Workbook For Organic Chemistry - Supplemental Problems and Solutions [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

This page intentionally left blank



This page intentionally left blank



WORKBOOK FOR ORGANIC CHEMISTRY SUPPLEMENTAL PROBLEMS AND SOLUTIONS



Jerry A. Jenkins Otterbein College



W.H. Freeman and Company New York



© 2010 by W.H. Freeman and Company All rights reserved. Printed in the United States of America ISBN-13: 978-1-4292-4758-0 ISBN-10: 1-4292-4758-4 First printing W.H. Freeman and Company 41 Madison Avenue New York, NY 10010 Houndmills, Basingstoke RG21 6XS England www.whfreeman.com/chemistry



TABLE OF CONTENTS PREFACE About the author vi | Acknowledgments vi | Selected concepts/reactions locator vii TIPS viii | Common abbreviations ix



v



CHAPTER 1 THE BASICS 1.1 Hybridization, formulas, physical properties 1 | 1.2 Acids and bases 4 | 1.3 Resonance 7



1



CHAPTER 2 ALKANES 2.1 General 11 | 2.2 Nomenclature 12 | 2.3 Conformational analysis, acyclic 13



11



CHAPTER 3 CYCLOALKANES 3.1 General 15 | 3.2 Nomenclature 16 | 3.3 Conformational analysis, cyclic 18



15



CHAPTER 4



21



REACTION BASICS



CHAPTER 5 ALKENES AND CARBOCATIONS 5.1 General 27 | 5.2 Reactions 30 | 5.3 Syntheses 36 | 5.4 Mechanisms 39



27



CHAPTER 6 ALKYNES 6.1 Reactions 49 | 6.2 Syntheses 50 | 6.3 Mechanisms 53



49



CHAPTER 7 STEREOCHEMISTRY 7.1 General 55 | 7.2 Reactions and stereochemistry 61



55



CHAPTER 8 ALKYL HALIDES AND RADICALS 8.1 Reactions 65 | 8.2 Syntheses 66 | 8.3 Mechanisms 67



65



CHAPTER 9 SN1, SN2, E1, AND E2 REACTIONS 9.1 General 69 | 9.2 Reactions 71 | 9.3 Syntheses 76 | 9.4 Mechanisms 78



69



CHAPTER 10



87



NMR



CHAPTER 11 CONJUGATED SYSTEMS 11.1 Reactions 93 | 11.2 Syntheses 96 | 11.3 Mechanisms 98



93



CHAPTER 12 AROMATICS 12.1 General 103 | 12. Reactions 105 | 12.3 Syntheses 109 | 12.4 Mechanisms 111



103



CHAPTER 13 ALCOHOLS 13.1 Reactions 117 | 13.2 Syntheses 120 | 13.3 Mechanisms 124



117



CHAPTER 14 ETHERS 14.1 Reactions 129 | 14.2 Syntheses 133 | 14.3 Mechanisms 134



129



CHAPTER 15 ALDEHYDES AND KETONES 15.1 Reactions 139 | 15.2 Syntheses 149 | 15.3 Mechanisms 154



139



CHAPTER 16 CARBOXYLIC ACIDS 16.1 Reactions 167 | 16.2 Syntheses 169 | 16.3 Mechanisms 172



167



CHAPTER 17 CARBOXYLIC ACID DERIVATIVES 17.1 Reactions 177 | 17.2 Syntheses 186 | 17.3 Mechanisms 193



177



iv • Table of Contents Workbook for Organic Chemistry



CHAPTER 18 CARBONYL Į-SUBSTITUTION REACTIONS AND ENOLATES 18.1 Reactions 201 | 18.2 Syntheses 204 | 18.3 Mechanisms 207



201



CHAPTER 19 CARBONYL CONDENSATION REACTIONS 19.1 Reactions 209 | 19.2 Syntheses 217 | 19.3 Mechanisms 219



209



CHAPTER 20 AMINES 20.1 Reactions 229 | 20.2 Syntheses 233 | 20.3 Mechanisms 236



229



SOLUTIONS TO PROBLEMS



241



CHAPTER 1



THE BASICS



243



CHAPTER 2



ALKANES



251



CHAPTER 3



CYCLOALKANES



255



CHAPTER 4



REACTION BASICS



261



CHAPTER 5



ALKENES AND CARBOCATIONS



263



CHAPTER 6



ALKYNES



281



CHAPTER 7



STEREOCHEMISTRY



287



CHAPTER 8



ALKYL HALIDES AND RADICALS



295



CHAPTER 9



SN1, SN2, E1, AND E2 REACTIONS



299



CHAPTER 10 NMR



315



CHAPTER 11 CONJUGATED SYSTEMS



319



CHAPTER 12 AROMATICS



327



CHAPTER 13 ALCOHOLS



341



CHAPTER 14



351



ETHERS



CHAPTER 15 ALDEHYDES AND KETONES



357



CHAPTER 16



CARBOXYLIC ACIDS



379



CHAPTER 17



CARBOXYLIC ACID DERIVATIVES



387



CHAPTER 18 CARBONYL Į-SUBSTITUTION REACTIONS AND ENOLATES



405



CHAPTER 19



413



CARBONYL CONDENSATION REACTIONS



CHAPTER 20 AMINES



427



PREFACE WORKBOOK FOR ORGANIC CHEMISTRY SUPPLEMENTAL PROBLEMS AND SOLUTIONS Organic Chemistry is mastered by reading (textbook), by listening (lecture), by writing (outlining, notetaking), and by experimenting (laboratory). But perhaps most importantly, it is learned by doing, i.e., solving problems. It is not uncommon for students who have performed below expectations on exams to explain that they honestly thought they understood the text and lectures. The difficulty, however, lies in applying, generalizing, and extending the specific reactions and mechanisms they have “memorized” to the solution of a very broad array of related problems. In so doing, students will begin to “internalize” Organic, to develop an intuitive feel for, and appreciation of, the underlying logic of the subject. Acquiring that level of skill requires but goes far beyond rote memorization. It is the ultimate process by which one learns to manipulate the myriad of reactions and, in time, gains a predictive power that will facilitate solving new problems. Mastering Organic is challenging. It demands memorization (an organolithium reagent will undergo addition to a ketone), but then requires application of those facts to solve real problems (methyllithium and androstenedione dimethyl ketal will yield the anabolic steroid methyltestosterone). It features a highly logical structural hierarchy (like mathematics) and builds upon a cumulative learning process (like a foreign language). The requisite investment in time and effort, however, can lead to the development of a sense of self-confidence in Organic, an intellectually satisfying experience indeed. Many excellent first-year textbooks are available to explain the theory of Organic; all provide extensive exercises. Better performing students, however, consistently ask for additional exercises. It is the purpose of this manual, then, to provide Supplemental Problems and Solutions that reinforce and extend those textbook exercises. Workbook organization and coverage. Arrangement is according to classical functional group organization, with each group typically divided into Reactions, Syntheses, and Mechanisms. To emphasize the vertical integration of Organic, problems in later chapters heavily draw upon and integrate reactions learned in earlier chapters. It is desirable, but impossible, to write a workbook that is completely text-independent. Most textbooks will follow a similar developmental sequence, progressing from alkane/alkene/alkyne to aromatic to aldehyde/ketone to carboxylic acid to enol/enolate to amine chemistry. But within the earlier domains placement of stereochemistry, spectroscopy, SN/E, and other functional groups (e.g., alkyl halides, alcohols, ethers) varies considerably. The sequence is important because it establishes the concepts and reactions that can be utilized in subsequent problems. It is the intent of this workbook to follow a consensus sequence that complements a broad array of Organic textbooks. Consequently, instructors utilizing a specific textbook may on occasion need to offer their students guidance on workbook chapter and problem selection. Most Organic textbooks contain later chapters on biochemical topics (proteins, lipids, carbohydrates, nucleic acids, etc.). This workbook does not include separate chapters on such subjects. However, consistent with the current trend to incorporate biochemical relevance into Organic textbooks, numerous problems with a bioorganic, metabolic, or medicinal flavor are presented throughout all chapters. To produce an error-free manual is certainly a noble, but unrealistic, goal. For those errors that remain, I am solely responsible. I encourage the reader to please inform me of any inaccuracies so that they may be corrected in future versions. Jerry A. Jenkins Otterbein College Westerville, OH 43081 [email protected] Grindstones sharpen knives; problem-solving sharpens minds!



vi • Preface Workbook for Organic Chemistry



ABOUT THE AUTHOR Jerry A. Jenkins received his BA degree summa cum laude from Anderson University and PhD in Organic from the University of Pittsburgh (T Cohen). After an NSF Postdoctoral Fellowship at Yale University (JA Berson), he joined the faculty of Otterbein College where he has taught Organic, Advanced Organic, and Biochemistry, and chaired the Department of Chemistry & Biochemistry. Prof. Jenkins has spent sabbaticals at Oxford University (JM Brown), The Ohio State University (LA Paquette), and Battelle Memorial Institute, represented liberal arts colleges on the Advisory Board of Chemical Abstracts Service, and served as Councilor to the American Chemical Society. He has published in the areas of oxidative decarboxylations, orbital symmetry controlled reactions, immobilized micelles, chiral resolving reagents, nonlinear optical effects, and chemical education. Prof. Jenkins has devoted a career to challenging students to appreciate the logic, structure, and aesthetics of Organic chemistry through a problem-solving approach.



ACKNOWLEDGMENTS I wish to express gratitude to my students, whose continued requests for additional problems inspired the need for this book; to Mark Santee, Director of Marketing, WebAssign, for encouraging and facilitating its publication; to Dave Quinn, Media and Supplements Editor, W. H. Freeman, for invaluable assistance in bringing this project to completion; to the production team at W.H. Freeman, specifically Jodi Isman, Project Editor, for all their assistance with the printing process; to Diana Blume, Art Director, and Eleanor Jaekel for their assistance in the cover design; and to my wife Carol, for her endless patience and support.



Supplemental Problems and Solutions • vii



SELECTED CONCEPTS/REACTIONS LOCATOR The location of problems relating to the majority of concepts and reactions in most Organic textbooks will be generally predictable: pinacol rearrangements will be found under ALCOHOLS, benzynes under AROMATICS, acetals under ALDEHYDES AND KETONES, etc. Placement of others, however, may vary from one text to another: diazonium ions may be under AROMATICS or AMINES, thiols may be under ALCOHOLS or ETHERS, the Claisen rearrangement may be under ETHERS or AROMATICS, etc. The following indicates where problems on several of these often variably placed concepts or reactions are initially encountered in Workbook for Organic Chemistry. Selected concept/reaction



Chapter



Active methylene chemistry (e.g., malonic/acetoacetic ester syntheses) Brønsted-Lowry/Lewis equations Carbocation rearrangements cis-, trans- (geometric) isomers Claisen, Cope, oxy-Cope rearrangements Conformational analysis Curved arrow notation Degrees of unsaturation (units of hydrogen deficiency) Diazonium ions Diels-Alder reaction Enamines, synthesis of Enamines, reactions of Epoxides, synthesis of Epoxides, reactions of Free radical additions Free radical substitutions Hydrogens, distinguishing different Isocyanates, ketenes Kinetic isotope effects Kinetics, thermodynamics Neighboring group participation Nitriles Organometallics (Grignard, organolithium, Gilman), synthesis of Phenols Polymers Reaction coordinate diagrams Reaction types/mechanisms Resonance Thiols, (di)sulfides UV/VIS spectroscopy



18 1 5 3 14 2, 3 vi, 1 5 20 11 15 19 5 14 5 8 2 17 9 4 9 16 8 12 5 4 4 1 14 11



viii • Preface Workbook for Organic Chemistry



TIPS (TO IMPROVE PROBLEM SOLVING) Mechanism arrows. All reactions (except nuclear) involve the flow of electrons. Arrows are used to account for that movement. They originate at a site of higher electron density (e.g., lone pairs, S bond) and point to an area of lower electron density (e.g., positively or partially positively charged atoms). H



O



O H



H



O



right:



O H



wrong:



Equilibrium vs. resonance arrows. Equilibrium arrows interrelate real species (as above). Resonance arrows interrelate imaginary valence bond structures. Do not interchange them. O H



O H



O H



right:



O H



wrong: (resonance arrow)



(equilibrium arrows)



Hydrogen nomenclature. The word “hydrogen” is commonly misused. Be more specific. (H



:H



O



O



+



H2



A proton (H ) is removed by hydride (H: ) to form hydrogen (H2). H H



X



+



H



H X



A hydrogen atom (H ) is removed by a free radical species.



State of association/dissociation. Correct identification of the appropriate charge state on a species in a particular environment is important. Generally speaking, alkoxides (hydroxide), carboxylates, carbanions, enolates, amines, etc., exist under alkaline conditions. Protons, carboxylic acids, carbocations, enols, etc., exist under acidic conditions. For example, hydroxide does not exist in an acidic solvent OH OH H3O wrong H2O



-H



OH2



right



and a proton is not directly available in base. H



O OR H



O



O



OH H



ROH H) OR



+H wrong +ROH, -RO right



O H



Supplemental Problems and Solutions • ix



COMMON ABBREVIATIONS The following abbreviations and symbols are used throughout this workbook:







Ac AcOH * B: Bn Bu CA CB ' D-A or (4+2) DB DCC DIBAH DMF DMSO EAS ee equiv Et F-C [H] ~H+ HMPA HSCoA hQ H-V-Z inv L LDA mCPBA Me NAS NBS NGP NR Nu: [O] PCC Ph Pr py Ra-Ni ret rds taut THF TMS Ts TsOH TS W-K X (XS)



acetyl (CH3CO-) acetic acid chiral center or isotopic label base benzyl (PhCH2-) butyl (C4H9-) conjugate acid conjugate base heat energy Diels-Alder double bond(s) dicyclohexylcarbodiimide diisobutylaluminum hydride dimethylformamide dimethyl sulfoxide electrophilic aromatic substitution enantiomeric excess equivalent(s) ethyl (CH3CH2-) Friedel-Crafts reduction proton shift hexamethylphosphoramide coenzyme A light energy Hell-Volhard-Zelinsky reaction inversion of configuration leaving group lithium diisopropylamide m-chloroperbenzoic acid methyl (CH3-) nucleophilic acyl (or aryl) substitution N-bromosuccinimide neighboring group participation no reaction nucleophile oxidation pyridinium chlorochromate phenyl (C6H5-) propyl (C3H7-) pyridine Raney nickel retention of configuration rate determining step tautomerization tetrahydrofuran tetramethylsilane or trimethylsilyl tosyl (p-toluenesulfonyl) tosyl acid (p-toluenesulfonic acid) transition state Wolff-Kishner reduction halogen excess



This page intentionally left blank



PROBLEMS



This page intentionally left blank



CHAPTER 1 THE BASICS 1.1 Hybridization, formulas, physical properties 1. SeldaneTM is a major drug for seasonal allergies; RelenzaTM is a common antiviral.



HO



a



OH



c



OH O



HO N



2



OH N H O



b



O OH d



NH NH H2N



SeldaneTM



RelenzaTM



a. Complete the molecular formula for each. SeldaneTM: C___H___NO2 RelenzaTM: C___H___N4O7 b. Draw all the lone electron pairs in both structures. c. Which orbitals overlap to form the covalent bonds indicated by arrows a, b, and c? a ____________



b ____________



c ____________



d. What is the hybridization state of both oxygens in SeldaneTM and of nitrogen d in RelenzaTM? 2. Place formal charge over any atom that possesses it in the following structures: a.



:C C:



c.



b. H C O:



:O N O:



d. the conjugate base of NH2CH3



Cl e.



O



N H



f.



O



O H



zingerone (a constituent of the spice ginger)



BenadrylTM (antihistamine)



3. a. One type of carbene, [:CH2], a very reactive species, has the two unshared electrons in the same orbital and is called “singlet” carbene. Identify the orbital and predict the HCH bond angle.



b. Another type of carbene is called “triplet” carbene and has a linear HCH bond angle. Identify the orbitals housing the two lone electrons.



HO 4. a. Which has the higher bp?



N H



or



N



OH



b. lower mp?



or catechol



HO



OH



hydroquinone



1.1 Hybridization, formulas, physical properties



2 • Chapter 1 The Basics



5. Must the indicated carbon atoms in each of the following structures lie in the same plane? H



H



a.



b.



H



H



d.



c.



H H H3C



f.



e. (CH3)3C all four carbons



H



C C C



CH3



g.



h.



H3C



H



H C C C C



H



CH3



6. Which species in each pair has the higher molecular dipole moment (P)? a. CHCl3 or CFCl3



b. CH3NH2 or CH3NO2



c. CO2 or SO2



7. Penicillin V and the antiulcerative cimetidine (TagametTM – the first billion dollar ethical drug) have the structures below:



O



a H N d



b S



N



N



O



HN CO2H



C



N c



S



N H



N H



N cimetidine



penicillin V



a. Complete the molecular formulas for each. penicillin V: C_____H_____N_____O_____S



cimetidine: C_____H_____N_____S



b. Identify the type of orbital (s, p, sp, sp2, sp3) that houses the lone electron pairs on the atoms indicated by arrows a, b, and c in the above structures. a ________



b ________



c ________



c. The bond between the carbonyl carbon and nitrogen (indicated by arrow d) is somewhat stronger than a single but weaker than a double bond. Given that fact, what type of orbital houses the lone pair of electrons on that nitrogen? (Suggestion: do this problem after studying resonance.)



d. How many lone pairs of electrons are in each structure? penicillin V: ________



1.1 Hybridization, formulas, physical properties



cimetidine: ________



Problems • 3



8. Sumatriptan is often prescribed for the treatment of migraines. Prostacyclin is a platelet aggregation inhibitor. HO2C H N



O MeHN S O



O



NMe2 HO sumatriptan



OH prostacyclin



a. Complete the molecular formulas for each. sumatriptan: C____H____N____O____S



prostacyclin: C____H____O____



b. Sumatriptan contains _____ sp2 and _____ sp3 carbons; prostacyclin contains _____ sp2 and _____ sp3 carbons. c. Sumatriptan and prostacyclin possess _____ and _____ lone pairs of electrons, respectively. 9. RozeremTM is prescribed for the treatment of insomnia, ChantixTM for smoking cessation, and RitalinTM for ADHD. O N H



O



N



H



N



RoseremTM



H N



NH



O O



ChantixTM



Ritalin TM



ChantixTM ___________



RitalinTM ___________



a. What is the molecular formula for each? RozeremTM ___________



b. How many lone pairs of electrons are there in each? RozeremTM ___________



ChantixTM ____________



RitalinTM ___________



10. Theobromine (Greek theobroma – “food of the gods”) is a constituent of cocoa. How many lone pairs of electrons are in its structure? How many lone pairs of electrons are in the plasticizer melamine? O HN



N N CH3 theobromine



O



NH2



CH3 N



N H2N



N N



NH2



melamine



1.1 Hybridization, formulas, physical properties



4 • Chapter 1 The Basics



11. Which functional groups are present in each of the following medicines?



a.



O



HO2C



O N H



OH



O



O O



C CH



F c.



b. N



N NH



NH2



TamifluTM (antiviral)



HO YasminTM component (OCP)



CiproTM (antibiotic)



1.2 Acids and bases 1. What is the strongest base that can exist in ammonia? Sodium hydride (NaH) is, in fact, a stronger base than the above answer. Write a reaction to describe what happens when NaH is added to NH3. Use arrows to show the flow of electrons.



2. Which is the stronger base:



(CH3)2NH



or



CH3-O-CH3?



3. Using curved arrow notation, write Lewis acid/base equations for each of the following. Remember to place formal charge on the appropriate atoms. a.



O



b.



Ph3P:



c.



N



+



+



AlCl3



BF3



O



+



BH3



4. Place formal charge on all appropriate atoms. Label the reactants on the left of the arrow as Lewis acids (LA) or Lewis bases (LB) and draw curved arrows to show the movement of electron pairs in each reaction. a.



H3C O



b.



H2C CH2



1.2 Acids and bases



CH3CH2 Cl:



+



+



BF3



CH3 O CH2CH3



CH2 CH2 BF3



+



Cl



Problems • 5



c.



H3C O H



d.



:Cl Cl:



e.



+



+



+



Cl



AlCl3



+



CH3 N C S :



H3C O



:CH2 CH3



H3C CH3



AlCl4



S +



:NH3



CH3 N C NH3



5. Lynestrenol, a component of certain oral contraceptives, has the structure



O



a. Calculate the molecular formula:



Ha Hb C C



C___H___O.



b. The pKas of hydrogens a and b are about 16 and 25, respectively, and the pKa of ammonia is about 35. Write a Brønsted-Lowry equation for the reaction of the conjugate base of lynestrenol with ammonia.



c. Is the Keq for the above reaction about equal to, greater than, or less than 1?



6. The structure of ibuprofen (A) and acetaminophen (B) are drawn below.



CO2H



HO



NH O



A



B



a. Write a reaction for the conjugate base of A with B.



1.2 Acids and bases



6 • Chapter 1 The Basics



b. Identify the weak and strong acids and bases. c. Is Keq about equal to, less than, or greater than 1? 7. Which compound has the lowest pKa? a. EtOH



b. HOAc



c. H2O



d. PhOH



e. H2



f. NH3



8. Which species has the ability to quantitatively (completely) remove the proton Ha (pKa 22) from R C C Ha ? a. hydroxide



b. CB of NH3



c. CA of hydride



d. CB of EtOH



9. Stress levels in horses may be monitored by measuring urine estradiol. Comment on the Keq for the reaction of the conjugate base of nitromethane (pKa 10.3) with estradiol. OH



CH3NO2



HO



nitromethane



estradiol



10. Pyridinium chloride is drawn below. a. Place the appropriate formal charge on the atoms that bear it.



Cl N H



b. The pKas for pyridinium chloride and sodium bicarbonate (NaHCO3) are 5.2 and 10.2, respectively. Write a Brønsted-Lowry equation for the reaction of pyridinium chloride with the conjugate base of bicarbonate. Use curved arrow notation to show the flow of electrons.



c. Is Keq greater than, less than, or about one?



