blower # 21\ BA4\ 103 Mac h. spec tr. >600 01/ 06/ 2011 19:06:44



0,44 0,42 0,40



(2955,00 / 0,38) M



0,38



RPM : 2953 (49,22Hz) M(x) : 2955,00 cpm (1,00 Orders) M(y) : 0,38 inch/ s D(x) : 20685,00 cpm (7,00 Orders) D(y) : 0,01 inch/ s



0,36 0,34 0,32 0,30 0,28 0,26 0,24 0,22 0,20 0,18 0,16



(8865,00 / 0,14) 3



0,14 0,12 0,10 0,08



(5910,00 / 0,06) 2



0,06



(11820,00 / 0,04) 4



0,04



(14775,00 / 0,02) (17730,00 / 0,01)



5



0,02



(20685,00 / 0,01)



6



D



0,00 0



2000



4000



6000



8000



10000



12000



14000



16000



18000



20000



22000



24000 f [cpm]



4. Kondisi Bearing Enveloping Signal Processing(ESP) & High Frequency Domain(HFD)......SKF/DI Spike Energy(gSE) .............Entek/IRD Peakvue ..............................CSI Enveloping Spectrum .........Pruftechnik a rms [g] 0,90



Fan/ blow er N o. 21 - AR P\ Fan/ blow er # 21\ BH 4\ 250 Env elope Spec t rum Ac c elerat ion 29/ 11/ 2011 16: 50: 04



0,85 (2952,00 / 0,797) M



0,80



RPM : 2953 (49,22Hz) M(x) : 2952,00 cpm (1,00 Orders) M(y) : 0,797 g D(x) : 20664,00 cpm (7,00 Orders) D(y) : 0,030 g



0,75



0,70



0,65



0,60



0,55



0,50



0,45



0,40



0,35



0,30



(5904,00 / 0,264) 2



0,25



0,20



0,15 (8856,00 / 0,094) 3



0,10



(17712,00 / 0,033) (14760,00 / 0,031) (20664,00 / 0,030) (11808,00 / 0,018) 6 5 D 4



0,05



0,00 0



2000



4000



6000



8000



10000



12000



14000



16000



18000



20000



22000



24000



26000



28000



30000



32000



34000



36000 f [cpm]



5. Time Signal/Time Domain/Time Trace v [inch/ s] 0,70



Stand No.5 - E1.455\ Gear Box Std.# 5\ GV6\ 211 VXP Mac hine time signal >120 16/ 01/ 2009 10:10:05



0,65 0,60



(299,26 / 0,54) D



0,55 0,50



(207,28 / 0,45) M



0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0,00 -0,05 -0,10 -0,15 -0,20 -0,25 -0,30 -0,35 -0,40 -0,45 -0,50 -0,55



RPM : 870 (14,50Hz) M(x) : 207,28 ms M(y) : 0,45 inch/ s D(x) : 299,26 ms D(y) : 0,54 inch/ s



-0,60 -0,65 -0,70 0



20



40



60



80



100



120



140



160



180



200



220



240



260



280



300



320



340



360



380



400



420



440



460



480 500 t [ms]



6. Orbit Y2 [g]



Strip Dryer - J1.470\ Fan/ blower Dryer \ BV3\ 285 Orbit 17/ 06/ 2009 18:35:06 90° 0,040 0,038 0,036 0,034 0,032 0,030 0,028 0,026 0,024



(-0,04 / 0,021)



0,022



M



0,020 0,018 0,016 0,014 0,012 0,010 0,008 0,006 0,004 0,002 -0,040



-0,035



-0,030



-0,025



-0,020



-0,015



-0,010



-0,005



0,000 0,000 0,005 -0,002



0,010



0,015



0,020



0,025



0,030



0,035



0,040



-0,004 -0,006 -0,008 -0,010 -0,012 -0,014 -0,016 -0,018 -0,020 -0,022 -0,024 -0,026 -0,028 -0,030 -0,032 -0,034 -0,036 -0,038 -0,040 270° Y1 [g]



a [g channel A] 0,050



Strip Dryer - J1.470\ Fan/ blower Dryer \ BV3\ 285 Orbit 17/ 06/ 2009 18:35:06 RPM : 47897 (798,29Hz) M(x) : 90,00 ° M(y) : -0,037 g



0,045 0,040 0,035 0,030 0,025 0,020 0,015 0,010 0,005 0,000 -0,005 -0,010 -0,015 -0,020 -0,025 (90,00 / -0,037)



-0,030



M



-0,035 -0,040 -0,045 -0,050 0



10



20



30



40



50



60



70



80



90



100



110



120



130



140



150



160



170



180



190



200



210



a [g channel B] 0,050



220



230



240



250



260



270



280



290



300



310



320



330



340



350



260



270



280



290



300



310



320



330



340



350



[°]



RPM : 47897 (798,29Hz) M(x) : 90,00 ° M(y) : 0,021 g



0,045 0,040 0,035 0,030



(90,00 / 0,021)



0,025



M



0,020 0,015 0,010 0,005 0,000 -0,005 -0,010 -0,015 -0,020 -0,025 -0,030 -0,035 -0,040 -0,045 -0,050 0



10



20



30



40



50



60



70



80



90



100



110



120



130



140



150



160



170



180



190



200



210



220



230



240



250



[°]



Pola orbit pada rotary machine yang mengalami unbalance



Pola orbit pads rotary machine yang mengalami misalignment



KESIMPULAN LOKASI / AREA MESIN POSISI &



MESIN & SPESIFIKASINYA



ARAH PENGUKURAN



A M P L I T U D O



Type Spectrum



PUTARAN POROS



TERIMA KASIH