1.2 Acids and bases



Problems • 7



1.3 Resonance 1. Identify the type of orbital housing the electrons specified by the arrows. CH2



H3C C O



N



H



2. Which species has the lower pKa, H C N



O



or



H O C N ?



3. How many nuclei can reasonably bear the charge in each of these ions? a.



HO CH NH2



b.



O c.



d.



O



H2C



O CH3



4. The compound below can be protonated at any of the three nitrogen atoms to give a guanidinium ion derivative (creatine phosphate and the amino acid arginine possess this moiety). One of these nitrogens is much more basic than the others, however. Draw the conjugate acids resulting from such protonation, then identify the conjugate acid which is most stable. Why? H3C NH C NH2 NH



1.3 Resonance



8 • Chapter 1 The Basics



5. Draw a resonance structure that is more stable than the one given. Use curved arrows to derive. H N a.



O O O ozone



b.



OH H c.



d.



C C N: H



6. How many nuclei can reasonably bear the charge in each of the following ions? O



a.



b. N H



CH2



c.



d. O



7. Recalling that resonance is a stabilizing force, explain why the pKa of Ha in A is (only!) about 10. H



Ha



O



O A



8. Either oxygen in acetic acid (HOAc) could, in theory, be protonated to produce two different conjugate acid forms. Draw each and explain which is more favored.



1.3 Resonance



Problems • 9



9. How many nuclei can reasonably bear the charge or odd electron in each of the following?



a.



c.



b.



N



N



H



O d.



e.



f.



O



N



.



g.



.



CH3O h.



CH2



i.



H Cl



10. B’s molecular dipole moment (P) is larger than A’s. Explain. O



O



A



B



11. Bioluminescence in fireflies is a result of the conversion of chemical energy (in ATP) to light energy. Specifically, ATP, O2, and the enzyme luciferase cause luciferin (~ 9 mg can be collected from about 15,000 fireflies!) to be oxidatively decarboxylated to an electronically excited oxyluciferin. Relaxation of the latter to its ground state is accompanied by the emission of light (fluorescence). Subsequent regeneration reactions then recycle oxyluciferin back to luciferin. Draw the two resonance structures of the CB of oxyluciferin in which either oxygen bears the negative charge.



HO



N



N



S



S



luciferin



CO2H ATP, O2 luciferase -CO2



N



N



S



S



O +



HO



hv



oxyluciferin



1.3 Resonance



This page intentionally left blank



CHAPTER 2 ALKANES 2.1 General 1. Which compound has the highest mp? 1. n-octane



2. 2,5-dimethylhexane



4. bicyclo[2.2.2]octane



5. all have the same number of carbons and would melt at the same T



3. 2,3,4-trimethylpentane



2. Which compound has the highest bp? 1. n-pentane



2. neopentane (dimethylpropane)



3. isopentane



3. Dodecahedrane, one of the three Platonic solids (tetrahedron, hexahedron, and dodecahedron), is a regular polyhedron consisting of twelve cyclopentane rings (think soccer ball). Eicosane is a straight-chain compound. Although both are C20 hydrocarbon alkanes, one melts at 4200 and the other at 370. Explain.



4. How many constitutional (structural) isomers exist for a. C6H14?



b. C7H16?



5. How many different kinds (constitutional) of hydrogens are in a. 2,3-dimethylpentane?



b. 2,4-dimethylpentane?



c. 3-ethylpentane?



d. 2,2,4-trimethylpentane?



e. 2,5,5-trimethylheptane?



f. 4-ethyl-3,3,5-trimethylheptane?



2.1 General



12 • Chapter 2 Alkanes



2.2 Nomenclature Give the IUPAC name for each of the following. Be certain to specify stereochemistry when relevant. I Et 1.



CH CHNO2 s-Bu t-Bu



2. Br



4.



3.



Et



5.



n-Pr



6. F



7.



8.



i-Pr 9.



10. isohexyl iodide n-pentyl



i-Bu 12.



11.



t-Bu



n-Pr neopentyl



Cl



Give the correct IUPAC names for problems 13 – 16. 13. 2-isopropyl-4-methylheptane



2.2 Nomenclature



14. 3-(1-methylbutyl)octane



Problems • 13



15. 3-s-butyl-7-t-butylnonane



16. tetraethylmethane



17. Draw structural formulas, using bond line notation, for the following: a. neopentyl alcohol (R-OH)



b. isobutyl n-pentyl ether (R-O-R’)



c. allyl bromide (R-X)



2.3 Conformational analysis, acyclic 1. The rotational energy barrier about the C-C bond in EtBr is 3.7 kcal/mole. What is the energy cost of eclipsing a C-H and C-Br bond?



2. Draw Newman projections of the a. most stable conformer , looking down the C2-C3 bond, of 2-cyclopentyl-6-methylheptane



b. gauche conformer of 1-phenylbutane, looking down the C1-C2 bond (use two-letter abbreviations for R groups).



3. Give the common name for (a) and the IUPAC name for (b). s-Bu



OH a.



H



Me



H



Et



H



t-Bu



b.



H



H Me



(R-OH = alkyl alcohol)



2.3 Conformational analysis, acyclic



14 • Chapter 2 Alkanes



4. Draw the conformer of isopentane that corresponds to the highest minimum in a plot of the potential energy vs. rotation about the C2-C3 bond (use a Newman projection).



PE



rot'n about C2 - C3 bond



5. The molecular dipole moment (P) for FCH2CH2OH is much larger than that for FCH2CH2F. Use conformational analysis to explain.



2.3 Conformational analysis, acyclic



CHAPTER 3 CYCLOALKANES 3.1 General 1. Which compound has the highest molecular dipole moment (u)? a.



Cl



b. anti conformer of 2,3-dichlorobutane



c. C2Cl2



d. cis-1,3-dichlorocyclobutane



Cl



2. How many constitutional (structural) isomers exist for a. dichlorocyclopentane?



b. C6H12 that have a cyclopropyl ring in their structure?



3. How many cis/trans stereoisomers exixt for a. dichlorocyclopentane?



b. diphenylcyclohexane?



c. 2-chloro-4-ethyl-1-methylcyclohexane?



4. How many different kinds [constitutional and geometric (cis/trans)] of hydrogens are there in a. 1-ethyl-1-methylcyclopropane?



b. allylcyclobutane?



c. methylcyclobutane?



3.1 General



16 • Chapter 3 Cycloalkanes



d. chlorocyclopentane?



e. vinylcyclopentane?



5. Which bicyclic compound is least strained?



a.



.



b.



. .



c.



d.



. .



6. Three structural isomers are possible for methylbicyclo[2.2.1]heptane. One of them has two stereoisomeric forms. Draw structures for all four isomers.



7. In view of the previous problem, how many structural and geometric isomers exist for methylbicyclo[2.2.2]octane?



3.2 Nomenclature Give the IUPAC name for each of the following. Be certain to specify stereochemistry when relevant.



1.



2.



isoamyl



3.



3.2 Nomenclature



(three names!)



4.



Problems • 17



6.



5. Br



F 7.



8. Cl



t-butyl I 9.



10. neopentyl



F 11.



13.



Ph



12.



14. roof-methylhausane (!)



15.



16.



3.2 Nomenclature



18 • Chapter 3 Cycloalkanes



3.3 Conformational analysis, cyclic 1. Draw the most stable conformer of Me



Me =



=



OH



OH



i-Pr



i-Pr



menthol



neomenthol



2. In each of the following predict whether Keq is about equal to, greater than, or less than one: a. trans-1,3-diphenylcyclohexane



b.



"flipped" conformer



n-Pr



i-Pr



"flipped" conformer



(if i-Pr is equatorial)



H H Me



c.



"flipped" conformer



Et



3. Which has the most negative heat of combustion ('Hcomb) in each of (a), (b), or (c)?



a. t-Bu



3.3 Conformational analysis, cyclic



t-Bu



t-Bu



Problems • 19



b.



Me



Me



Me



c. Et



s-Bu



Et



Et



s-Bu



s-Bu



4. a. Which has the least negative heat of combustion ('Hcomb)? Et



Et



Et



Et



Me



Me



Me



Me



Et



Et



Et



Et



b. Which two structures in (a) are the same compound?



5. Many alkyl halides undergo loss of HX in the presence of base. For example, chlorocyclohexane gives cyclohexene when treated with sodium hydroxide. The reaction mechanism generally requires both the leaving proton and halide to occupy axial positions, a process known as a trans-diaxial elimination. Therefore, which do you think would react faster, cis-1-chloro-2-t-butylcyclohexane or trans-1-chloro-2-tbutylcyclohexane?



6. Trans-4-fluorocyclohexanol exists largely in a chair conformation, whereas the cis-isomer favors a twist-boat conformation. Explain.



3.3 Conformational analysis, cyclic



20 • Chapter 3 Cycloalkanes



7. Glucose, like cyclohexane, exists in a chair conformation. Two configurations of glucose are possible; they are drawn below: HO



O



OH



HO



OH



O



HO



OH



and HO



OH



OH



OH



1



2



a. Complete the chair conformations below to show the most stable conformer of 1 and 2.



O



O



1



2



b. Which configuration would you predict would be less stable, i.e., burn with a more negative heat of combustion?



8. One of the chair conformations of cis-1,3-dimethylcyclohexane is 5.4 kcal/mol more stable than the other. If the steric strain of 1,3-diaxial interactions between hydrogen and methyl is 0.9 kcal/mol, what is the strain cost of a 1,3-diaxial interaction between the two methyl groups?



9. a. How many cis/trans stereoisomers exist for 1,2,3,4,5,6-hexamethylcyclohexane?



b. For three of those stereoisomers, Keq = 1 for conformational chair-chair flipping. Draw them.



c. Of those three, which is the least stable?



d. Which stereoisomer would be least likely to undergo conformational flipping?



3.3 Conformational analysis, cyclic



CHAPTER 4 REACTION BASICS 1. Which type of reaction – addition, elimination, rearrangement, substitution, reduction [H], or oxidation [O] – best describes each of the following? OLi a. MeLi



+



O Me O



OH b. OH



O



c. RCO2R + NH2R



O



d.



H



H



+



RCONHR + HOR



NMe



H2NMe



+



H2O



H e. N



+



O



Me2NOH



O



O f. OH



g.



RHC



h.



i. PhCO2H



OH



OH



CHR



+



RC



H2O



CR



OH



PhCHO



j.



k. BnOH



PhCHO



4. Reaction Basics



22 • Chapter 4 Reaction Basics



l. Ac2O



+



m. CHCl3 +



H2O



2 AcOH



KO-t-Bu



n.



+



o. Br2



2 Br



p.



Ph



q.



:CCl2 + t-BuOH + KCl



HC CH



Ph



Ph



OH



Ph



O



r. vinyl chloride



C2H2 O



CO2H s.



O



+



H2O



CO2H O t. isohexyl alcohol



isohexane



2. Imagine a 2-step (A to B and B to C) endothermic reaction for which 'Go values for each step are, respectively, +3 and +7 kcal/mole. The 'G± value for the rate determining step is 11 kcal/mole. (a) Draw a potential energy diagram for this reaction. (b) What is the 'G± value for the conversion of C to B?



'Go



rx



4. Reaction Basics



Problems • 23



3. A simplified mechanism for the exothermic substitution reaction below involves two steps: O O OH slow fast + HCl + HOR' R Cl R OR' R Cl OR' a. Draw an overall energy diagram and label the transition state(s), intermediate, 'G± for the rate determining step, and 'Go.



'Go



rx



b. The overall Keq for the conversion of RCOCl to RCO2R’ could be calculated from 'Go according to the equation: Keq = ________________________________ c. If 'G± is known, the rate of the reaction could be calculated according to the equation: rate = ________________________________ 4. Bromoform (A) in the presence of base (:B-) can form a very reactive intermediate, dibromocarbene (B), which can rapidly add to olefins to produce gem-dibromocyclopropane derivatives. The following summarizes the two-step mechanism: (1)



Br3C



:B



H



Br3C:



+ H-B



A



-Br



(2) Br3C:



Br2C: B



Br (3) Br2C:



Br



+



a. Assuming that 'Go for the overall reaction is +2.5 kcal/mol and that step (2) is rate-determining, draw a reaction energy diagram that depicts all three steps.



'Go



rx



b. Calculate Keq for this reaction (R = 2 cal/mol.K, T = 300).



4. Reaction Basics



24 • Chapter 4 Reaction Basics



5. Consider the following reaction mechanism for A in equilibrium with B: H O



O



O +



H



O



O



O



H OH2



+



A



+ H2O



H OH2



B 75%



a. The overall reaction is an example of a(n) ___________________ (type) reaction that occurs by a(n) ____________________ mechanism. b. Draw curved arrows to show the electron flow that has occurred in each step. c. Calculate Keq, assuming only A and B are present (note: B is formed in 75% yield). Keq = ____________________________________ If Keq is known, then 'Go = __________________________. d. Which species is (are) nucleophilic in this reaction? e. Draw a qualitative energy diagram for the reaction (assume the first step is slower than the second). Label the transition state(s) and intermediate.



'Go



rx



6. Consider the following reaction:



I



+



MeOH



OMe



+



HI



A



The rate law for the reaction may be expressed as: rate = k[A]. Given that methyl alcohol is not in the rate law, propose a reaction for the rate determining step.



4. Reaction Basics



Problems • 25



7. Below are reactions we shall examine in more detail later. Classify the mechanisms as polar/ionic, free radical, or pericyclic (concerted). a.



b. hausene



D



D2 / Pt



c.



D



+H



d.



+Cl H



Cl



e.



=



Br Br



Br



f.



+Br



Br Br



-Br



Cl2



g.



+



hv



H



S



Et -Cl



h.



HCl



Cl



H S



Et



-H



S



Et



Cl



4. Reaction Basics



26 • Chapter 4 Reaction Basics



Ph



Ph



Ph



i.



H BH2



H BH2



:B H) j.



O



O Cl



4. Reaction Basics



-BH, -Cl



H



BH2



CHAPTER 5 ALKENES AND CARBOCATIONS 5.1 General 1. Nomenclature. Give the complete IUPAC name for the following: H H a.



b. H



H



Cl



c. 4-vinyldecane (an incorrect name!)



d.



2. Identify each of the olefins below as (E)- or (Z)-: CO2H



a.



CH2OH



Ph



NC



vinyl



H2NH2C



t-Bu



b.



O



NH



c.



NH2



d.



O O



O



O O



O



O Ph



NH2 e.



SH



f. CH2F



H O



3. a. How many alkenes, C7H12, could you treat with H2 / Pt to prepare methylcyclohexane?



b. Which would have the least negative heat of hydrogenation?



4. How many geometric isomers exist for 2,4-heptadiene?



5.1 General



28 • Chapter 5 Alkenes and Carbocations



5. Which carbocation is the most stable? O OMe



6. Degrees of unsaturation (units of hydrogen deficiency). a. The antidepressant fluoxetine (ProzacTM), C17H18F3NO, when treated with H2 / Ni gives a structure with molecular formula C17H30F3NO. It contains no triple bonds. How many rings are in fluoxetine?



b. CiproTM is an antibacterial that is used to treat anthrax. Its molecular formula is C17H18FN3O3. The drug has four rings and no triple bonds. How many double bonds does it contain?



c. RU 486 is an abortion medication. Its molecular formula is C28H35NO2. Its structure contains five double bonds and one triple bond. How many rings are in RU 486?



d. The COX-2 inhibitor rofecoxib (VioxxTM), an anti-inflammatory agent, has been taken off the market because of potential increased cardiovascular risk. Its molecular formula is C17H14O4S. There are three rings and no triple bonds in rofecoxib. How many double bonds are there? (Note: for each sulfur atom, subtract four hydrogen atoms to arrive at the equivalent hydrocarbon formula.)



e. The antibiotic floxacillin, C19H17ClFN3O5S, contains eight double bonds. How many rings are present? (In this case, treat sulfur as you would oxygen.)



f. The antidepressant PaxilTM has the molecular formula C19H20FNO3. Upon exhaustive hydrogenation (H2/Pt) a compound C19H32FNO3 is formed. How many double bonds and how many rings are in PaxilTM?



5.1 General



Problems • 29



7. How many stereoisomers exist for 2,4-hexadiene?



for 2-chloro-2,4-hexadiene?



8. Draw structural formulas for each of the following: a. (Z)-3-methyl-2-phenyl-2-hexene



c. styrene bromohydrin



b. propylene dichloride



d. trans-cyclohexene glycol



e. isobutylene epoxide



9. Draw an energy vs. progress of reaction diagram for the exothermic reaction of vinylcyclobutane with HCl to yield 1-chloro-1-methylcyclopentane. Be certain the number of intermediates is clearly indicated.



'Go



rx



10. Draw the most a. important contributing resonance structure of the conjugate acid of 6-methyl-1,3,5-heptatriene



b. stable intermediate in the following reaction: MeOH, H



11. The following 1,2-hydride shift does not occur. Why? H



H



H ~ H: H adamantyl carbocation



5.1 General



30 • Chapter 5 Alkenes and Carbocations



12. Which reaction demonstrates NEITHER regiospecificity nor stereospecificity? HF



a. trans-2-pentene



b. 1-pentene



Cl2 (XS) NaBr



Cl2



d. 1-ethylcyclopropene



c. cyclobutene



D2 / Pt



H2O



13. Why, and how, does E-pinene readily isomerize to D -pinene in the presence of an acid catalyst?



H



E-pinene



D-pinene



5.2 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate.



1.



HCl Ph



NO2 2.



3.



HI



H3O



1. Cl2 / ' 4. cyclopentane 2. KOMe, MeOH 3. Br2, CHCl3



5.2 Reactions



Problems • 31



NMe3



HI



5. Et



HF



F



6.



DCl



7. vinylcyclohexane



HBr



8.



H



OH



9.



O (complete)



HBr



CCl3



10.



Et 11.



DBr



1. H2 / Pd 12. cyclopentene 2. Br2 / hv



5.2 Reactions



32 • Chapter 5 Alkenes and Carbocations



H,



13.



EtOH



HF



14. MeO



D



Cl



HI



15.



Cl2 / H2O



16.



1. B2D6 17. 2. H2O2, OH



Cl2



18. propylene



(XS) NaI



Et



1. Hg(OAc)2, PhOH



19. 2. NaBH4



20.



H2C C CH2 allene



5.2 Reactions



(XS) CH2I2 Zn(Cu)



Problems • 33



1. KMnO4, 21.



AcO



OH



2. HIO4



1. O3 22. 2. H3O, Zn



23.



HBr, di-t-butyl peroxide Ph



24. (E)-3-hexene



diazomethane hQ



25. cyclopentyl bromide



1. base 2. OsO4 3. NaHSO3



26. 3-methyl-1-butene



IN3



1. BD3, THF



27.



2. H2O2, OH



HO cholesterol



O



H, MeOH



28.



5.2 Reactions



34 • Chapter 5 Alkenes and Carbocations



29.



H



(complete)



30. styrene glycol



OH 31.



HIO4



1. H2SO4 2. KMnO4, OH



H C C O



32.



HCl



H



OR



O O



1. BH3, THF



33.



O 2. H2O2, OH



O O artemisinin (antimalarial)



1. Br2, H2O



estrone



34. 2. base HO



H



35. O



(complete)



5.2 Reactions



Problems • 35



1. 36. chlorocyclopentane



OR



2. mCPBA 3. EtOH, H



Br2, s-BuOH



37.



OH OH HIO4



38. HO



pregnenolone



39. Draw the structure of the largest carbon-containing product in the following reaction:



OH



KMnO4, H



vitamin A



40.



1. OsO4 2. NaHSO3



O



3. HIO4



O O incensole acetate (found in frankincense)



41.



HCl two 1,2-shifts (complete)



5.2 Reactions



36 • Chapter 5 Alkenes and Carbocations



42. PhCH2Cl



43.



cyclohexene



1,1-elimination -HCl (a very strong base) +



n-BuLi



(CH3)2CI2 (1 equiv)



Cl



O



Cl



O



Zn(Cu)



O permethrin (insect repellent)



5.3 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. Br 1.



2. cyclohexyl alcohol



3. t-BuCl



t-BuF



Cl 4.



5.3 Syntheses



cyclohexyl chloride



Problems • 37



D 5.



D



O 6. cycloheptane



O



HO



OH



Cl



7. Br



H 8. allylbenzene O



9. ethylene



bromocyclopropane



10. cyclopentyl alcohol



OH 11.



OH



5.3 Syntheses



38 • Chapter 5 Alkenes and Carbocations



Br



O



12. O



D 13. cyclohexane Br



Br Br



14.



15. isobutane



isobutyl alcohol



Cl CO2H 16. CO2H Cl



17. t-butyl chloride



isobutylene chlorohydrin



18. O



5.3 Syntheses



O



Problems • 39



OEt



19.



20.



Br



HO



21. ethylene



OH O



22. t-butyl bromide (only source of carbon)



23. cyclobutyl alcohol



O



di-t-butyl ether



hausane (bicyclo[2.1.0]pentane)



5.4 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. NO WORDS!



1.



H



5.4 Mechanisms



40 • Chapter 5 Alkenes and Carbocations



H 2.



H



3.



OMe



MeOH



isoprene



H



4.



I I2



5. CO2H



O O



6. Isobutylene in the presence of excess propylene and a trace of acid yields C7H14. Deduce this product.



5.4 Mechanisms



Problems • 41



H



7.



1. Hg(OAc)2



8.



O



2. NaBH4



OH



9. H (a C11 olefin)



10.



H N



N



I2 -HI I



11.



+



H2C N N



N N



diazomethane



5.4 Mechanisms



42 • Chapter 5 Alkenes and Carbocations



12. The reaction of 3-bromocyclohexene with HBr yields only trans-cyclohexene dibromide, i.e., no cisproduct is formed. In contrast, 3-methylcyclohexene reacts with HBr to yield a mixture of cis- and transstereoisomers, as well as a tertiary alkyl halide. Explain with appropriate structures and arrows.



13. The natural products caryophyllene and isocaryophyllene (odor somewhere between cloves and turpentine) are stereoisomers that differ in the configuration of a double bond. They have the molecular formula C15H24. Catalytic hydrogenation of either yields the same compound, C15H28. Ozonolysis, followed by zinc and aqueous acid, yields A and an other aldehyde. Suggest structures for the caryophyllenes.



O O O H A



14. Treatment of an unknown alkene with Hg(OAc)2 in H2O/THF, followed by a NaBH4 workup, produces an alcohol isomeric to one obtained by hydroboration-oxidation of the same alkene. Reduction of the alkene affords the compound C5H12, while ozonolysis yields an aldehyde, CH3CHO, as one of the products. Deduce the structure of the alkene.



15. Partial catalytic hydrogenation of C5H8 (A) yields a mixture of B, C, and D. Ozonolysis, followed by a reductive work-up (Zn, H3O+), of B gives no new products. When treated in the same way, C gives formaldehyde and 2-butanone and D gives formaldehyde and isobutyraldehyde. Provide structures for compounds A through D. What is the common name of A? O H



H



H



formaldehyde



5.4 Mechanisms



O



O



2-butanone



isobutyraldehyde



Problems • 43



16. E-Myrcene, C10H16, found in bayleaves and hops, is an intermediate in the manufacture of perfumes. When treated with H2/Pt, 2,6-dimethyloctane is formed (E-myrcene has no triple bonds). Treatment of E-myrcene with ozone, followed by an acidic zinc work-up, yields A (C5H6O3), acetone (Me2CO), and two equivalents of formaldehyde. What are the structures of E-myrcene and A?



17. Reaction of A, C10H16, with H2/Pd yields B. When treated with KMnO4, a brown precipitate forms. When A is treated with ozone followed by zinc in acid, compound C and another product are produced. What are the structures of A and the other ozonolysis product?



O O O



H



C



B



18. Draw a. the structure of the monomer that would give the following polymer by an addition mechanism: CO2Me



CO2Me



CO2Me



CO2Me



b. a segment (three or four repeating units) of poly(styrene).



19. t-Butyl vinyl ether is polymerized commercially by a cationic process for use in adhesives. Show the mechanism for linking three monomeric units.



20. 2 CH2N2



'



ethylene



+



2 N2



5.4 Mechanisms



44 • Chapter 5 Alkenes and Carbocations



CH2N2, hQ 21.



H



22.



H



23.



isocomene (from goldenrod)



24. Hydride shifts and alkyl migrations occur in many enzyme-catalyzed reactions in all living species – including you as you are working these problems! Below is one such biochemical reaction (see 14.3, 6 for perhaps the very best example). Account for the formation of all intermediates leading to the product. (Hint: positive sulfur, like positive oxygen, is a good leaving group, i.e., it easily leaves a carbon to which it is attached, taking with it both bonding electrons.) R



R' S CH3



SAM (S-adenosylmethionine, a common methylating agent in all of us)



D



D



D CO2H



CO2H



D C8H17



oleic acid (a fatty acid)



5.4 Mechanisms



C8H17



Problems • 45



1. Hg(OAc)2, H2O



25.



O 2. NaBH4



H 26.



27. Elaidic acid (C18H34O2), a fatty acid, is present in processed foods such as margarine and may contribute to elevated levels of cholesterol. Reaction of elaidic acid with Simmons-Smith reagent produces compound I, whereas reaction with acidic permanganate yields II and III. What is the structure of elaidic acid? Indicate stereochemistry. R



O



O



O HO



R'



OH



OH



I



II



III



28. Compound A (C10H18O) reacts with H2SO4 to give B (C10H16) and an isomer C. Ozonolysis of B yields a diketone; ozonolysis of C yields D. (a) Draw structures for A, B, and C. (b) Describe a simple chemical color test that would differentiate A from B or C.



O CHO _______________



_______________



_______________



A



B



C



D



5.4 Mechanisms



46 • Chapter 5 Alkenes and Carbocations



OH



29.



H



limonene (volatile in lemons and oranges)



Hint: some alcohols can be protonated to form oxonium ions which may then “leave” as water to give a carbocation.



30. Aziridines (B) are nitrogen analogs of epoxides and can be made from azides (A) by the following reaction: R ' R N3 + Me N Me + N2 A B Recalling the mechanism of generating carbene from diazomethane, and the fact that nitrogen is an excellent “leaving group,” (a) draw the resonance structure of A that best illustrates how it can decompose to extrude N2 and (b) supply electron flow arrows to show the structure of the reactive intermediate derived from A that reacts with cis-2-butene to give B.



N2 + A



(c) Given the observed stereochemistry, what type of mechanism does this addition reaction illustrate?



31.



H



(an olefin - complete)



32. styrene (vinylbenzene)



1. Cl2, H2O 2. base 3. dry HCl



5.4 Mechanisms



B



Problems • 47



33.



+



In



BrCCl3



CCl3



(a free radical initiator)



Br



34. Compound A, C16H30O, is a sex attractant (pheremone) for the male silkworm moth. Given the data from the following three experiments, deduce the structure of A, clearly showing its stereochemistry. a. Catalytic hydrogenation of A yields C16H34O. b. Ozonolysis of A, followed by treatment with zinc and acid, yields compounds B, C, and D. O



O



O H



H



HO



H



H O B



D



C



c. Incomplete reaction of A with diazomethane (CH2N2) gives a mixture of E and F (the C11 and C9 substituents contain one oxygen atom). Note: this experiment establishes the stereochemistry of A. C3 C11 C9 C5 E



F



A = _______________________________



35. 1,4-Cyclohexadiene undergoes isomerization to 1,3-cyclohexadiene in the presence of acid. Two mechanisms are possible: protonation followed by deprotonation (path a) vs. protonation followed by a 1,2hydride shift and subsequent deprotonation (path b): H



H H H



H H path b



1,2-H: shift



-H path a



H



-H



H



If 3,3,6,6-tetradeuterio-1,4-cyclohexadiene is treated with acid, 1,2,5,5-tetradeuterio-1,3-cyclohexadiene is formed. Which path is favored? (Note: C-H bonds are slightly weaker than C-D bonds.)



5.4 Mechanisms



48 • Chapter 5 Alkenes and Carbocations



36. Carbonyl groups greatly affect the acidity of nearby (D-) protons. For example, the pKa of cyclohexane is about 60, but the pKa of Ha in cyclohexanone is about 20. This dramatic increase in acidity is largely a consequence of resonance stabilization of the conjugate base of the latter (for an example of the additive effect on pKas of 1,3-dicarbonyls, see problem 1.3, 7), and allows an easy exchange of Dhydrogen for deuterium atoms by the following mechanism: O Ha



O



O



:B



D OD



O



+B:



+D2O



-BH



- OD



D



cyclohexanone



Under the same conditions, however, species A does not undergo hydrogen-deuterium exchange. Explain. Hint: consider the geometric constraints of olefinic moieties.



:B, D2O H A



O



5.4 Mechanisms



D O



CHAPTER 6 ALKYNES 6.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. NaH 1. 3-penten-1-yne 2. D2O H, HgSO4, PhOH



2. 1-octyne



3. phenylacetylene



1. B2H6 2. H2O2,



OH



1. OMe, HOMe 2. Cl2



4. n-BuCl



3. (XS) NaNH2 4. BH3.THF 5. H2O2, OH



RC C :



5. Cl



1. Li / NH3



6.



2. HBr, di-t-butyl peroxide



7. isopropylacetylene



1. H2 / Pd(Pb) 2. BH3 3. H2O2, OH



8. 1-decyne



1. NaH 2. CH3(CH2)12Cl 3. Lindlar catalyst muscalure (pheremone for house fly)



9. 1,1-dichlorobutane



1. (XS) NaNH2 2. H3O, HgSO4



6.1 Reactions



50 • Chapter 6 Alkynes



10.



11.



Cl2, H2O



C CH



PhC CH



1. (XS) HI 2. Zn(Cu), cyclopentene



O



Cl



Cl 1. (XS) NaNH2



PCl5



12.



2. D2O OMe



13.



OMe



H C C CH2OH



1. LiNH2 (2 equiv) 2. n-C5H11Br (1 equiv) 3. H



1. NaNH2 (1 equiv) 2. n-Pr-I



14. acetylene



3. NaNH2 4. t-Bu-Cl



6.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. Br 1.



OH Br



2. acetylene



6.2 Syntheses



O



n-pentyl bromide



Problems • 51



3. vinyl chloride



4. acetylene



5. t-butylacetylene



methyl vinyl ether



(E)-3-octene



2-chloro-2,3-dimethylbutane



6.



7. propyne



8. propyne



n-propyl bromide



O 9.



C CH



O H



O H



6.2 Syntheses



52 • Chapter 6 Alkynes



10. styrene



(E)-1-phenyl-1-butene



11. diphenylacetylene



cis-1,2-diphenylcyclopropane



PhCHO



Et



Cl



12. 3-hexyne Cl Et



n-Bu 13.



Et



Cl Cl



Cl



O 14. acetylene (odor of cheddar cheese)



15. acetylene



O



disparlure (pheremone for female gypsy moth)



6.2 Syntheses



Problems • 53



O 16. 1-pentyne



2



OH



6.3 Mechanisms Br C HO



C



1. OH



O O



3.



Br



C



OH O I



O



CH3 H3O



C



C CH



O



O



OH 2.



O



[I ]



O



1. NaH 2. ethylene epoxide 3. H



OH



6.3 Mechanisms



54 • Chapter 6 Alkynes



Me2N



Me2N



O



OH 1. H3CC C:



H



4.



CH3



H H



2. H



O



H O



mifepristone (RU-486)



5. In the presence of very strong base an internal triple bond in any position of a straight chain alkyne will shift to the terminus of the chain, a process known as the acetylene zipper reaction: R



6.3 Mechanisms



CH3



strong base R CH2



C C:



CHAPTER 7 STEREOCHEMISTRY 7.1 General 1. Which of the following molecules are chiral? O a.



Me



H



H



S



Me b.



c.



Et



CO2H O



Cl Ph



Me



Me



Ph



O



d.



e.



CO2H



f.



Cl



g.



h.



HC



C



C



C



CH



C



CH



CHCH2CO2H



CH



(an antibiotic)



Me



H



Me



Ph



i.



j.



k.



H



adamantane (an antiviral agent)



OH



Br



l.



HH



HO



Br n. Cl



m. the C2-epimer of



O N



NMe2 Ph



Ph



loperamide (ImodiumTM - antidiarrheal)



2. How many chiral carbons are there in each of the following molecules? Bn a.



H N



O



S



N b.



N O



N CO2H



penicillin G



O



O



strychnine



7.1 General



56 • Chapter 7 Stereochemistry



O



O



N O



CO2Me c.



d. O O



Ph



O



O



cocaine



OCH3



aflatoxin B1



3. Identify each chiral center as (R)- or (S)-. HO OH a.



NH2 b.



HO



Me



Br



Br



H



H



H



Ph



H



CH2CH2NH2 c.



N



Me



(-)-norepinephrine



Ph H2N



d.



O



H



H



CO2H



O



e.



f.



Ph



HS



N H Me



NH2



H captopril (antihypertensive)



O O



OMe



g.



Me



OH



misoprostol (CytotecTM - promotes cervical ripening)



HO



4. Identify each of the following pairs of structures as identical, enantiomers, or diastereomers. Me a. Cl



H Et



c.



H



Et



H Me



Et



b.



Cl Me



H F Me



7.1 General



CH2OH



H



Me H



F Et Me



d.



H HO



CHO



CHO HO CH2OH H



Problems • 57



e.



CHO H OH CH3



H HO



f.



CHO



AcO



CH3



OAc



g.



h. O



O



H Cl



vinyl Cl



Cl Cl



H vinyl



H H



D-pinene (from pine resin)



O i.



Et



Et



O



O



j. O



Et Me



Me Et



5. How many “kinds” of hydrogens (enantiomeric and diastereomeric hydrogens are different!) are there in a. isohexane?



b. (R)-2-chloropentane?



6. Nomenclature. Give the complete IUPAC name for the following: Me Cl H Bn a. b. H OH vinyl



c. (S)-4-chloro-1-pentene?



c.



allyl



CH2Cl



Me d.



I H



OMe



e.



Et i-Pr



s-Bu



H allyl



s-Bu



n-Pr



vinyl H



Br



H f.



Me



Et



H Me



7.1 General



58 • Chapter 7 Stereochemistry



7. How many a. pairs of enantiomers exist for bromochlorocyclopentane?



b. geometric diastereomers exist for 1,3-dichloro-2,4-dimethylcyclobutane?



c. pairs of enantiomers are possible for chlorofluorocyclobutane?



OH



OH ?



d. meso stereoisomers and how many enantiomeric pairs exist for Cl



e. meso stereoisomers exist for 2,3,4,5-tetrachlorohexane?



8. a. D-Xylose is a common sugar found in maple trees. Because it is much less likely to cause tooth decay than sucrose, D-xylose is often used in the manufacture of candy and gum. D-Xylose is the C4-epimer of the enantiomer of A. Draw its structure. CHO HO



H



H



H



OH



MeHN



Me



H



OH



H



OH



CH2OH



Ph (-)-ephedrine



A



b. Ephedrine, a very potent dilator of the air passages in the lungs, has been used to treat asthma. The naturally occurring stereoisomer, isolable from the plant Ephedra sinica, is levorotatory ([D] = -400) and has the configuration above. (i) Assign (R)- or (S)- configuration to each chiral center. (ii) If a solution of (+) and (-) ephedrine has a specific rotation of +100, what percentage of the mixture is dextrorotatory enantiomer?



7.1 General



Problems • 59 9. Optically pure quinine has a specific rotation of -1700. What percent of levorotatory form is present in an optically impure sample whose [D] is +680? How many chiral carbons are there in quinine?



N



N



OH quinine



10. (S)-Naproxen is an active non-steroidal anti-inflammatory drug (NSAID), but the (R)-enantiomer is a harmful liver toxin. Assign the configuration for the (S)-enantiomer. Me CO2H MeO naproxin



11. For each of the molecules below, indicate whether it is capable of enantiomerism only (E), diastereomerism only (D), or both enantiomerism and diastereomerism (ED). Ph H a.



c.



b.



Me e.



d.



O



CO2H



Ph



O Cl O f.



Me



g.



h.



S



12. Thalidomide was used as a sedative and anti-nausea drug for pregnant women in Europe (1959-62). Unfortunately, it was sold as a racemate and each enantiomer has a different biochemical activity. One enantiomer, the (S)-form, is a teratogen that was responsible for thousands of serious birth defects. Which of the following is (R)-thalidomide? O O H O O H N N O O N vs. N O



H O



H



7.1 General



60 • Chapter 7 Stereochemistry



13. Another example of different enantiomers having remarkably different biochemical activities is penicillamine. The (S)-form has anti-arthritic properties, whereas the (R)-form is toxic. Which form is the following configuration? Me HS H



Me CO2H



NH2



penicillamine



14. Taxol is an anticancer agent active against ovarian and breast tumors. (a) How many chiral carbons are in taxol? (b) If the specific rotation of optically pure taxol is -120o, and a synthetic preparation of taxol containing only its two enantiomers shows a specific rotation of +24o, what is the percentage of dextrorotatory enantiomer in the mixture? AcO HO N H



Ph O



Ph



O



OH



O O



HO O AcO O



O



Ph



taxol



15. Compound A below has _____ chiral carbons, _____ meso stereoisomers, and _____ pair(s) of enantiomers. CO2H Cl



O



O



HO A



OH B PGE2 (a prostaglandin)



The number of stereoisomers possible for B is _____ (do not change cis/trans configurations of the olefins).



7.1 General



Problems • 61 16. The antibiotic cephalosporin C has a specific rotation of +103o in water. O



N H



H2N



S O



N O CO2H



HO2C



O



cephalosporin C



a. What is the maximum number of stereoisomers for the above structure? b. If a synthetic sample of cephalosporin C has an optical rotation of +82o, what percent of the enantiomers is levorotatory?



7.2 Reactions and stereochemistry 1. Draw the stereochemical formula for the major organic product(s) in the following reactions by completing the Fisher projections. Me



OH



H



1. OsO4 2. NaHSO3



Ph Me



Ph Me Br2 / H2O



Ph



2. Have the following reactions proceeded with syn- or anti- stereochemistry? A A



B



a. cis-2-butene



Me



H



B



H Me



Me Me



D b.



C



D Me



C



C



D



Me



D C



7.2 Reactions and stereochemistry



62 • Chapter 7 Stereochemistry



c. Fumarase catalyzes the following reaction in mitochondria:



HO2C H



H



D2O



CO2H



fumarase



CO2H DO H D H CO2H malic acid



3. For each of the following reactions, (a) how many fractions could be collected by fractional distillation or recrystallization, and (b) for each fraction describe whether it is one enantiomer (E), a racemate (R), or a meso compound (M). Ph



Cl



Ph HCl



a.



HBr



Br2



b. (Z)-3-hexene



KMnO4, H



c.



d. (S)-3-phenyl-1-butene



e.



HI



H



HF Cl



Me



f.



D2 / Ni



7.2 Reactions and stereochemistry



Problems • 63



Me g.



H, MeOH



H H



1. BH3



h.



2. H2O2, OH



Et



OH H3O



i.



H H2 / Pt



1. Hg(OAc)2, H2O 2. NaBH4



1. OsO4



j.



2. NaHSO3 1. mCPBA 2. H3O



O



k.



MeOH, H



4. Outline syntheses for the following conversions that ensure the indicated stereochemical outcomes. Br a.



Ph



Ph



racemic Ph



Ph Br



7.2 Reactions and stereochemistry



64 • Chapter 7 Stereochemistry



b. 2-butyne



meso-2,3-dibromobutane



OH c.



racemic OH



d. trans-2-butene



meso-glycol only



OH 5. Consider the structure



Ph



NHMe , and answer the following:



a. How many stereoisomers are possible?



b. Two of the structures are the decongestants ephedrine and pseudoephedrine: OH Ph



H N



OH Me



Me ephedrine



Ph



H N



Me



Me pseudoephedrine



Which stereochemical term best describes their structural relationship? c. The HCl salt of ephedrine has a specific rotation of -34o. What would you predict for the specific rotation of the HCl salt of pseudoephedrine? d. Both ephedrine and pseudoephedrine can be dehydrated to an olefin, which upon hydrogenation produces methamphetamine (“speed,” “meth”). i. How many stereoisomers exist for the olefin?



ii. How many stereoisomers are possible for “meth”?



7.2 Reactions and stereochemistry



CHAPTER 8 ALKYL HALIDES AND RADICALS 8.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. How many different dichlorides could be isolated by ordinary physical methods (e.g., fractional distillation) from the following reaction? Would each, as collected, be optically active or inactive? H



Cl2, hv



Cl



2. Calculate the maximum % of (R)-2-bromopentane that could be formed from the reaction of bromine with n-pentane.



1. Br2, ' 2. Mg



3. 2,3-dimethylbutane



3. D2O



1. conc HCl 2. Li 3. CuI 4.



OH 4. allyl iodide



5. cyclobutane



6. propane



1. Cl2, hQ 3. CuI



2. Li



4. vinyl iodide



5. HI



1. Br2, ' 2. Mg 3. phenylacetylene



7. bromobenzene



1. Li 3. n-PrBr



2. CuI 4. NBS, peroxides



5. KOH



6. Br2 / H2O



8.1 Reactions



66 • Chapter 8 Alkyl Halides and Radicals



8.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. Br



1.



O 2. O



Br 3. isopentane



4. iodobenzene



Me



5. cyclopentane



Bn



CHO 6. chlorobenzene



7. cyclohexene



8.



8.2 Syntheses



3 ways! deuteriocyclohexane



Problems • 67



8.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates.



O2, ROOR



1.



O OH



2. Cl2, hv



1. CH2N2, hv



2. H2C C CH2 allene



Cl



Cl +



+



spiropentane



Cl



Cl



Cl



(propose a mechanism for step 2)



3. Bergman reaction: D D



'



D D



4. Alkyl nitrite esters (RO-NO) readily undergo photolytic homolysis. The Barton reaction utilizes this fact to functionalize the remote G-position of steroids. Use conformational analysis to explain. R R O N



G



AcO



hv D



H



O



CH2



H



H AcO



N O



H



OH



8.3 Mechanisms



68 • Chapter 8 Alkyl Halides and Radicals



5. a. The vinylcyclopropane – cyclopentene rearrangement proceeds by a free radical mechanism. Explain. Hint: the cyclopropyl C-C bond is easily homolyzed.



'



b. Predict the product: '



6. Aspirin, as well as other non-steroidal anti-inflammatory drugs (NSAIDS), blocks the synthesis of certain inflammation-mediating prostaglandins by inhibiting the enzyme cyclooxygenase (COX – see 5.1, 6d). COX converts arachidonic acid to the prostaglandin PGG2, which subsequently undergoes reduction to give PGH2. Other prostaglandins derive from the latter. Outline a mechanism for the synthesis of PGG2. Hint: begin by a free radical removal of one of the doubly allylic hydrogen atoms. CO2H



O



COX enzyme



O



2 O2



H H



CO2H



O



R PGG2



arachidonic acid



OH



[H] other prostaglandins



O



CO2H



O



PGH2



8.3 Mechanisms



OH



CHAPTER 9 SN1, SN2, E1, AND E2 REACTIONS 9.1 General For problems 1 – 9, circle the 1. reaction that will go faster: a. AcO



+



allyl chloride



b. AcO



+



allyl chloride



ethanol



HMPA



2. structure with the poorest leaving group: a. R-SH



b. R-NH2



c. R-OAc



d. R-OH



3. stronger nucleophile:



a.



b. Et3N



N



4. alkyl halide most reactive by an SN2 pathway: Br Br



a.



b.



c. Br



5. solvent that will maximize the rate of the reaction of Et3N with n-BuBr: a. DMSO



b. MeOH



c. PhH



d. chloroform



6. halide that will react more rapidly by an E2 pathway: Me



a. Me



Me



b.



Br



Me



Br



7. approximate value of kH / kD when PhCHBrCH3, vs. PhCDBrCD3, is allowed to react with potassium tbutoxide: a. 1



b. 1



9.1 General



70 • Chapter 9 SN1, SN2, E1, and E2 Reactions



8. reaction that will yield the more stereochemically pure product(s): Et



Br



a.



methanolysis (SN)



(or diastereomer) Et



b. (R)-2-bromopentane (or enantiomer)



MeO , MeOH (SN)



9. change in rate of reaction if the concentration of Ph2CHBr is tripled and the concentration of ethanol is doubled: a. rate is unaffected b. rate triples c. rate doubles d. rate increases 5-fold e. rate increases 6-fold _____________________________________________________________ 10. Which would be the reaction of choice (higher yielding) for each of these syntheses? O-t-Bu



OMe



Br



a.



Br



OH



OH



b.



Br



c.



+



OR



vs.



SR (which?) to maximize SN



Br



11. Which reaction would be expected to show a primary hydrogen kinetic isotope effect? a.



H(D) Cl



b. Cl



c.



t-BuOH



H(D) H(D)



Cl (D)H H(D)



9.1 General



KO-t-Bu



KOH MeOH



KOMe MeOH



Br



Problems • 71



12. The following reaction might be envisioned as occurring by an intramolecular SN2 process. However, kinetic evidence indicates a bimolecular mechanism. Explain. SO2 O CH3 C: TsO H



SO2 O C CH3 TsO H



9.2 Reactions Identify (if not already stated) each reaction as largely SN1, SN2, E1, or E2 – then draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. n-octyl bromide + KOCH3



MeOH



2. 3-iodo-3-methylpentane + sodium ethoxide / EtOH



3. potassium t-butoxide + sec-BuCl



4. 2-bromo-3-methylbutane + lithium diisopropylamide



5. n-hexyl iodide



KCN / DMF



methanolysis (RT)



6. Cl



refluxing EtOH



7. Br



8.



O



acetolysis (SN) Cl



9.2 Reactions



72 • Chapter 9 SN1, SN2, E1, and E2 Reactions



9. n-propyl bromide + Me2NH



10. isopropyl bromide + sodium t-butoxide



11. 3-iodopentane



sodium acetate / DMF



Cl NaSH (1 equiv)



12. Cl



ethanolysis (SN)



13. Cl



Br OAc / Ag 14. Ph



Et 15.



Me Cl



OEt (E)



H H Me



OMe / MeOH



16. Cl



E2



17. D



D Cl



9.2 Reactions



Problems • 73



18.



CH3 H D Br H Ph



E2



acetone



19. OH



Br



triphenylphosphine



20. 4-iodo-1-pentane



t-butyl alcohol (SN)



S



21.



methanolysis



Cl



NMe2 22.



'



I



Cl 23. conjugate base of H2Se



+



OH 24.



NHMe



Ph



PhCH2Cl (1 equiv)



ephedrine



25.



HO



NMe3



Me3O



BF4



choline



9.2 Reactions



74 • Chapter 9 SN1, SN2, E1, and E2 Reactions



OH



1. TsCl



26.



2.



H



OH (SN)



PhNH2



S



27.



HO



NHMe Br



28.



+ OH



F



(1 equiv)



OH epinephrine



29.



refluxing MeOH Cl



I



F



(XS) NaSePh



30.



O 31.



H2N



NEt2



O NovocaineTM



32.



Ph C CH



1. NaNH2 2. cyclohexyl bromide



MeOH (E1)



33. I



9.2 Reactions



EtBr (1 equiv)



Problems • 75



34.



KSCN



Ph OTs



Br acetolysis



35. RT



1. MeI 36.



S 2. refluxing EtOH



O



KO-t-Bu / t-BuOH



37. O Br



AromasinTM (an aromatase inhibitor used in breast cancer therapy)



38.



N



(XS) MeI



N



paraquat (an herbicide)



39. H Br Me a.



O O



EtO EtOH



H H Me Br



EtO O



b. O



EtOH



H



9.2 Reactions



76 • Chapter 9 SN1, SN2, E1, and E2 Reactions



9.3 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. Ph



Ph 1. Ph



Ph Br



OH



Ph Ph OCH3 Ph Ph



t-Bu Br 2.



t-Bu



3. Br H



D



H



Me



Ph 4.



Me H



H I



Ph



Me H



Me



Et



I



5.



OPh 6.



9.3 Syntheses



Br



+



Problems • 77



O O



Cl



7.



8.



Ph



Br



Br



9.



EtO



O 10. O



Br



CO2H CO2H



11.



Ph



Ph



Ph



Ph



OTs 12.



Ph Ph



OTs



13. OH



9.3 Syntheses



78 • Chapter 9 SN1, SN2, E1, and E2 Reactions



14.



OH



Cl



S 15. ethylene S



H



via an alkyne



16.



O



17. I



Br



D



D



D



18. Br H



D



D



9.4 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. Br



1. Br



9.4 Mechanisms



NaSH / HCO3



S



Problems • 79



acetolysis



2. Cl



OAc



Me N Me



Br



3.



C N



Me N C



Cl



NEt2



4.



OH



Ph



Ph



NEt2



5.



H



N



OH



O dil OH O



H



O O



Cl



OH (Note: retention of configuration!)



I



6.



S



DMF



vinyl



SH



7. n-butyl bromide +



O N O



H



pyridine N-oxide



9.4 Mechanisms



80 • Chapter 9 SN1, SN2, E1, and E2 Reactions



8. When treated with hydroxide, trans-A yields B. However, when cis-A is treated with hydroxide, no B is observed. Explain. O HO



Cl



A



B



_______________________________________________________ Problems 4 and 5 above illustrate the concept of “neighboring group participation” (NGP), wherein an internal nucleophilic atom (e.g., N and O, respectively, in those examples) facilitates the ejection of the leaving group by an intramolecular SN2 attack to form an unstable intermediate. This type of mechanism is often evidenced by (1) rearrangement (problem 4), (2) stereochemistry (problem 5), or (3) kinetic data (problem 9 below). Problems 9 – 16 are additional examples. Account for the observations mechanistically. 9. Unlike most primary alkyl halides the molecules below, types of sulfur and nitrogen mustard gases, do NOT undergo second order hydrolysis, but rather first order: -d[RX]/dt = k[RX]. Yet their rates of hydrolysis are enormously faster than those of most primary alkyl halides. Cl



S



Cl



HO H2O



Cl



N



Cl



HO



S



N



OH



OH



10. Compound II undergoes acetolysis at 75o about 103 times more rapidly than I and yields a racemate. Explain. What stereochemical outcome would you predict for the product from I? OTs



OTs



OAc



HOAc



OAc a racemate



I



9.4 Mechanisms



II



Problems • 81



O OTs



11.



O



OAc



HOAc



O



OAc



+



60%



40%



12. Paquette (OSU) observed that II undergoes solvolysis, e.g., acetolysis about 104 times more rapidly than I. X



X O



I



II



13. Cl



OH undergoes ethanolysis 5,700 times more rapidly than Cl



OH .



14. Sometimes a carbon-carbon double bond can act as a neighboring group nucleophile. For example, II undergoes acetolysis ~ 1011 times faster than I and does so with retention of configuration. Explain. OTs



OTs



I



II



15. In view of the previous problem, account for the following:



OTs



HOAc



AcO



NaOAc



9.4 Mechanisms



82 • Chapter 9 SN1, SN2, E1, and E2 Reactions



16. DNA is stable in dilute aqueous hydroxide solution, but RNA rapidly hydrolyzes. A mechanistic clue is provided in the observation that hydrolysis of the latter yields not only 3’-phosphates but also 2’phosphates. Explain.



O RO P O CH2 O O



NR"2



O RO P O CH2 O O



O O R'O P O



3'



O O R'O P O DNA



O RO P O CH2 O O dil OH, H2O



NR"2



OH



RNA



O O O P O



O RO P O CH2 O O



NR"2 +



2'



OH



OH



O O P O O



a 3'-phosphate



a 2'-phosphate



_______________________________________________________



'



17.



Cl



racemic camphene + HCl



camphene hydrochloride



18.



O O P O adenine O O O P O O OH OH O P OH O ATP



9.4 Mechanisms



adenine O O O P O O



NR"2



+ OH cAMP



PPi



Problems • 83



Some terpene chemistry… 19. The biosynthesis of terpenes (natural products constructed from the essence of n units of isoprene) begins with a “head-to-tail” coupling of two derivatives of isoprene, dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (I-PP) to form geranyl pyrophosphate (G-PP): O-PP



O-PP a.



H2O



base



+



O-PP



OH



DMA-PP



I-PP G-PP O O PP = P O P OH (-OPP is a good leaving group) O O



geraniol (a monoterpene)



H



b. geraniol



OH



terpineol



c. A similar coupling of G-PP with I-PP yields the C15-sesquiterpene farnesyl pyrophosphate (F-PP) to produce a C20-diterpene: O-PP O-PP



I-PP O-PP



F-PP



(a C20-diterpene)



[O] H3O



x2



x2 OH



triterpenes (C30) (e.g., squalene => cholesterol)



A



tetraterpenes (C40) (e.g., lycopene, E-carotene)



H



OH vitamin A (retinol)



Outline a mechanism for the coupling and for the conversion of the diterpene A to vitamin A.



9.4 Mechanisms



84 • Chapter 9 SN1, SN2, E1, and E2 Reactions



d. F-PP can isomerizes to nerolidol pyrophosphate (N-PP). F-PP and N-PP undergo a “head-to-head” reductive coupling by an E1 reaction to form the C30-triterpene squalene. Outline the mechanisms for each of these events. Hint: reductive coupling is initiated by hydride attack on N-PP as shown below. :H



O-PP



O-PP F-PP



N-PP reductive coupling



squalene



20. The most common methylating agent in biochemistry is SAM (S-adenosylmethionine), formed by an SN reaction between the amino acid methionine and ATP. An example of a metabolic methylation is the conversion of norepinephrine (the prefix “nor” means one-less-carbon-than) to epinephrine. Formulate a mechanism for producing SAM and draw the structure of epinephrine.



S + H2N CO2H methionine



O O P O adenine O O O P O OH OH O O P OH O ATP



S



adenine O



H2N CO2H



OH



SAM OH HO



HO



epinephrine



9.4 Mechanisms



OH



NH2



norepinephrine



Problems • 85



21.



Ph2C N N



22. PhCH2Cl



+



23. HCCl3 + KI



TsOH



EtOH -N2



:P(OMe)3



KOH, H2O



PhCH2



HCCl2I



O P(OMe)2



Ph2CHOEt



+



MeCl



(Note: reaction does NOT occur in the absence of KOH!)



9.4 Mechanisms



This page intentionally left blank



CHAPTER 10 NMR Deduce the structures in problems 1 - 17 from the 1H NMR and IR information. 1. C6H12: G0.9 (t, 3H), 1.6 (s, 3H), 1.7 (s, 3H), 2.0 (p, 2H), 5.1 (t, 1H); no long-range coupling evident.



2. C6H12Cl2O2: G1.3 (t, 6H), 3.6 (q, 4H), 4.4 (d, 1H), 5.4 (d, 1H).



3. C8H18O2: IR (3405 cm-1). 1H NMR į 1.3 (s, 12H), 1.5 (s, 4H), 1.9 (s, 2H).



4. C10H14O: IR (3200 cm-1). 1H NMR į 1.2 (s, 6H), 1.6 (s, 1H), 2.7 (s, 2H), 7.2 (s, 5H).



5. C5H10O4: į 3.2 ( (s, 6H), 3.8 (s, 3H), 4.8 (s, 1H).



6. C8H9BrO: į 1.4 (t, 3H), 3.9 (q, 2H), 6.7 (d, 2H), 7.4 (d, 2H).



7. C3H5ClF2: į 1.75 (t, 3H), 3.63 (t, 2H).



8. C9H10: į 2.04 (m, 2H), 2.91 (t, 4H), 7.17 (s, 4H).



10. NMR



88 • Chapter 10 NMR



9. C8H9Br: į 2.0 (d, 3H), 5.3 (q, 1H), 7.6 (m, 5H).



10. C4H6Cl2: į 2.18 (s, 3H), 4.16 (d, 2H), 5.71 (t, 1H).



11. C9H11Br: į 2.15 (m, 2H), 2.75 (t, 2H), 3.38 (t, 2H), 7.22 (s, 5H).



12. C9H10O3: į 2.3 (t, 2H), 4.1 (t, 2H), 7.3 (m, 5H), 11.0 (br s, 1H).



13. C6H11Br: į 1.0 (s, 9H), 5.5 (d, 1H, J = 17 Hz), 6.6 (d, 1H, J = 17 Hz).



14. C8H14: į 1.7 (s, 6H), 1.8 (s, 6H), 6.0 (s, 2H).



15. C6H11FO2: IR (3412 cm-1). 1H NMR į 1.2 (s, 6H), 2.2 (s, 3H), 3.8 (d, 1H), 4.1 (s, 1H).



16. C7H14O2: IR (1610 cm-1). 1H NMR į 1.0 (s, 9H), 2.1 (m, 2H), 3.8 (br s, 1H), 4.0 (t, 1H), 8.6 (t, 1H).



10. NMR



Problems • 89 17. C11H12O2: IR (1705 cm-1). 1H NMR į 2.2 (s, 3H), 2.5 (s, 3H), 5.8 (m, 1H), 7.1 (d, 2H), 7.9 (d, 2H), 9.8 (s, 1H).



____________________________ 18. What is the maximum multiplicity for either of the methylene protons in the proton NMR for F H Cl ? CH3 H F



19. The structure below represents two diastereomeric compounds, A and B. Compound A gives a singlet proton NMR for the methylene group, but B gives a multiplet for the same group. What are the structures of A and B? Br Me, Br Me



20. Trans-3-bromo-1-phenyl-1-propene shows a spectrum in which the vinylic proton at C2 is coupled with the C1 proton (J = 16 Hz) and the C3 protons (J = 8 Hz). What is the expected multiplicity for that proton? Use a spin tree diagram to explain.



21. a. What is the multiplicity of the chemical shift at highest field in the proton NMR of (R)-1,2-dichloro2-fluoropropane?



b. Use a spin tree diagram to explain why the lowest field chemical shift appears as a triplet.



10. NMR



90 • Chapter 10 NMR



22. What is the maximum multiplicity for Ha in the amino acid phenylalanine? Ha Ph



CO2H



NH2 phenylalanine



23. A compound has only two singlets in its 1H NMR spectrum: į 1.4 and 2.0 with relative intensities of 3:1. Its 13C NMR spectrum has chemical shifts at į 22, 28, 80, and 170. A strong absorption in its IR occurs at 1740 cm-1. Draw a possible structure for the compound.



24. The following questions relate to deuterated cholesterol, drawn below:



DO



a. Predict the theoretical multiplicity of the lowest field proton. b. What is the maximum number of 13C chemical shifts that would be expected for the C8H17 alkyl side chain? 25. Treatment of 2,3-dibromo-2,3-dimethylbutane with SbF5 (a very strong Lewis acid) in SO2 at -600 yields SbF6- and a substance whose 1H NMR shows only a singlet at į 2.9. Draw the structure of that substance.



26. What is the multiplicity of the methylene group in the following compound?



(i-Pr-O)2



10. NMR



O



O



P



P (O-i-Pr)2



Problems • 91 27. Below is the structure and partial 1H NMR for an organoplatinum compound. Platinum has three isotopes: 195Pt (I = ½, 34% natural abundance), 194Pt (I = 0), and 196Pt (I = 0) – the latter two account for the remaining 66% natural abundance. (Note: aromatic proton resonances are not shown.)



Cl



PPh3 Pt H PPh3



G



-13.6



-16.1



-19.6



ppm



a. Explain the relative amplitude and multiplicity of the signal at G -16.6. Clearly explain JH, ? by using a spin tree diagram.



b. Explain the amplitude and multiplicity of the two signals at G -13.6 and -19.6. Again, clearly explain JH,? by using a spin tree diagram.



c. What do the very negative chemical shift values of the signals suggest about the magnetic environment of the resonating proton?



10. NMR



92 • Chapter 10 NMR



28. Pettit (UT) observed that the protonation of cyclooctatetraene (COT) yields a carbocation (homotropylium ion) that possesses homoaromatic stabilization. (Homoaromatics refers to S systems that are interrupted by a saturated center but in which the geometry still permits significant overlap of the p orbitals across a gap.) Ha



Hb



H



H2SO4



H



=



homotropylium ion



COT



The 1H NMR of the homotropylium ion shows a remarkable chemical shift difference of 5.5 ppm for geminal protons Ha (G 0.5) and Hb (G 5.0). Each appears as a pseudoquartet. Explain both the location of the chemical shifts and multiplicities of these protons.



29. The 1H NMR spectrum of NaBH4 is shown below. Boron has two isotopes: 10B (I = 3) and 11B (I = 3/2) whose natural abundances are 20% and 80%, respectively. Interpret the spectrum. H Na H B H H



G 0.6



10. NMR



0.4



0.2



0.0



-0.2



-0.4



-0.6



-0.8 ppm



CHAPTER 11 CONJUGATED SYSTEMS 11.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate.



HBr (1 equiv) 1. (1,4-addition)



DCl (1 equiv) 2. (1,4-addition)



D-farnesene (in waxy coatings of apple skins)



3. isoprene



+



MeO2C



CO2Me



retro D-A



4.



' O



HBr (1 equiv)



5.



(product of thermodynamic control)



'



6.



2-butyne +



DBr (1 equiv) 7. 3-methyl-1,3,5-hexatriene ROOR (1,4-addition) O 8.



O



+



N N



N Ph



O Cookson's dienophile



11.1 Reactions



94 • Chapter 11 Conjugated Systems



9.



+



N H



10. cyclohexene



(Z)-1,2-diphenylethene



1. NBS, ROOR 2. KOMe (E2) 3. phenylacetylene



1. ' (retro D-A) 11. 4-vinylcyclohexene 2. trans-2-butene



C CH



12.



O



13.



intra D-A



1. vinyl chloride 2. KO-t-Bu



1.



CO2Me



14. 1,3-cyclohexadiene 2. O3



3. Zn, H



O



15.



11.1 Reactions



' (retro 4+2)



Problems • 95



1. ' (retro D-A)



16.



2. cis-1,2-diphenylethylene



CO2H



+



17.



'



HO2C fumaric acid



O 18.



+



estrone



MeO O



19.



..



HO2C OAc



CO2H '



'



+ OAc



CO2Me



20.



CO2Me



O 21.



N



'



SO2 +



O2S



11.1 Reactions



96 • Chapter 11 Conjugated Systems



O base



22.



4+2



C19H24O2 MeO NMe3



I



Br



MeO R



CHO



Si Me2



23.



OMe 24.



N



+ Me3SiO



R



R' 4+2 R



Danishefsky's diene



11.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. D 1. cyclohexane



via a conjugated diene



Br



2. cyclohexane



bicyclo[2.2.2]octane



Me 3. cyclohexene Me



11.2 Syntheses



Problems • 97



4. vinylcyclohexane



5. A Diels-Alder dimerization of A gives the indicated product. Draw the structure of A.



O



H



(4 + 2)



A



O



6. Draw the structures of the starting materials that may be used to synthesize the following product: Me N (4 + 2)



?



O O



O



7. The Alder-ene reaction, like the Diels-Alder, is a concerted (pericyclic) reaction: R C R



H



Z



R



'



Z = C, O



R



C Z H



How could the following compound be prepared by an ene reaction?



'



CO2Et



+ OH



11.2 Syntheses



98 • Chapter 11 Conjugated Systems



11.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. 1. Phenolphthalein in solutions below pH 8.5 is colorless, but in solutions above pH 8.5 is a deep redpurple color. Explain. O O



O H HO phenolphthalein



'



2.



3. Similar to the Diels-Alder the following electrocyclic reaction is generally concerted (pericyclic) and readily reversible. '



Explain the observed conversions: O a.



+



O



'



O



O



O



O



O



O b.



11.3 Mechanisms



'



Problems • 99



4. The structure of pyridine is shown below:



..N pyridine



a. Describe the longest wavelength Omax electronic transition in terms of VV SS  or n. b. Comment on the probability of that transition. What term in the Beer-Lambert equation reflects this probability?



c. Draw the conjugate acid of pyridine. How would that transition in (a) be affected?



5. Compound A, upon standing in acid, yields a new isomeric compound B whose 1H NMR is G 1.7 (s, 3H), 1.8 (s, 3H), 2.3 (br s, 1H), 4.1 (d, J = 8 Hz, 2H), 5.5 (t, J = 8 Hz, 1H). Draw the structure of compound B and give its mechanism of formation.



OH A



6. One approach to synthesizing the sesquiterpene occidentalol, found in New England white cedar trees, begins with a forward Diels-Alder reaction, followed by a retro-Diels-Alder, to form A. Explain. Me



O O CO2Me



Me



'



+ O



H CO2Me A



O H occidentalol



11.3 Mechanisms



OH



100 • Chapter 11 Conjugated Systems



7. An early stage reaction in Paquette’s (OSU) total synthesis of dodecahedrane employed the following “domino” Diels-Alder: R



R R R



O



O



'



8.



O tautomerize



9.



O



' (ene reaction) (see 11.2, 7)



NC







Ts N



N N



CN



Ts N



hQ



-N2



CN CN



11.3 Mechanisms



Problems • 101



11. The degradation of heme proceeds by way of the bile pigments biliverdin and bilirubin, green and red, respectively. Elevated levels of the latter produce jaundice. Bilirubin, a principal antioxidant in blood plasma, is formed by reducing biliverdin. Label the structures below as biliverdin or bilirubin and identify the site of reduction in the former. Explain the difference in color of the two pigments.



OH



OH OH



N NH



H N



N



N



OH



N N



H N



CO2H



CO2H



CO2H



CO2H



12. Depending upon the number of S electrons in a pericyclic process, reversible cycloaddition reactions may be classified as thermally “allowed” or “forbidden” (a theoretical prediction of the probability that such a reaction will occur). The Diels-Alder reaction is the most common example of a thermally allowed (4+2) cycloaddition. Examples of thermally forbidden reactions include (2+2) and (4+4) cycloadditions (they do occur, however, under photochemical conditions). Formation of the dibenzenes below could be envisioned by a cycloaddition mechanism. Identify each as (2+2), (4+2), or (4+4). Which would be expected to undergo a thermal retro-cycloaddition to benzene most rapidly?



a.



b.



c.



11.3 Mechanisms



This page intentionally left blank



CHAPTER 12 AROMATICS 12.1 General 1. Circle the compounds that would be expected to have aromatic character. O B



a.



b.



c.



d.



O



N N N N



H e.



N



O



f.



O N



H j.



i.



h.



g.



H



N B



H B N H



N



O N B



H k.



HN O



H



N H



SbF5



l. carbocation in the reaction of



Cl 2 Li



m. product in the reaction of



2 Li



2 MeLi



n. product in the reaction of



+



2 MeH



+



Br Zn



o. product in the reaction of



-ZnBr2 Br calicene



2. Which would have the largest molecular dipole moment (P)?



a.



b.



c.



12.1 General



104 • Chapter 12 Aromatics 3. Which nitrogen atom is least basic in purine and most basic in ZofranTM? O



N



N



N



N



CH3



N H



N



N CH3



purine



ZofranTM (antiemetic)



4. One of the following ketones is unstable and undergoes a Diels-Alder reaction rapidly. Which? O



a.



O



b.



O



c.



5. Which of the following compounds would most easily form its conjugate base? a.



c.



b.



d.



6. Which would undergo an SN1 reaction most readily? O



O a.



b.



O c.



Cl Cl



7. Circle the more(most) basic electron pair in each of the following: O H N a. b. c. N O



Cl



N N



8. Use a Frost mnemonic to explain why 7-chloro-1,3,5-cycloheptatriene gives a singlet 1H NMR spectrum when dissolved in a solvent containing a Lewis acid. antibonding



0 bonding



12.1 General



Problems • 105



9. Which ketone has the largest molecular dipole moment (ȝ )? O O a.



c.



b.



O



d.



O



10. A in the presence of HBF4 forms a salt. Explain. O HBF4 Ph



Ph A



11. Explain the regioselectivity of the following addition: HCl Cl



12. The 1H NMR spectrum for the following [14]annulene compound shows two major chemical shifts. Simulate their approximate location and predict the integration of each.



a [14]annulene



12.2 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. NHCOPh 1.



2. o-methylphenol



fuming H2SO4



HONO2 / H2SO4



12.2 Reactions



106 • Chapter 12 Aromatics



..



PH2



H2SO4, SO3



3.



Cl2 / Fe



4. N H



5. benzene



1. PhCH2CH2Br, AlCl3 2. NBS, R2O2 3. KOMe, MeOH



Br2 / CCl4



6.



Br2, Fe



NBS, R2O2



Se 7.



8.



Br2, FeBr3



Ph N O



9.



ICl, Fe



Me



SH



Cl2, FeCl3



Cl2, BF3



10. N



12.2 Reactions



Problems • 107



OH 11.



2 Cl



Cl



H2SO4



+ formaldehyde



Cl (C13H6Cl6 - hexachlorophene, a disinfectant)



O O



12.



N N



1. ' (-CO2, -N2) 2. 1,3-cyclohexadiene



picric acid



13.



F CN 14.



NH3



Cl



NMe2 1. MeLi 15.



2. H Br



Cl 1. HNO3, H2SO4



16.



2. NaOMe, MeOH CF3



17. toluene



+



O



H -H2O (a bicyclic C13 compound)



12.2 Reactions



108 • Chapter 12 Aromatics



OH 18. H BHT (C15H22O - a food preservative)



Br2 / Fe



19. O



O



D-pyrone



20.



F3C



1. fuming HNO3 (x2!)



Br



2. i-Pr2NH Trifluralin BTM (a pre-emergent herbicide)



21. anisole



1. MeI, AlCl3 2. NBS, ROOR 3. KOH (flavor in licorice) partial 1 H NMR: G7.2 (d, 2H), 7.9 (d, 2H)



22. Although iodination of aromatic rings does not occur as readily as bromination, it can be observed when activating substituents are present, e.g., in the biosynthesis of the hormone thyroxine: I I2



HO



CO2H NH2 tyrosine



12.2 Reactions



HO



I CO2H



O



catalyst I



I thyroxine



NH2



Problems • 109



1. [O]



23. N



3. [H]



2. Cl2, BF3 N O



N (completecontrast to 12.2, 10)



pyridine N-oxide



12.3 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. benzene Cl



D



D



2. benzene D



3. benzene



4. benzene



D



D



1,2-diphenylethane



5. Cl



12.3 Syntheses



110 • Chapter 12 Aromatics



6. PhH



7. O



o-nitrobenzoic acid



8. benzene



9. benzene



10. NHMe



N



11. benzene CO2H ibuprofen



12. acetone, phenol



12.3 Syntheses



HO



OH



HO



Problems • 111 13. 2,4-D and 2,4,5-T are the active agents in the defoliant Agent OrangeTM. How could they be prepared from the indicated starting materials? Cl Cl Cl OCH2CO2 Cl Cl Cl Cl ,



,



Cl



Cl



Cl



Cl OCH2CO2



Cl 2,4-D



2,4,5-T



Br O



14. NO2



NH



OH



TylenolTM



H2N



O CO2H



H2N



15. p-hydroxybenzoic acid O



O NEt2



O



proparacaine (a local anesthetic)



12.4 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates.



1. styrene



H Ph



2. Epoxides, because of ring strain, are much more reactive than most ethers. Account for the following: O , H anisole O OH



12.4 Mechanisms



112 • Chapter 12 Aromatics



O AlCl3



3. (XS) N,N-dimethylaniline + COCl2 phosgene



Me2N



NMe2 Michler's ketone



4. The Kolbe reaction is used industrially to convert phenol to salicylic acid, an immediate precursor to aspirin. OH



OAc



OH 1. OH 2. Dry Ice



CO2H



CO2H



3. H salicylic acid



aspirin



Br 5.



Br2 / AlCl3



+



isobutylene



O 1. R C X , AlCl3 6. 2. HBr R



12.4 Mechanisms



Problems • 113



O 7.



O



OH



AlCl3



R



R O



Cl



Cl



Cl



Cl



NaOH



8.



Cl



O



Cl



Cl



O



Cl



dioxin



BF3



9. Br



MeO



MeO



10. Formyl chloride, A, does NOT exist; therefore, one cannot do a Friedel-Crafts type acylation to produce benzaldehyde. However, the latter can by synthesized by the reaction of benzene with carbon monoxide and HCl (a process known as the Gatterman-Koch reaction). Outline a mechanism. O CO / HCl H



CHO



Cl A



11. toluene



H2O2 CF3SO3H



OH (a convenient way to substitute an hydroxyl group onto an aromatic ring)



12.4 Mechanisms



114 • Chapter 12 Aromatics



12. Dyes such as indigo blue (see 19.1, 34) do not bond well to cotton and tend to wash off after repeated laundering; they are known as surface dyes. On the other hand, reactive dyes bind covalently to cotton, resulting in greater color retention (‘fastness’). The following process illustrates the latter. An aminocontaining dye is initially bound to cyanuryl chloride to give a product that subsequently is allowed to react with the hydroxyl groups of cotton. Show a mechanism for this process that illustrates how cyanuryl chloride serves to crosslink the dye with cotton. What type of reaction describes each step? Cl N Cl



1. dye-NH2



N N



2. cotton-OH



Cl



cyanuryl chloride



13. Malaria, which claims over one million lives per year, mostly children and largely in Africa, could be eradicated with the judicious use of DDT. Banned in the US in 1972, in large part because of Rachael Carson’s 1962 book The Silent Spring, exhaustive scientific review has since shown DDT, in moderation, not only to be safe for humans and the environment, but also the single most effective anti-malarial agent ever formulated. Although the World Health Organization and the US have now reversed their anti-DDT stance, emotional opposition to the pesticide remains so fierce that its use continues to be resisted – at the cost of millions of unnecessary deaths. DDT is easily prepared as follows: O Cl3C



H



H



H2SO4



+ 2 chlorobenzene



Cl



Cl CCl3 DDT



14.



12.4 Mechanisms



1. BF3 +



Cl



2. H



Problems • 115



H



15.



CHO OH



OH



16. When poly(styrene) is treated with chloromethyl methyl ether and SnCl4 (a strong Lewis acid), Merrifield resin (named after Nobel laureate Bruce Merrifield who pioneered in vitro peptide syntheses) is formed.



ClCH2 O CH3 SnCl4 CH2Cl Merrifield resin



poly(stryene)



1. Br2



17.



C7H8Br2



2. :B



C7H7Br



3. H2O O ditropyl ether



Me 18.



H Ph



OTs H Me



HOAc SN (acetolysis) (a racemate)



Hint: recall the concept of neighboring group participation (9.4, 9-16) in some nucleophilic substitution reactions; even aromatic rings are sometimes capable of acting as a “neighboring group.”



12.4 Mechanisms



116 • Chapter 12 Aromatics



Cl



CHCl3



19. N H



OR



N



H 20.



OMe 21.



OMe H3PO4 / H2SO4



PO3H2



12.4 Mechanisms



CHAPTER 13 ALCOHOLS 13.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. NaBH4 2. NH4Cl (a weak acid) 1. benzyl methyl ketone 3. PCl3 4. KO-t-Bu 1. H2 / Pd 2. H2SO4



1. i-PrMgBr 2. 3-ethyl-3-pentanol Br



2.



OH 1. H2SO4



3.



2. H3O HCl



1. TsCl 4. 5-hydroxy-2-heptanone 2. NaOAc



1. NaH 5. 1-hexen-3-ol 2.



O 6.



Ph



O MeO S OMe O



1. PhMgCl O



2. H 1. LiAlH4 2. H



13.1 Reactions



118 • Chapter 13 Alcohols



1. Li 2. diisopropyl ketone



7. iodomethane



3. H



1. HBr 2. LDA 8. 2-butanol 3. BH3.THF 4. H2O2, HO



O O



1. NaBH4 OMe



2. H



9. Ph



O



1. LiAlH4



O



2. H H2 / Pt



Me 10.



H Me



POCl3



OH D



pyridine



H



HO 1. NaOH 11.



O NMe



2. CH3I (1 equiv)



HO morphine



codeine



OH



OH Jones reagent



12. HO



13.1 Reactions



HO



Problems • 119



1. Br2, H2O 2. Me3SiCl



13.



3. Li 4. acetone 5. H3O



O BnO



14.



1. (XS) MeLi OBn 2. H



1. LiAlH4 15. p-hydroxybenzoic acid 2. (XS) HBr



O



O



1. NaBH4



OAc



16.



2. H O cortisone acetate



1. LiAlH4 2. H OH



H



17. HO



18.



(pinacol rx)



H



Ph OH OH



O



O 1. NaBH4



aromatase



19.



2. H O



HO andostenedione



estrone



estradiol



13.1 Reactions



120 • Chapter 13 Alcohols



OH



O



1. SOCl2, Et2O 2. Mg



20.



3. H patchouli alcohol (used as a fragrance)



O Ph



OEt



1. n-PrMgCl



21.



2. H



N Me



DemerolTM (narcotic analgesic)



O



OCH3



1. toluene, ' 22.



+ TMSO



2. H



Danishefsky's diene



13.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. O



D



1. O



O CHO 2. cyclohexanol



13.2 Syntheses



Problems • 121



OH



3. 1-butene



Ph



4.



OH



H



H



OH



racemic s-BuCl



*OH H (* = 18O)



5. n-butane HO OH



6. cyclohexane



7. vinyl chloride



8. n-hexyl alcohol



O



1,3,5-hexatriene



C N



13.2 Syntheses



122 • Chapter 13 Alcohols



D CO2H 9.



10. p-chlorophenol



p-hydroxybenzaldehyde (via a Grignard)



OH



O



11. HO



HO estradiol



OH



12.



O 13. n-butane



OH



O OH OH



Cl



14.



O OH 15.



13.2 Syntheses



Problems • 123



O



OH 16.



O



Cl



OH



OH 17.



OH



HO



C



CH



18. HO



HO



OH



OH C CH



19. Me



HO



O



estradiol O



HO



OH C CH



O



EnovidTM constituents (OCPs)



20. Br



13.2 Syntheses



124 • Chapter 13 Alcohols



21. Berson (Yale) discovered that the bicyclic carbocation A undergoes a clever rearrangement in which the cyclopropyl ring circumambulates around the cyclopentenium ring. Beginning with B, synthesize a deuterium-labeled species that would support this observation.



etc. B



A



O



13.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. 1.



dil H2SO4



OH OH



(a cyclic ether)



1. NaBH4



2.



2. H2SO4 retinal



3. cycloheptene glycol



O



H



H



C7H12O IR: 1729 cm-1 1H NMR: G (d, 1H), plus other chemicals shifts



13.3 Mechanisms



Problems • 125



Ph



Ph



H OH



4.



O



OH



H



5.



+



OH



H



6. glycerol



H O



H



7. OH



OH (an aldehyde)



2. 1. H3PO4



8. CO2H



O



MgCl



3. H3O 4. HBr 5. Me2NH NMe2 amitriptyline (an antidepressant)



13.3 Mechanisms



126 • Chapter 13 Alcohols



9. Aflatoxin B1 is one of the most potent carcinogens known. In the presence of water and acid, compound A is formed. O



O



O H



O



O



H3O O H



O O



O



OCH3



OCH3



O H A



aflatoxin B1



10.



O



CH3 H Br HO H CH3



CH3 H Br H Br CH3



HBr



+



CH3 Br H H Br CH3



racemate



Note: retention at C2,3 inversion at BOTH C2,3! This observation by Winstein (UCLA) provided stereochemical support for the concept of neighboring group participation (see 9.4, 9-16).



Similarly, Br



Br



11.



or OH



HBr



only trans-product is formed!



OH



12. A step in the biosynthesis of the amino acid valine: O OH



H



OH CO2H



CO2H O



13.3 Mechanisms



1. [H]



CO2H



2. (-H2O)



NH2 valine



Problems • 127



H2SO4



13. OH



14. The conversion of ethylene glycol to acetaldehyde under acidic conditions could occur by one of two pathways: (1) dehydration to an enol followed by tautomerization, or (2) a pinacol-like rearrangement. In view of the following experiment, which pathway is suggested? O O H H2C CD2 D DH2C D NOT H3C OH OH



15. Cyclohexene glycol in the presence of acid forms cyclohexanone. Similar to problem 14, two pathways are possible: dehydration/tautomerization vs. a pinacol-like rearrangement:



O



OH



- H2O



taut



OH



OH



H



+H - H2O



OH



H ~ H:



H



-H



O



H



cyclohexene glycol



Synthesis of deuterium-labeled glycol A, when treated with acid, yields B: OH D D OH A



D H



D O B



a. Which pathway is consistent with this observation?



b. Suggest a preparation of A from cyclohexene.



13.3 Mechanisms



128 • Chapter 13 Alcohols



O



OH



H



16.



(



OH



Cl



= 13C)



O



1. Li 2. acetone C4H8 +



17. 3. H



(1H NMR shows only a singlet at G 8.2)



OH



Cl



D 18.



D



:PPh3



D



D



CCl4



19.



OH



H



D-pinene (a constituent in oil of turpentine - interestingly, the dextrorotatory form is found in North American oils and the levorotatory form in European oils)



13.3 Mechanisms



CHAPTER 14 ETHERS 14.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. HBr (1 equiv) 2. TsCl



1. O



3. KOAc, 18-crown-6



2. benzyl phenyl ether



(XS) HI



3. phenyl mercaptan + Me3S I



OH KOH



4. Br



5.



1. HF



O



2. PCC



6. 2-isopropyloxirane



NaCN MeOH



1. styrene epoxide 7. PhLi



2. H2SO4



OMe 8.



1. HI (1 equiv) 2. CrO3, H 3. NaBD4 4. H



14.1 Reactions



130 • Chapter 14 Ethers



1. PhCO3H 9.



2. PhOH, H



H, MeOH



10. O



11. The fungicide flutriazole can be synthesized by the following scheme: MgI



F 2.



1. ClCH2COCl



F



AlCl3



3. H



N N



F 5. OH



F



4. base



N



6. H



N N N flutriazole



1. mCPBA 12.



2. MeNH2



Ph



ephedrine (bronchodilator)



13. The Claisen rearrangement of allyl phenyl ethers: 1. NaOH OH



2. Br



3. ' (Claisen)



14.1 Reactions



Problems • 131



14. The Claisen rearrangement can be generalized to include allyl vinyl ethers:



'



O



O



H



Draw the expected Claisen rearrangement product for each of the following: O a.



CO2H



'



OBn



b. A stage in the biosynthesis of aromatic amino acids (draw the structure of prephenic acid and give a mechanism for its conversion to phenylpyruvic acid):



HO



CO2H O



'



H



Claisen



CO2H O



HO2C prephenic acid



chorismic acid



phenylpyruvic acid



15. Mechanistically similar to the Claisen rearrangement is the Cope rearrangement:



'



This specific example became known as the “degenerate Cope,” a moniker that did not particularly please its discoverer, Prof. A. Cope! Of course, the degeneracy can be removed: ' Cope



14.1 Reactions



132 • Chapter 14 Ethers



16. Going back to problem 14.1, 13, if the ortho positions are blocked the initial Claisen rearrangement product may be followed by a Cope rearrangement. Fill in the brackets.



O



Claisen



Cope



'



'



OH ~H



17. A slight variation of problem 14.1, 15 is the oxy-Cope rearrangement: HO



O



HO



'



tautomerize



H



Predict the oxy-Cope product for the reaction below: OH '



SH 18.



[O]



2 H2N



CO2H cystine [crystallization in kidneys can lead to one type of calculi (stone)]



cysteine



OH 19.



SH



HS



[O]



OH dithiothreitol



14.1 Reactions



C4H8O2S2



Problems • 133



14.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. 3-methylpentane



2. cyclohexene



3-methoxy-3-methylpentane



trans-cyclohexene glycol



OTs 3.



4. propylene



S 2 diallyldisulfide (found in garlic)



O 5. cyclohexane H



6. cyclohexene oxide



via an epoxide



cyclohexane



14.2 Syntheses



134 • Chapter 14 Ethers



O 7.



O N



HS CO2H



N CO2H



captopril (antihypertensive)



S S



8. CO2H



CO2H asparagusic acid (isolable from asparagus)



14.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. BF3, Et2O



CHO



1. styrene epoxide



1. LDA 2. methyloxirane



allyl alcohol



2. H



H



3. O



14.3 Mechanisms



OH



Problems • 135



O



O



O



OH



OH, MeOH



4.



O



OH



O



5. Complex ladder polyether natural products, so named for their rung-like structure, are the active toxins found in harmful algal blooms known as red tides, which cause devastating ecological damage. Brevetoxin B is an example. HO H O



H



O



O



H



H



O



H



O



H HO



O



H O H



H



O



H



H



H O H



O



O H H



O



brevetoxin B



Twenty years ago Nakanishi (Columbia) proposed such products arise biosynthetically from an elaborate cascade of epoxide ring-opening reactions that zip up the polyether structure. The following reaction, discovered by Jamison (MIT) in 2007, supports this hypothesis. HO O



H



H H2O



O O



H



O



HO



H



O



H



H



H



O



O



H



H



H



O



6. The biosynthesis of steroids involves an absolutely gorgeous (!) polycyclization reaction of squalene epoxide, followed by two sequential 1,2-hydride shifts and two 1,2-methide shifts to form lanosterol (lanosterol is then converted to cholesterol, the precursor to most other steroid hormones):



H H HO



O squalene epoxide



lanosterol



14.3 Mechanisms



136 • Chapter 14 Ethers



7. Biochemical hydroxylation of aromatic compounds proceeds via arene oxides, which subsequently undergo ring opening to form phenols: H O



O



H



OH



OH (a) - H



+H



cytochrome P450



benzene oxide



A (b)



tautomerization



1,2-H: shift



H



O



O H



H -H



H



H



Phenol could be formed from intermediate A simply by an E1-like loss of a proton (path a) or, alternatively, by a pinacol-like rearrangement followed by tautomerization (path b). Support for path b was provided by chemists at the NIH who observed the following conversion: D



OH



O H



D



H3O



Explain. Account for the role of the methyl substituent. (This rearrangement of an arene oxide has now become known as the NIH shift!)



CO3H R 8.



R



OH R'



1.



O



OH



Cl



R'



R



2. BF3, Et2O



R'



O OH Step 2 illustrates a semi-pinacol type rearrangement. Propose a mechanism for that step.



14.3 Mechanisms



Problems • 137



9.



N H



PhO O



DBN



S



N H



PhO



S



O



N



N



O



O O



O



CH2Cl



Note: DBN (1,5-diazabicyclo[4.3.0]non-5-ene) is a sterically hindered nitrogen base that favors elimination over substitution:



N



N



H H A



N



N



A



DBN



14.3 Mechanisms



This page intentionally left blank



CHAPTER 15 ALDEHYDES AND KETONES 15.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. CrO3, H OH



1.



2. hydrazine, H



1. Ph3P 2. MeLi



2. PhOCH2Br



3. methyl ethyl ketone



a vinyl ether (see 15.1, 12, 13 and 15.3, 3, 33 for examples of their reactivity) O



H3O



3. O



Ph



4.



+ opsin-NH2



H



O



11-cis-retinal



O



(a protein)



OH



rhodopsin



H3O



5. Ph



OH 6.



1. PCC 2. H3O 3. HOEt, H



O 7.



Cl



1. KO-t-Bu / t-BuOH 2. HCl



15.1 Reactions



140 • Chapter 15 Aldehydes and Ketones



8. methyl n-propyl ketone



1. NaBD4 2. H 3. H2SO4 (E1)



1. KMnO4 2. semicarbazide



9.



3. H2 / Pt (XS)



HO vitamin D



O CH 10.



OMe O



1. ethylene glycol, H 2. DIBAH, -78o 3. Ph3P=CMe2 4. H3O citronellal



O 1. Ph3P O



11. p-nitrobenzaldehyde 2. H3O



a fluorescent "spy dust" ingredient



12.



O



1. Ph3P-CHOCH3 2. H3O an aldehyde



13. Using the above reaction (12) as a model, how could you prepare pentanal from butanal?



15.1 Reactions



Problems • 141



OMe 14.



1. CH2I2 / Zn (Cu) 2. H3O



O



3. Ph3P=CHC=CH2 OMe



15. cyclopropanecarbaldehyde hydrazone



1. H3O 2. EtMgI 3. H



1. H3O 16. acetophenone diphenyl ketal



O



2. H2NOH



H3O



CHO



17. a heterocycle



18.



1. Ph3P 2. n-BuLi



O



O



Br



O 19.



O



3. butanal 4. H3O



H3O O



20. t-butylacetylene



1. H3O, Hg2+ 2. hydrazine, OH



15.1 Reactions



142 • Chapter 15 Aldehydes and Ketones



1. Br2, H2O 2. O



,H



21. 3. Li 4. ethylene oxide 5. H3O



1. HONO2 / H2SO4 22. CHO



O



2. H2NOH, H nitrofuroxime (used in treating urinary tract infections)



23.



Et



H3O



O O



multistriatin (European elm bark beetle pheremone)



OH / ROH



24. 2-oxopropanal



(intra-Cannizzaro)



CHO 1. N2D4, OD, D2O



25. OMe



2. HI



OH vanillin



CN



CO2H O



26.



OH



O



Ph H



OH



CO2H O H3O



OH



+



OH OH



OH HCN



+



??



OH



This reaction, with the release of the very toxic HCN, provides a defense mechanism for millipedes.



15.1 Reactions



Problems • 143



O 27.



H3O O frontalin (insect pheremone)



MeOH, H



28. 3-oxobutanal



C6H12O3



IR: 1715 cm-1 NMR: G 2.2 (s, 3H), 2.8 (d, 2H), 3.4 (s, 6H), 4.9 (t, 1H)



1H



O



O



OMe



H3O



29.



O 30.



H3O O



safrole (odor of sassafras)



NH2 31.



H



1. H



CO2H



2. H2 / Pt



O



proline (an amino acid)



AcO



O OH



32.



1. LiAlH4 MeO



2. H3O



MeO cortisone acetate dimethyl ketal



15.1 Reactions



144 • Chapter 15 Aldehydes and Ketones



O



O



H



H



OH



33.



OAc 1. LiAlH4



OAc



34.



2. H3O



HO



O



HO



O



35.



H3O



O O F flunisolide (anti-inflammatory in allergy medication)



36. 1,2-cycloheptanedione



(XS) hydroxylamine



heptoxime (used in quantitative determination of Ni)



H3O



37.



O



O



O



O



paraformaldehyde



38. Chain degradation of a hexose: OH



OH



O



1. NH2OH, H H



OH



OH



15.1 Reactions



OH



2. Ac2O (dehydrates an oxime)



Problems • 145



O Me N N



N H



39.



mild acid O O



O tadalafil (CialisTM)



40.



H N



O



Me2N



S



H N



mild acid



MeNH2 +



NO2 ranitidine (ZantacTM - antiulcerative)



N N N H3O



41. N H



S



olanzapine (ZyprexaTM - antipsychotic)



1. PCC



42.



2. Me2CuLi



OH 3. H3O citral H N O



43.



O



H3O



O



F paroxetine (PaxilTM - antidepressant)



15.1 Reactions



146 • Chapter 15 Aldehydes and Ketones



44. Ammonia is produced in the mitochondria primarily by the oxidation of glutamate to produce an imine, which is subsequently hydrolyzed: NH2 O2C



[O]



H3O



CO2



+ NH4



glutamate



D-ketoglutarate



O O O 45.



H3O



4 steps



HO



O diosgenin (from Mexican yams)



progesterone



OH 1. PCC 2. MeLi



46. EtO



3. H3O



EtO testosterone diethyl ketal



17-methyltestosterone (an anabolic steroid)



47. A step in Woodward's (Harvard) synthesis of strychnine: N



O 1. HC CNa / THF



N



H



O



O dehydrostrychninone



15.1 Reactions



2. H2 / Lindlar catalyst



Problems • 147



48. Aldehyde protons are non-acidic. However, if the aldehyde is converted to a 1,3-dithiane (the sulfur analog of an acetal), the proton can then be quantitatively removed by NaNH2 or organolithiuim bases. The resultant anion (Corey-Seebach reagent) readily undergoes SN2 or carbonyl addition reactions. Subsequent hydrolysis of the product unmasks the starting carbonyl. O R



+



H



SH



SH



R



S



H



S



R



n-BuLi



S



1. R'X



S



2. H3O



Li



a dithiane



O R



R'



Corey-Seebach reagent



Predict the products of the following reactions: 1. HS(CH2)3SH, H 2. MeLi



a. benzaldehyde



3. EtI 4. H3O



S



1. n-BuLi 2. n-decyl bromide



S



3. H3O



b.



1. HS c. acetaldehyde



SH , H



2. NaNH2 3. cyclohexanone 4. H3O



49. The amino acid serine can undergo a retro-aldol-like reaction (see CARBONYL CONDENSATION REACTIONS) to form glycine and formaldehyde; in cells this reaction is catalyzed by a derivative of pyridoxine (vitamin B6): OH



O retro-aldol



H2N



CO2H



serine



H2N



CO2H



+



H



H



glycine



(cont. on next page)



15.1 Reactions



148 • Chapter 15 Aldehydes and Ketones



Catabolic reactions that produce formaldehyde, as above, generally occur in the presence of another vitamin derivative, tetrahydrofolic acid (FH4). The later detoxifies formaldehyde by reacting with it to produce A. On the other hand, many anabolic reactions require formaldehyde as a building block (e.g., biosyntheses of the nucleoside bases). In those instances A undergoes hydrolysis to yield FH4 and formaldehyde in situ. Draw the structure of FH4.



H2N FH4 +



H N



N



H3O



N



CH2O



FH4 +



N



H O



catabolism



N



CH2O



anabolism



A



O HN



CO2H CO2H



[Note: Unlike us, bacteria can synthesize FH4 de novo from precursors such as p-aminobenzoic acid (PABA). Sulfa drugs are effective competitive inhibitors to enzymes that utilize PABA, thus destroying the ability of the bacteria to synthesize FH4.]



N



N



N 50. Cl



O



NH2



H -H2O XanaxTM (anxiolytic)



15.1 Reactions



Problems • 149



15.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. HO



CO2H



1. cis-2-butene



NH2



OCH3



OH



2. H



D



3. cyclopentanone



CO2H



O



Cl



4.



5. benzaldehyde



D



Ph



CO2H O



15.2 Syntheses



150 • Chapter 15 Aldehydes and Ketones



O 6. Ph



O CH2Cl



C



O C



Ph



O



OH OH OH



O OMe



O 7.



O



OH OMe



O OMe



OH OH



O OH



8.



9. MVK (methyl vinyl ketone)



15.2 Syntheses



via a Wittig



O OMe



Problems • 151



10.



via a Wittig



OH



O



O



O 11.



H + Br



O HO



CHO



12. Hydrazones can be deprotonated by strong bases to give carbanions that act as nucleophiles, e.g., N



NR2 (H



N



n-BuLi



-H O



How could this observation be used to form



CHO



NR2



OH Ph



from acetone and benzaldehyde?



CHO



13. O O



O 14.



H



15.2 Syntheses



152 • Chapter 15 Aldehydes and Ketones



OH



OH C CH



15.



O



O major component in OCPs



O 16.



Ph , benzaldehyde



Ph



Et Ph



R



R tamoxifen (NolvadexTM - antiestrogen)



(R = -OCH2CH2NMe2)



O 17. 1-butene



18.



CO2Me CO2Me



O H



O



19. H OH



O chrysomelidial (secreted by larvae of some beetles in self-defense)



15.2 Syntheses



Problems • 153



20. The hotness of chili peppers can be quantified by determining their Scoville heat units (SHUs). An SHU is the amount of dilution needed before the chili is undetectable. The hottest, according to the Guinness Book of World Records, is the bhut jolokia from India, firing up at around 1,041,427 SHU, i.e., a drop of extract needs about a million drops of water! (Jalapeño and Tabasco range a mild 5,000 – 25,000 and 100,000 – 200,000, respectively, on the SHU scale.) The active ingredient is capsaicin. Formulate a synthesis of the carboxylic acid moiety from 6-bromo-1-hexanol. OH HO



Br



HO



O O



OMe N



H



capsaicin



21. Similar to benzyl carbon-oxygen single bonds, carbon-sulfur single bonds readily undergo hydrogenolysis. This observation provides a more gentle reduction of aldehyde or ketone carbonyls than the highly alkaline Wolff-Kishner or acidic Clemmensen reductions. Complete the following illustration of this approach:



O Ph



H2 / Ra-Ni



Ph



PhCH2Ph (hydrogenolysis)



a dithiane (see 15.1, 48) (or thioketal)



O 22.



O



via an enamine



H



N O



15.2 Syntheses



154 • Chapter 15 Aldehydes and Ketones



15.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. 1.



H, H218O



O



18O



H3O



2.



H2N



N



CHO



3. Vinyl ethers, unlike ordinary ethers, hydrolyze rapidly in water with just a trace of added acid. Draw the products and mechanism for TsOH / H2O ?? O



O



4.



+ hydrazine



H



N N



H



H



Cl 5.



OMe / HOMe



OH



O H



15.3 Mechanisms



OMe MeO



Problems • 155



O



O



R H2NOH, H



6.



R



R



N O



R



HO



O



O



7.



O



H



OH



O



8. Fugu, a fish, is a Japanese delicacy. Unfortunately it produces a very toxic substance, tetrodotoxin (an adult fugu contains enough to kill 30 people), in organs that must be removed by a licensed chef. To become a fugu chef requires training for years with a master and culminates in a battery of stateadministered exams, including eating a fugu prepared by oneself ! Though the risk of fugu poisoning is practically nil, if prepared by a master, a handful of diners succumb to fugu each year; perhaps that is why Japan’s Imperial Family is forbidden from tasting one of their country’s choicest dishes. Deduce the structure and outline the mechanism of the carboxylic acid produced when tetrodotoxin is treated with aqueous acid. O HO H2N



O



H



O N



N



H3O



OH



HO



OH



H OH tetrodotoxin



9. E. J. Corey (Harvard) found that sulfur ylids, similar to the Wittig reagent, can be prepared as follows: O S



1. SN2 +



CH3I



Me2



O S CH2



2. n-BuLi



When treated with cycloheptanone a 70% yield of A is obtained. Explain, showing clearly how the intermediate betaine’s behavior to form an epoxide differs from that of a typical Wittig intermediate. O



A



15.3 Mechanisms



156 • Chapter 15 Aldehydes and Ketones



O



OH HCl



10.



Cl O



OH



O



11.



H3O acetaldehyde



O



OH H3O



12. O



O



diazomethane



13. cyclohexanone



Ph N 14. N H Ph



15.3 Mechanisms



cycloheptanone



H



NHPh + NHPh



acetaldehyde



Problems • 157



15. The Vedejs olefin inversion reaction readily converts cis-to-trans or trans-to-cis stereoisomers: 1. mCPBA (Hint: think Wittig-like)



2. Ph3P



:P(OMe)3



16. propylene epoxide



propylene



HO O



17.



H +



OH



18. 2 phenol



HO



OH



+



O



NH2R



OH



acetone



OH



H



NHR



OH



C15H16O2 bisphenol A (a starting material in the synthesis of LexanTM)



O 19.



H



n-PrNH2



Et N



15.3 Mechanisms



158 • Chapter 15 Aldehydes and Ketones



20. Another protecting group for alcohols (in addition to TMS or vinyl ether derivatives) is MOM (methoxymethyl). MOM is stable to base, but can be cleaved upon treatment with mild acid. The following sequence illustrates its use: Cl



Cl



1. Li 2. CH2O



1. NaH OH



O MOM



2. ClCH2OCH3



HO



3. H3O



OH



a. Draw the structure of the MOM derivative and explain its mechanism of formation.



b. Outline the mechanism of the last step. What other two organic products are formed from the MOM group?



Br 21.



O



H3O



O



OH SCH3



MeSH



22.



0o O



OH



O 23.



CN



H2O, OH NC



OH



15.3 Mechanisms



H



Problems • 159



O



OEt



O



1. MeLi 24.



2. H3O



E-vetivone



25.



H H



O



O



Et N



EtNH2 H



26. Outline the mechanism for steps 2 and 3. TMS O



PhCHO



+



PhNH2



1.



2.



Ph N Ph



Ph



OMe (Danishefsky's diene)



N O



3. H



Ph



27. Aromatic aldehydes cannot be prepared by direct Friedel-Crafts acylation (formyl chloride is unstable). One alternative is the Gatterman-Koch reaction (12.4, 10). Other options include the following two reactions: a. the Reimer-Tiemann reaction OH



OH 1. CHCl3, OH



CHO



2. H



15.3 Mechanisms



160 • Chapter 15 Aldehydes and Ketones



b. the Vilsmeier reaction (outline a mechanism for both steps)



Me



Me N



POCl3



H



Me



Me N



O



OH



O2PCl2 C



1. phenol



Cl



CHO



2. H3O



H



salicaldehyde



Vilsmeir reagent



28. Another approach to enhancing the acidity of an aldehyde proton (see 15.1, 48 – Corey-Seebach reaction) is illustrated by the benzoin condensation reaction: CN



2 PhCHO



O



OH



Ph



Ph



benzoin



formaldehyde, H



NH



29.



N



OH



HO O



30. OH



OH



OH



E-D-ribose



OH



HO H



O OH



OH OH



D-D-ribose



(Carbohydrate chemists call this process "mutarotation" and refer to the two epimeric diastereomers as "anomers.")



15.3 Mechanisms



Problems • 161



31. The final step in the urea cycle: H N



NH2 HO2C arginine



O



H3O



NH



H2N



NH2



NH2 +



NH2



NH2



HO2C



urea



ornithine



32. Fluorescamine reacts with amines to give a highly fluorescent derivative. As little as a nanogram of an amino acid, for example, can be detected by this method. (Warning: do not attempt this one alone!) Ph



R



O



Ph



N O



RNH2



O



OH O CO2H



H O fluorescamine



highly fluorescent derivative



33. Unlike other types of phospholipids, plasmalogens undergo hydrolysis to produce not only fatty acids but also fatty aldehydes. Explain the formation of the latter. O R C O



(CH2)nCH3



O



H3O O O



P OR' O



a plasmalogen (platelet activating factor)



34. Although ketones are generally not reactive with most oxidizing agents, they are readily oxidized to esters when treated with peracids (Baeyer-Villager reaction). O Ph



O Ph



+



RCO3H



Ph



O Ph



15.3 Mechanisms



162 • Chapter 15 Aldehydes and Ketones



35. Many historians of chemistry credit the discovery of molecular rearrangements to the benzilic acid rearrangement: O



O



Ph



OH



KOH, EtOH Ph



Ph



CO2 Ph



benzil



CB of benzilic acid



Discovered by Liebig in 1838, it is a rare example of a rearrangement under alkaline conditions (most require acidic environments). Because of (1) disagreements over atomic weights at the time (the “conventional” weights for carbon and oxygen were thought to be 6 and 8!), and (2) the (erroneous as we now know) dogma propagated by Kekulé that carbon skeletal rearrangements could not occur in the course of chemical reactions, many wrong structures for benzilic acid were proposed -- until Baeyer finally got it right nearly forty(!) years later in 1877. a. Propose a mechanism for the benzilic acid rearrangement.



b. Baeyer observed a benzilic acid-type rearrangement when phenanthrenequinone is treated with base. Draw the expected product.



O



1. NaOH



O



2. H



phenanthrenequinone



c. Another more modern benzilic acid-type rearrangement:



O Ph



O



1.



O OH



Ph 2. H



15.3 Mechanisms



MgX



Ph Ph



Problems • 163



Problems 36 – 40 illustrate the dienone – phenol-type rearrangements. O



OH H



36. R



R



R R



OH HO base



37.



acid



OTs



30% HClO4



38. O



HO



However (!), H2SO4



39. O



OH



15.3 Mechanisms



164 • Chapter 15 Aldehydes and Ketones



And, lastly, a steroid dienone – phenol rearrangement: HO



HO O



O



OH



O



OH



O OH H



40. O prednisone (anti-inflammatory)



Problems 41 and 42 illustrate the Favorskii-type rearrangement. O



CO2R



Cl



CO2R



OR



41.



( = 13C tag)



+



HOR 50%



50%



Br O



CO2R



OR



42.



HOR



Br



OMe H3O



43.



+ NMe2 O



15.3 Mechanisms



O



NMe2



OH



Problems • 165



N



R N R



Br2 / H2O



44.



CHO



45. Sheehan’s (MIT) classic total synthesis of penicillin V involved a condensation step between the following reactants. Formulate a mechanism. (Note: the product is simply a nitrogen – sulfur analog of an acetal.) O N



O C H



HS



CO2R



H2N



O



O



H



+



N



CO2H O



penicillamine



RO2C



S HN CO2H



46. Woodward (Harvard) envisioned the biosynthesis of strychnine as beginning with a condensation of derivatives of the amino acids tryptophan (trp) and phenylalanine (phe). Sketch a likely sequence of events.



trp



NH2



N H



O



NH H



N



strychnine



H phe HO OH



HO OH



15.3 Mechanisms



166 • Chapter 15 Aldehydes and Ketones



47. Thioketones, in the presence of aqueous acid, form hydrates via an intermediate ketone: S Br Br



HO



H3O



Br



OH



Br



Br



Br Br



Br



48. Many aldehydes autooxidize in air. For example, a white powder (benzoic acid) may often be seen around the cap of a bottle of previously opened benzaldehyde (liquid). Such autooxidation is thought to proceed by the addition of O2 to a molecule of benzaldehyde via a free radical process to form perbenzoic acid. The perbenzoic acid then reacts with a second molecule of benzaldehyde to form two molecules of benzoic acid. Outline a mechanism for the second step. Hint: recall the Baeyer-Villager oxidation of ketones to esters (15.3, 34). O



H



O2



O



H



O



O



O



OH 2



OH



49. An impressive biomimetic conversion in Johnson’s (Stanford) total synthesis of progesterone (see 19.3, 16 for the final stage): O 1.



O CF3CO2H



O



H



O



O



O



O



H 2. aq K2CO3



H



H



H



H



OH



progesterone



15.3 Mechanisms



CHAPTER 16 CARBOXYLIC ACIDS 16.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate.



1.



KMnO4, H



N N nicotine



niacin 1. NaOH



2. phenylacetic acid



2. Me3O



BF4



1. NaBH4



3. 3-oxobutanoic acid



2. H



Ph



O



Ph



1. H3O



4. O



2. CrO3, H



O Ph



1. NaOH (1 equiv) 5. J-bromobutyric acid



2. ' 3. LiAlH4 4. H3O



OH



1. KOH 2. acrylic acid (propenoic acid)



6. 3. BH3 4. H3O



7. benzyl chloride



1. NaCN 2. PhMgCl 3. H3O



O 8.



1. SOCl2 NH2 2. DIBAH, -78o 3. H3O



16.1 Reactions



168 • Chapter 16 Carboxylic Acids



9.



N Ph



CO2H



OH



Ph



1. (XS) PhLi 2. H



OH



fexofenadine (AllegraTM - antihistaminic)



OAc



1. LiAlH4



CO2H



2. H



10.



aspirin



OH 1. KCN, H 2. H3O 11. 3. BH3 4. H3O



O testosterone



12.



Ph



CO2H



NMe2



1. EtLi 2. H



Ph



13.



methadone



CO2H



1. H3O 2. PCC



CO2 +



14. A reaction in the biosynthesis of the amino acid leucine: CO2H CO2H HO



1. [O] 2. (-CO2)



CO2H H2N leucine



16.1 Reactions



Problems • 169



15. The alkaloid cocaine, isolable from coca leaves, can be converted to tropinone, a precursor to the antispasmodic atropine (see 20.3, 12). Deduce the structure of tropinone. O



N



N OMe



CO2H



1. OH



3. Jones reagent 4. '



2. H O O



Ph



OH ecgonine



cocaine



tropinone



OH CO2H



1. NaOH (2 equiv)



16. 2. MeI (1 equiv) 3. H



17. Chemical structures for medicinals that contain acid-base components are routinely drawn incorrectly in prescription information supplied by drug companies. For example, sumatriptan succinate, an active ingredient of TreximetTM (prescribed for migraines) is drawn as shown below. Draw its correct structure. CH2CH2N(CH3)2 CH3NHSO2CH2 N H



.



COOH CH2 CH2 COOH



=



16.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. benzoic acid



2. propylene



PhCH2CO2H



pentanedioic acid



16.2 Syntheses



170 • Chapter 16 Carboxylic Acids



O 3.



acetone + CO2



OH



O 4. o-chloroacetophenone CO2H



CO2H



5. styrene



ibuprofen (MotrinTM - antipyretic)



CO2Na 6. 1-butanol sodium valproate (used in the treatment of epilepsy)



CO2H 7.



O OH



CO2H O



HO



8. benzyl bromide



16.2 Syntheses



via a nitrile



CHO



O



Problems • 171



N N



NC 9.



O NC O



10.



pentanedioic acid



O 11. RCO2H



RCH2



R'



O 12. 3-oxobutanoic acid



13. ethanol



OH Ph



butanedioic acid (succinic acid)



CO2H 14. CO2H



16.2 Syntheses



172 • Chapter 16 Carboxylic Acids



15. acetylene



hexanoic acid



OH



OH OH



O



16.



16.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. O H



1.



CO2H



O



OH



OH 2.



'



CO2H



-CO2



O



O



tetrahydrocannabinolic acid



THC



O Cl



Cl OH



3. Cl



CO2



16.3 Mechanisms



Problems • 173



4. Isobutylene and carbon monoxide, in the presence of acid, give dimethylpropionic acid. Explain.



5. The carboxyl group may be protected by allowing it to react with 2-amino-2-methylpropanol to form an oxazoline derivative. Outline the mechanism. (Acid hydrolysis of the oxazoline regenerates the carboxylic acid.) O N HO + R R OH O H2N (an oxazoline)



O OMe MeOH, H



6.



O CO2H O



7. The aldehyde flavorings formed in the roasting of cocoa beans is caused by the Strecker degradation of amino acids: NH2 R



O



CO2H



O



+



H3O,



O



'



R



H



+ CO2 +



N



N



8. Strecker also developed a synthesis of amino acids: O R



H



+



R'NH2 +



CN



H3O H



R' N



O OH R



16.3 Mechanisms



174 • Chapter 16 Carboxylic Acids



9. The biosynthesis of the amino acid phenylalanine involves an acid-catalyzed decarboxylation of prephenic acid: CO2H



HO



H



CO2H



CO2H



-CO2



O



CO2H



O



H2N



prephenic acid



phenylalanine



10. Ninhydrin reacts with amino acids to give a blue dye which can be colorimetrically assayed. Sketch the intermediates. O



O OH



-H2O



O O + NH2CHRCO2H



OH O



O N



O



O



O + CO2 + RCHO



ninhydrin



a blue dye



11. The vitamin niacin is used to form nicotinamide adenosine dinucleotide, which readily shuttles between its oxidized (NAD+) and reduced (NADH) forms. The latter serves as a cellular equivalent to NaBH4. The essential portions of the structures are shown below. Outline a mechanism for the cellular conversion of pyruvate to lactate. (Note: like NaBH4, NADH cannot reduce carboxylic acid carbonyls.) O



H H NH2



N R



[H] [O]



NAD+



O NH2



O



OH CO2



N R



NADH CO2



pyruvate



NADH



lactate



12. The cellular biosynthesis of glucose (gluconeogenesis) begins with the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP!) via a decarboxylation-phosphorylation pathway. Provide arrows. O O



O CO2



OAA



16.3 Mechanisms



O O O + O P O P O P O guanosine O OH O GTP



CO2 CO2 +



O + GDP O P OH O PEP



Problems • 175



13. Unlike ȕ-ketocarboxylic acids, Į-ketocarboxylic acids do NOT undergo mild thermal decarboxylation. However, the enzyme pyruvate decarboxylase (PDC) gently converts pyruvate to acetaldehyde at 37o. The key is provided by an essential cofactor, a derivative of vitamin B1 (thiamine). The activity of thiamine resides in the thiazolium ring, shown below. A mechanistic clue was offered by Breslow’s (Columbia) discovery that Ha rapidly undergoes exchange with deuterium when thiamine is dissolved in D2O, suggesting that Ha is relatively acidic. Propose a mechanism for thiamine-assisted decarboxylation of Dketocarboxylic acids. (Hint: begin with the conjugate base of thiamine, then consider how the thiazolium nitrogen can serve as an ‘electron sink’ to accept the electrons from decarboxylation.) R' O S



R N



O



PDC CO2



H



thiamine



+



CO2



Ha pyruvate thiazolium ring



14. Another biochemical approach to decarboxylation: Vitamin B6 (pyridoxine) is a precursor to the coenzyme PLP (pyridoxal phosphate), a catalyst for many reactions, such as decarboxylations, that involve amino acids. Outline a mechanism. (Hint: form an imine from PLP and the amino acid, then consider the role of the pyridinium nitrogen as an ‘electron sink.’) H



O



R



CO2H OH



N H



N



NH



histidine



NH2



NH2



PLP -CO2



N



NH



histamine



PLP



15. Determination of the molecular mass of acetic acid in a nonpolar solvent, e.g., hexane, yields a value of 120. Explain.



16.3 Mechanisms



This page intentionally left blank



CHAPTER 17 CARBOXYLIC ACID DERIVATIVES 17.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. O 1.



OEt



Cl



Et2NH (1 equiv) / pyridine



O



2. butyric anhydride + methylamine



EtOH (XS), H



3. cyclopropyl cyclohexanecarboxylate



4. propane -1,3-diol



phosgene



1. PCl3 5. oxalic acid 2. LiAlH(O-t-Bu)3 3. H 6. N,N-diisopropylpropionamide



H3O



1. isopropyl magnesium bromide 7. phenyl hexanoate 2. H3O



O 8.



MeOH, H



O O



1. LiAlH4 2. H



9.



3. Ac2O CO2H



17.1 Reactions



178 • Chapter 17 Carboxylic Acid Derivatives



saponification



10. H-caprolactone



O NH 11.



S



Bn



H2O, OH



N O



CO2H



penicillin G



O OR



Et 12.



+ urea OR



Et O



VeronalTM (a barbiturate, sedative) O



N



1. OH 2. H



O



13.



3. Jones reagent 4. ' Ph



O cocaine



O



O



OH 14. HO



..



SCoA NH2CH2CO2H (glycine) OH



cholyl coenzyme A (a rare example of cis-fused A-B rings in steroids)



N 15.



glycocholate (a major bile salt)



1. H3O 2. CH2N2



N O



O strychnine



17.1 Reactions



Problems • 179



OH OEt



16.



1. H3O (a lactone) 2. PhMgCl 3. H



O O O



1. LiAlH4



17.



2. H O



O



Spanish fly



H 18.



1. phosgene



N



N



2. LiAlH4 3. H



H



protein O O P F Me



19.



OH



SarinTM (a cholinesterase inhibitor) H



CO2H 1. SOCl2



N 20.



2. diethylamine N H



LSD lysergic acid O S Cl O



21.



O +



H2N



N H OrinaseTM (for diabetes)



O NH



22.



H2O, OH



S O



O



saccharin



17.1 Reactions



180 • Chapter 17 Carboxylic Acid Derivatives



acetic anhydride 23. p-hydroxyaniline (1 equiv) acetaminophen (TylenolTM - antipyretic)



Al2O3, '



24. acetic acid



H2C



(-H2O)



O 25.



C



O



aniline



ketene



O



MeO



+



OMe



[ethylene glycol]n



H



n



dimethyl phthalate



DacronTM



26. LexanTM, a high-molecular weight “polycarbonate,” is manufactured by mixing bisphenol A (see 15.3, 18) with phosgene (COCl2) in the presence of pyridine. Draw a partial structure for LexanTM. HO



OH



bisphenol A OH 27.



Me N C O



+



methyl isocyanate (active ingredient in the insecticide SevinTM)



1. Li 2. CuI



O O



28.



3. benzoyl chloride 4. H3O



Cl



O



NHMe



29. F3C



fluoxetine (ProzacTM - antidepressant)



17.1 Reactions



1. propionic anhydride 2. LiAlH4 3. H



Problems • 181



HO



O O



O O



NH3



30.



simvastatin (ZocorTM - antilipemic) O O



C CH 1. saponification



31.



2. H3O N OH Ortho TriCyclinTM (OCPs) O MeO



1. LiAlH4



N H



32.



2. H3O



HO capsaicin (active agent in cayenne pepper)



H2N



O S O



1. H2O,



33.



N



N CF3



OH



2. SOCl2 3. urea



celecoxib (CelebrexTM - anti-inflammatory)



F S HO



O O



34.



O



H3O



F O F fluticasone propionate (FlonaseTM - anti-inflammatory)



17.1 Reactions



182 • Chapter 17 Carboxylic Acid Derivatives



1. PhLi



CO2Na



35.



2. H3O



MeO



naproxen sodium (AleveTM - anti-inflammatory)



O



36.



N



HN



O S NO



N



H3O



N



N



OEt



sildenafil (ViagraTM - treatment of ED)



1. base, '



CO2H



Br



37.



2.



NH2



O NH



OH



38. n



H-caprolactam



39.



Nylon 6 (a polyamide)



1. ethyl chlorocarbonate



NH N



2. Et2NH diethylcarbamazine (anthelmintic)



O



OEt N N



40.



H3O CO2



Cl loratadine (ClaritinTM - antihistaminic)



17.1 Reactions



Problems • 183



NH 1. ethyl benzoate 2. LiAlH4



41.



3. H



Cl Cl sertraline (ZoloftTM - antidepressant) OMe 1. SOCl2



CO2H 42.



H2N



OMe



S



2. N O



CO2H



methicillin [an estimated 90,000 people in the US fall ill each year from MRSA (methicillin resistant Staphylococcus aureus)]



CF3 O



N H H3O



43.



CF3 O



N H dutasteride (AvodartTM - treatment of BPH)



CO2H 44.



O



N H



H2N



H3O OMe



O Ph aspartame



O N



N



exhaustive hydrolysis



N



45. N



O



Cl



O N N



zopiclone (LunestaTM - sedative, hypnotic)



17.1 Reactions



184 • Chapter 17 Carboxylic Acid Derivatives



O 46.



1. NaBH4 CO2H 2. H



2 H2O + C6H8O4



pyruvic acid



47. Chain elongation of a tetrose sugar: OH



O H



OH



OH



1. HCN, CN 2. H3O 3. SOCl2 4. LiAlH(t-BuO)3 5. H



(see chain degradation of a sugar, 15.1, 38)



48. Consider the reaction of amino acid A with amino acid B. Four possible products are possible: A-A, B-B, A-B, and B-A, if simply A and B are heated together. A more rational synthesis of, for example, A-B is to first treat A with t-butyl chlorocarbonate (C), which has the effect of eliminating (blocking) the nucleophilicity of the nitrogen in A. The blocked species is termed a t-BOC amino acid (t-butoxycarbonyl). R O O R R' N + H2N OH H O Cl H2N CO2H CO2H H2N O R' C A B A-B a. Draw the product of the reaction of A with C.



b. The t-BOC-A is then condensed with B to yield a derivative of A-B. A-B is formed by treating that derivative with mild acid. Show the mechanism of removing the blocking group to form A-B. (Hint: CO2 and isobutylene are by-products.)



17.1 Reactions



186 • Chapter 17 Carboxylic Acid Derivatives



O H



O glucose



53.



+ glucose



OH tuliposide (found in tulip bulbs)



N



tulipaline (a J-lactone) (produced when bulbs are damaged - a fungicide)



O N



54.



1. SOCl2 2. ammonia



N CO2H



F



3. SOCl2



O LevaquinTM (antibacterial)



OH 55. S



O



N



N N H



S



N



H3O '



CO2 + MeNH3 + H3N



O O meloxicam (MetacamTM - anti-inflammatory)



+



(gives a positive Tollens' test)



17.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. sec-butyl acetate O



O



O 2.



R



O NH2



R



H O



R



17.2 Syntheses



??



S



CH3



Problems • 187



O



O N



NH



3.



4. O



O 5. 1,3-cyclopentadiene, acetylenedicarboxylic acid O O



O 6.



H



OH



CO2H O



O 7. benzamide



Ph O



8. butanal



2-pentanone



17.2 Syntheses



188 • Chapter 17 Carboxylic Acid Derivatives 9. Following is an outline for the synthesis of diazepam (ValiumTM). Supply the appropriate reagents for each step. O O NHCH3 NCH3 NCH 3



Cl



Cl



CH3 O N Cl



O



O



Cl



H NCH3



Cl Cl



O



CH3 O N Cl



O



H3C N NH2 N



Cl



ValiumTM



10. 3-oxohexanedioic acid



O O



11. methyl benzoate



17.2 Syntheses



O



methyl phenylacetate



Problems • 189 12. Following is an outline for the synthesis of fluoxetine (ProzacTM). Supply reagents for each step. O



O NaO



O



N O



N O



F3C



F3C



O



N H CH3



O



N H



OEt O



F3C



F3C



NH2



O



ProzacTM (antidepressant)



Ph



13.



Ph



N



N EtO O DemerolTM (analgesic)



14. Following is an alternative synthesis of ProzacTM (see 17.2, 12). The reagent for step 5 is indicated; supply reagents for all the other steps. Outline a mechanism for step 5. O



O



O 5. Cl



O



F3C



HO



NMe2



Cl



NMe2



NMe2



OEt F3C



mechanism?



O



NMe2



Me N O



OEt



O



Me N



H



F3C ProzacTM



mechanism:



17.2 Syntheses



190 • Chapter 17 Carboxylic Acid Derivatives



Et



HO2C



15.



ibuprofen



O



O



O



16.



OH CO2H



O



OH



17.



O



Cl



CONEt2



18.



DEET (N,N-diethyl-m-toluamide - insect repellent)



19. Melatonin mediates circadian rhythm, the 24-hour sleep-wake cycle. Because its biosynthesis is inhibited by light, it is produced in the brain when the eye is not receiving light. Outline a synthesis from the neurotransmitter serotonin. NH2



HO



N H serotonin (5-HT)



H N



MeO



O



H N



O H



N H melatonin



RoseremTM



Insomnia affects one in every eight people. RoseremTM, a selective melatonin receptor agonist, is an example of several drugs approved to treat short- and long-term insomnia.



17.2 Syntheses



O



Problems • 191



20. The two monomers (B and C) for the synthesis of Nylon 66 can be prepared from a sugar derivative A. Supply the necessary reagents. Br O O O catalyst CHO (- CO)



Br



A O Cl



Cl O



CN



B



Nylon 66



CN H2N



NH2 C



21. Name the following polymer and devise a synthesis for it. Remember, appropriate starting monomer. Why?



OH



OH



OH



OH



is not an



OH



22. Some members of the morphine family of opium alkaloids… RO



CH3O



O



CH3O



O



O



N R'O R, R' = H (morphine)



N O



OH N



O



hydrocodone (a component of VicodinTM)



oxycodone (HCl salt = OxyContinTM, a component of PercosetTM)



R = Me, R' = H (codeine) R, R' = Ac (heroin)



How can the following conversions be accomplished? a. morphine



codeine



17.2 Syntheses



192 • Chapter 17 Carboxylic Acid Derivatives



b. morphine



heroin



c. codeine



hydrocodone



d. In aqueous solution codeinone exists in dynamic equilibrium with its EJ-unsaturated isomer, neopinone, hydration of which yields oxycodone. Write a mechanism for the equilibration. CH3O



CH3O H



O



H3O



O N



O



N O



codeinone



neopinone



O2C



N



N



CO2H OH



N NMe2



CO2H O



17.2 Syntheses



OH



H



N 23.



oxycodone



AmbienTM (sedative)



Problems • 193



17.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. H2*O, H 1. J-butyrolactone



2.



(show location of the labeled oxygen)



1. (XS) RMgX



O



t-BuOH



O



+



??



2. H



Cl



3. Lactic acid (D-hydroxypropanoic acid) forms a cyclic compound, C6H8O4. Formulate a structure for this compound. Why does lactic acid not form a simple D-lactone?



*O



4.



TsOH O



an alkene



+



?? (show location of the labeled oxygen)



Et



O 5. ethyl 5-oxohexanoate



PhMgCl (1 equiv)



O Ph



17.3 Mechanisms



194 • Chapter 17 Carboxylic Acid Derivatives



6. Phenylisothiocyanate (A, PITC, Edman reagent) can be used to sequence proteins, i.e., to determine the order of amino acids (primary structure). For example, treatment of dipeptide B with A in the presence of acid yields C (a phenylthiohydantoin, or PTH, derivative of the amino acid). Characterization of C identifies the first (from the N-terminal end) amino acid, in this case alanine. valine residue



Ph N C S PITC



H2N



+



S



Ph



O OH



N H



O



N



alanine residue



+ H2N



O



O



1. Me3O BF4



O



NH2



2. H3O



OMe



7.



NH



C PTH-alanine



B



A



H



CO2H



valine



8. The Swern oxidation: a. "activation" of DMSO step:



Me



O S



O



O



Cl



Cl



+ Me



DMSO



b. oxidation step: H OH + R R



- CO2 - CO



NR3



oxalyl chloride a chlorosulfonium salt



17.3 Mechanisms



O R



R



Problems • 195



9. Similar to the Swern is the Corey-Kim oxidation: O +



S



+



Cl N



H



OH



R



R



O R



NR3



O N-chlorosuccinimide



R



a chlorosulfonium salt



10. The biosynthesis of pyrimidine bases, e.g., uracil, begins with the formation of dihydoorotic acid. Formulate a mechanism. O O H2N



O P O O OH



CO2H +



H N



H2N CO2H



carbamoyl phosphate



O



H O



aspartic acid



N N H



CO2H



O



dihydroorotic acid



N H uracil



11. The antimalarial mefloquine can be synthesized from substituted 4-quinolones by the following sequence of reactions. Outline a mechanism for step 1 and draw the structures in brackets. O



Br



2. Li 3. CO2



1. POBr3 CF3



N H



CF3



N



CF3



4. H 5.



CF3



N



(- 600) Li



6. H3O HO N H



N



7. [H]



CF3



CF3 mefloquine



17.3 Mechanisms



196 • Chapter 17 Carboxylic Acid Derivatives



12. Acid halides react with diazomethane to give diazomethyl ketones, which, like diazomethane, decompose to give carbenes. O R



O



CH2N2



..



Cl



R



O



hQ



C N N H



R



..C



H



+ N2



a diazomethyl ketone



a. Formulate a mechanism.



b. This reaction was used in the synthesis of twistane. Draw the structures in brackets.



1. SOCl2



hQ



2. CH2N2



- N2



CO2H [D]D +480



1. H2 / Pd 2. Wolff-Kishner =



twistane [D]D +4340



13. Cyanogen bromide (CNBr) specifically cleaves certain peptide (amide) bonds to yield a lactone: H N O



O



R



S



17.3 Mechanisms



R' N H



1. N C Br 2. H3O



R O + O



H N



H2N O



R'



Problems • 197



14. Draw the structure in brackets and give a mechanism for the conversion of A to strychnone.



OH N



(Baeyer-Villager oxid)



H



H2O2, H



N O



O



pseudostrychnine



O



O



N



O



N H



H3O N



N O



O



O



O A



strychnone



15. A step in Woodward’s (Harvard) classic total synthesis of strychnine: Ac



Ac



N



N Ac2O, pyridine



N O



Me



CO2H



N OAc O



17.3 Mechanisms



198 • Chapter 17 Carboxylic Acid Derivatives



16. The final step in Sheehan’s (MIT) total synthesis of penicillin V involved the formation of a strained Elactam. To accomplish this he employed a new reagent, dicyclohexylcarbodiimide (DCC), first reported from his lab two years earlier to smoothly form amides from an aqueous mixture of a carboxylic acid and an amine at room temperature. [That important advance in the state of the art for forming amide bonds was subsequently utilized by Merrifield (Rockefeller) in his solid-phase approach to synthesizing proteins by linking amino acids together through amide (peptide) bonds.] Propose a mechanism for the lactamization reaction. OPh N H CO2 N H



O



N C N



S



OPh N H



DCC



O



N O



CO2



S



CO2



salt of penicillin V



O 17. H2N



OH



J-aminobutyric acid (GABA)



1. PCl3 (2 equiv), H3PO3 (1 equiv) 2. H2O



OH ONa O P OH P OH O pH 4.3 OH OH O P OH O P OH H2N H2N OH OH TM (a bisphosphonic acid) Fosamax (alendronate sodium, bone resorption inhibitor)



Hint: phosphorous acid exists in two tautomeric forms; use the nucleophilic form to attack the product of the reaction of GABA with PCl3. This one is rather challenging.



17.3 Mechanisms



Problems • 199



18. Tertiary alcohols are weakly nucleophilic because of steric hindrance near the hydroxyl group and, therefore, do not readily undergo Fischer esterification. One approach to form acetate esters of such alcohols is to allow them to react with isopropenyl acetate in the presence of an acid catalyst. Hint: the actual acetylation step involves an SN1-like reaction of the alcohol with an acylium ion. OMe OMe O O O



,H O



OH



O O



19. In contrast to phenyl acetate, the conjugate base of aspirin (acetylsalicylic acid) readily undergoes hydrolysis in water, suggesting kinetic enhancement by the latter’s carboxylate moiety. Consider two possible pathways and outline a mechanism for each. a. The carboxylate anion acts as a nucleophile, attacking the acetate ester to form a mixed anhydride, which is subsequently hydrolyzed by water:



b. The carboxylate anion acts as a base, removing a proton from water to form hydroxide, which subsequently attacks the ester:



c. Experimental evidence indicates that when the reaction is conducted in the presence of 18O-labeled water, no label is found in the salicylic acid product. Which pathway is supported by this experiment?



H



O



1. H 2. NaBH4



NH2 20. N H



+



CO2Me



3. H



N H



N



O



17.3 Mechanisms



This page intentionally left blank



CHAPTER 18 CARBONYL Į-SUBSTITUTION REACTION AND ENOLATES 18.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate. 1. LDA 1.



O 2. n-PrBr



1. OMe, MeOH 2. benzoyl bromide



2. methyl 3-oxopentanoate



3. H3O, '



1. EtOCO2Et, LDA 2. OEt



3. cyclohexanone



3. EtI 4. H3O, '



1. base 2. benzoic anhydride



4. diethyl malonate



3. H3O, '



Cl CN



1. OEt +



5.



NC-CH2-CO2Et 2. H3O, '



NO2



6.



+



NaCH(CO2R)2



OTs



1. H3O 2. CrO3, H 7. (E)-3-pentene-2-one 3. NaH (2 equiv) 4. benzyl chloride (1 equiv) 5. H



18.1 Reactions



202 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



1. OEt 2. isobutylene epoxide



8. diethyl malonate



3. H3O, '



1. (XS) NaOEt 2. Br(CH2)4Br



9. ethyl acetoacetate



3. H3O, ' (C7H12O) O



1. LDA 2. PhSeBr



10. 3. H2O2 4. MeOH, H O



1. Br2, H 2. KO-t-Bu / t-BuOH



O 11. O



3. LiMe2Cu 4. H3O



12. t-butyl methyl ketone



1. Br2, H 2. (CN)2CH: 3. H3O, '



1. OEt, HOEt 2. butanoyl chloride 13. diethyl malonate



2 CO2



+



3. H3O, '



O



1. a. Br2, OH b. H 2. PCl3, Br2



14. 3. MeOH



O 15.



+ H



H (pKa 15)



NaOEt HOEt (C8H10)



18.1 Reactions



Problems • 203



O 1. LDA 16. 2. Cl2, H



Br



1. HCl (1,4-addition) 2. O



17. isoprene



3. H3O,



O '



O 1. Cl2, H 18. 1. Cl2, H 2. KO-t-Bu



2. OH (SN2) 3. KMnO4



3. H3O 4. KMnO4



Cl



19.



CH2(CO2Me)2



1. KOH, EtOH



LiH (XS)



2. '



Cl



91%



95%



1. SOCl2 2. Me2NH 3. m-chloroperbenzoic acid



O 20. O



O



1. base 2.



tautomerize



O



O



O



OH



O



coumadin (WarfarinTM - an anticoagulant)



18.1 Reactions



204 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



18.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. butyric acid



ethylpropanedioic acid



2. dimethyl malonate



G-valerolactone (valeric acid is a common name for pentanoic acid)



3. dimethyl malonate



butanedial



O NH



4. dimethyl malonate O



O



N H



seconal (a sedative)



5. dimethyl malonate



2-benzylbutanoic acid



O 6. dimethyl malonate



7. dimethyl malonate



+



+



styrene



Ph



methyl acrylate



Br



(acrylic acid is propenoic acid)



8. ethyl acetoacetate



18.2 Syntheses



OH



s-Bu-CONH2



Br



Problems • 205



O



O OH



9. ethyl acetoacetate O



O



O O



10. ethyl acetoacetate



O



O



Cl



Cl



11. ethyl acetoacetate



12. ethyl acetoacetate



s-butyl methyl ketone



2-methylbutanoate



O 13. cyclopentanone OAc



O 14. cyclopentanol



CO2H



O



O



15. 2,4-pentanedione



18.2 Syntheses



206 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



16. methyl acetoacetate



2,4-pentanedione



via an organoselenium cmpd



17. 3-pentanone



ethyl vinyl ketone



Cl



O



O



O



18. chlorobenzene N H



WellbutrinTM (an antidepressant)



OH 19.



O ,



OH



O



N H



OH propranolol (a E-adrenergic blocker, developed by Sir James Black, recipient of '88 Nobel Prize in medicine; greatest breakthrough in pharmaceuticals for heart illness since discovery of digitalis approximately 200 years ago)



S H 20. dimethyl malonate O



N



N Na O



sodium pentothal (used to induce pre-surgical anesthesia in combination with sedatives)



21.



CN



Ph



Ph N



NC



N



O O



Et meperidine (an analgesic)



18.2 Syntheses



Problems • 207



18.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. O



OH O



H



1. OH



OH



OH



H



(a central reaction in glycolysis catalyzed by the enzyme TIM, triose isomerase)



O 1. EtO, HOEt 2. ethyl acetoacetate



O O



2. propylene oxide



3. 1,3-Diphenyl-1,3-propanedione gives a positive iodoform test even though it is not a methyl ketone. In addition to CHI3, two equivalents of benzoate are formed. Explain.



O



O



H



4.



H racemization H



O



O OMe



5.



MeOH O O



O



18.3 Mechanisms



208 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



O H



6.



O



O



7. The vitamin biotin is necessary for many metabolic carboxylation reactions. It reacts initially with CO2 to form unstable A, which then “donates” CO2 to a substrate. Outline the mechanism for carboxylation of pyruvic acid to oxaloacetic acid (OAA). O HN



O NH



CO2, ATP



N



HO2C



S pyruvic acid



A



biotin



OH H 8.



O O



O O O P O OH



H



O 9.



18.3 Mechanisms



+



Me3Si



O



O



OH



CO2H



S



HO2C



HN



O



Cl



Me3N



O TMS



CO2H CO2H OAA



CHAPTER 19 CARBONYL CONDENSATION REACTIONS 19.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate.



1. benzaldehyde + acetophenone



1. OH, (-H2O) 2. NaCH(CO2R)2 3. H3O



H



2. isobutryaldehyde



O 3.



+



OEt, EtOH



CHO



O O OMe, MeOH



4.



OMe



O



5. dimethyl heptanedioate



1. OMe



CO2 +



2. H3O, '



O OH, ROH



6.



(conj. add'n + retro-aldol)



O OH 7. O



8. propionaldehyde



cis-jasmone (a perfume) 1. BrCH2CO2Me, t-BuO 2. H3O, ' (Darzen's cond.)



19.1 Reactions



210 • Chapter 19 Carbonyl Condensation Reactions



1. base 9.



MeO



CHO



+



propionic anhydride 2. acid (Perkin cond.)



OCH3



OCH3 10.



+



base



ethyl vinyl ketone



O (complete)



11. benzaldehyde



+



OH



CH3NO2



OMe, MeOH (retro-Claisen)



12.



CO2Me O



13. cyclopentanone



1. NaOEt / EtOH (-H2O) 2. NH2NHPh



1.



O



2.



14. MeO



15. acetone



OMe, MeOH O Cl



+



C5H6O



3. H3O



O



OH



1. CH2(CO2Me)2, OMe



(aldol)



2. H3O, ' C6H10O



19.1 Reactions



CO2



C8H12O2



Problems • 211



CHO 16.



+



OH (-H2O)



3-pentanone



CHO



OH



OH retro-aldol



O



17. OH



H



OH



18.



1. methyl vinyl ketone



N



2. H3O 3. NaOH (aldol)



19. acetaldehyde + (XS) formaldehyde



OH



C(CH2OH)4 -- pentaerythritol O PhCHO, H 20.



CHO 21.



+



CH2(CO2Et)2



1. base 2. H



OH



C12H10O4 O CHO 22.



KOH



+ CHO O



(a pentacyclic dione)



19.1 Reactions



212 • Chapter 19 Carbonyl Condensation Reactions



23. A reaction in the biosynthesis of the amino acid leucine: O O



SCoA (aldol)



1.



CO2H



2. hydrolysis



24. Trans-resveratrol, isolable from red wine, has been implicated as a cardioprotective and can be synthesized as follows: MeO MeO



CHO 1.



+



CN



OEt + CO2



2. H3O OMe



HO



OH



trans-resveratrol (82%)



O



3. BBr3, RT (hydrolysis)



OH



1. H3O



25.



2. KO-t-Bu (retro-aldol)



26. Forward and retro-aldol-like reactions that occur in plants: O



CO2



O



retro-aldol



CO2



SCoA O2C



HO CO2



-



O2C



CO2



succinate



19.1 Reactions



H



glyoxylate



hydrolysis



malate



Problems • 213



O O OEt / EtOH



+



27.



(Robinson annulation)



O



28. The biosynthesis of glucose involves aldolase, an enzyme that catalyzes both forward and retro-aldol reactions. The forward process illustrates a mixed aldol wherein the enzyme initially binds with A, promoting its tautomerization and subsequent reaction with B to form a ketohexose: O O aldolase H OH + OH OH OH B



A



29. The Krebs Cycle begins with an aldol-like condensation of a thioester (acetyl coenzyme A) with oxaloacetate, followed by hydrolysis:



O



O SCoA



+



O2C



H3O



CO2



oxaloacetate



citric acid



30. The following sequence illustrates how fatty acids are catabolized to acetyl coenzyme A, a process known as E-oxidation. Fill in the brackets. O



[O]



H3O SCoA



(conj. add'n)



HSCoA (retro-Claisen)



O +



SCoA



19.1 Reactions



214 • Chapter 19 Carbonyl Condensation Reactions



31. Excessive accumulation of acetyl CoA can lead to metabolic ketosis by the following pathway: H3O Claisen A O 2



[H]



- CO2



SCoA



C



B



[A, B, and C (unfortunately!) are referred to as “ketone bodies;” accumulation of acids A and C lowers blood pH (acidosis).] ___________________________________________________



32. A cortisone story… Cortisone is one of 43 steroids found in adrenal cortical glands. It was first isolated by Kendall (Mayo Clinic) in 1934 (extraction of ~ 1,000 lbs of beef adrenal glands yielded only 85 – 200 mg of cortisone). One of the earliest total syntheses of cortisone was published by Sarett (Merck) in 1952. The following reactions illustrate his strategy. a. The initial sequence of reactions formed the A-B-C rings. Draw the missing structures. O O



Diels-Alder



2. a. LiAlH4 b. H



EtO



C A



B



(complete)



19.1 Reactions



HO H



1. H2 / Ni (1 equiv)



C B



EtO



1. H3O (=> a ketone) 2. methyl vinyl ketone, base (Robinson annulation)



H



OH



Problems • 215



b. Construction of the D ring began as follows. Fill in the bracketed structure and outline the mechanism for step 3. R



X , t-BuO



1.



C O



R 3. mild acid



C H



2. a. EtO C C MgX



CO2Et



b. H



c. Subsequent selective reduction followed by tosylation produced the indicated structure, which was then treated with the sequence of reagents shown. Draw the product of step 2 and give the mechanism for step 3. O



O



O C



C



D H



OTs 1. a. OsO4 b. NaHSO3 2. KIO4



3. OMe / MeOH



d. The above product was then subjected to the following steps. Draw structures for the critical intermediates in steps 2 -4. O



O



O 1.



C



D



RO



OR



O



O C



H



OAc



O



O



D



OR H



RO



O



2. I2, OH 3. OH, ' 4. KOAc



O



O C



D H



19.1 Reactions



216 • Chapter 19 Carbonyl Condensation Reactions



e. The final four steps yielded cortisone. Deduce the structure of cortisone acetate. OAc O



O C



1. HCN 2. (-H2O)



D



3. KMnO4, OH (- HCN)



H



OH O



O



OH



4. H3O



O cortisone



cortisone acetate



___________________________________________________



CO2Me



33.



1.



CO2Me



OMe, MeOH



2. H3O, '



O



O H



34.



NO2



CH3NO2 NaOMe / MeOH



N H C8H7N2O5 Na



H N



O



indigo blue (probably oldest known coloring agent - used to dye bluejeans)



35. A step involving an intra-Michael reaction in Corey’s (Harvard) synthesis of longifolene, a component of Indian turpentine oil: O O



Et3N



longifolene



19.1 Reactions



Problems • 217



19.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1.



?



+



via an aldol



?



1,3-diphenyl-1-propanol



O via an enamine



2. cyclohexanone



via an aldol 3.



O



CHO



? OH



4.



via an aldol



?



O



5. diethyl ketone



6. acetone O



CO2R



O



7.



CO2R



CO2R O



19.2 Syntheses



218 • Chapter 19 Carbonyl Condensation Reactions



8. cyclohexanone



4-benzyl-1,3-cyclohexadione



9. 1-pentene CHO



10. phenylacetaldehyde



PhCH(CH2OH)2



O 11.



?



+



via a Robinson annulation



?



O



O 12.



13. cyclohexanone, acetone



via a Wittig* O



*Why not via an aldol?



O



O via a Robinson annulation



14. O O



19.2 Syntheses



Problems • 219



O



15.



H



O 16. acetone



19.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. O



O H



1. OH



O



O +



2.



CH2N2



+



N2



O NaOEt / EtOH 3. O



O



O OEt



19.3 Mechanisms



220 • Chapter 19 Carbonyl Condensation Reactions



O



O



1. CH3NH2



OCH3



4. 2 methyl acrylate 2.



5. p-chlorobenzaldehyde



+



OMe



CHBr3



N



OH



OH Cl CO2



CO2Et



1. NaOEt, EtOH, MVK 2. H2O, OH



O



3. '



6.



O



O



O 1. acetone, OEt



H



7.



2. H



geranial



O



(a step in the commercial synthesis of vitamin A)



O



O



O



OEt 8.



19.3 Mechanisms



OEt



+ PhCO2Et



Ph



OEt



+ ethyl acetate



Problems • 221



OH



O +



9.



O



OH



methyl vinyl ketone



CHO H



O



O HCO2 +



10. The anaerobic breakdown of glucose (glycolysis) involves the following isomerization and retro-aldol: HO O



HO



H



OH OH



O



OH



OH



O



aldolase



OH H



+



OH



OH



OH



OH



OH



OH



O



D-D-fructose



D-D-glucose



R2N



OH



CO2R



R2N [Br ]



11.



R1



CO2R



CO2R



' %r



(from NBS) NH



1



NH



12. The following illustrates the Stobbe reaction. Hint: a key intermediate is a J-lactone. CO2R



O +



CO2R



base Ph



Ph



Ph Ph



CO2R CO2



19.3 Mechanisms



222 • Chapter 19 Carbonyl Condensation Reactions



O O



1. OMe / MeOH



13. O



O O



O



OR



O



14.



2. H



O CO2R



CO2R



EtO



O EtO



O



OEt, EtOH



15.



O



O



O



O



16. The final stage of Johnson’s (Stanford) historic total synthesis of progesterone (give a mechanism for step 2): O



O 1. ozonolysis 2. aq KOH O progesterone



19.3 Mechanisms



Problems • 223



1.



NH, H



17.



+



2. EtI 3. H2O



O



O



O



Et



Et



O



O base



CO2Me



18.



CO2Me



O 1. NaH



19.



O



2. H2O



CO2Me



CO2Me



20. Humulones are found in hops. When boiled, the insoluble humulones isomerize to the soluble isohumulones, which give beer its distinctive bitterness. (Caution: difficult!) OH



O



O R



HO



O HO



humulone: R = i-Bu



O



H, H2O '



R HO O



OH



cis- and trans-isohumulones



cohumulone: R = i-Pr adhumulone: R = s-Bu



19.3 Mechanisms



224 • Chapter 19 Carbonyl Condensation Reactions



21. Woodward’s (Harvard) total synthesis of the alkaloid strychnine included the following steps:



N H



NMe2



1. CH2O, Me2NH



OMe



OMe



H



OMe



N H



OMe 92% 2. MeI 3. NaCN, DMF



CO2Et N



CN 4. LiAlH4, THF



OMe N H



OMe N H



5. ??



OMe



OMe 97%



a. Step 1 is an example of the (name) _______________ reaction. b. Outline the mechanism for steps 2 and 3.



c. Supply the missing reagent in step 5.



22. Enzyme-catalyzed mixed aldol reactions are very common in metabolism. The beginning sequence in the de novo synthesis of aromatic amino acids, for example involves the following steps. Fill in the structures and write a mechanism for step 4. O P OH O O



OH



O



HO 2.



1. hydrolysis



H OH



CO2 phosphoenolpyruvate (PEP)



an enol 3. - H2O O OH



phenylalanine, tyrosine



HO



CO2H HO



19.3 Mechanisms



4. H



HO2C O



OH



O



Problems • 225



23. The biosynthesis of porphyrin rings (e.g., heme) begins with an annulation reaction that involves an aldol reaction and imine formation in the dimerization of G-aminolevulinic acid (ALA) to form porphobilinogen. CO2H O CO2H



H



NH2



2 HO2C ALA



N H



H3N



porphobilinogen



24. Several steps in Sheehan’s (MIT) total synthesis of penicillin V are shown below. CO2H



1. ClCH2COCl



2. Ac2O N



valine



Cl



O



O



O



SH N H



O



NH



NH2



Me



O



CO2H



3.



CO2Me



isomerization



SH, OMe MeOH



O N



a. Propose a mechanism for step 2.



b. Propose a mechanism for step 3.



25. The biosynthesis of fatty acids begins with a Claisen-like reaction: O O SR



+



SR O



CO2



+



O



O SR



O



19.3 Mechanisms



226 • Chapter 19 Carbonyl Condensation Reactions



26. The CD – CE bond in E-hydroxyketones is easily cleaved via a retro-aldol reaction; the carbonyl – CD bond is unreactive. In D-hydroxyketones, however, the CD – CE bond is unreactive; but, in the presence of thiamine, the carbonyl – CD bond can be cleaved (2). OH (1)



O retro-aldol



E D



O



O +



H



R' R N



O



1. thiamine



(2) OH



2. R



H



R



+



O



S



O O



(CB of thiamine) OH



H



Recalling the mechanism for thiamine-assisted decarboxylation of D-ketocarboxylic acids (problem 16.3, 13), formulate a mechanism for reaction (2).



27. The biosynthesis of cholesterol begins with the formation of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A): OH O O 3



SCoA



SCoA CO2



HMG-CoA



a. Formulate a mechanism.



19.3 Mechanisms



Problems • 227



b. HMG-CoA is subsequently reduced to mevalonate by an enzyme, HMG-CoA reductase. Because this reaction is the major control (rate-limiting) step, considerable research has been devoted toward developing a class of medicines that inhibits the action of this enzyme, notably the statins [e.g., atorvastatin (LipitorTM)]. OH HMG-CoA



OH



P O



ATP



a reductase CO2



O PP



CO2



O P O OH O O P O P O O OH



mevalonate P =



PP =



Mevalonate then undergoes phosphorylation and decarboxylation to form I-PP (isopentenyl pyrophosphate) and DMA-PP (dimethylallyl pyrophosphate) – recall problem 9.4, 19a. Outline the mechanisms for decarboxylation to form I-PP and isomerization of the latter to form DMA-PP. P O



O PP - CO2



CO2



O PP



O PP



I-PP



DMA-PP



O N H



OH N



OH



O OH



F LipitorTM



19.3 Mechanisms



This page intentionally left blank



CHAPTER 20 AMINES 20.1 Reactions Draw the structural formula of the major organic product(s). Show stereochemistry where appropriate.



1. phthalimide



1. base 2. ClCH(CO2Et)2 3. base 4. isopropyl chloride 5. H3O



alanine



1. (XS) CH3I 2. Ag2O, H2O, ' 3. OsO4 2. 2-methyl-2-hexylamine 4. NaHSO3 5. (XS) COCl2 6. NH3 C9H18N2O4 - MiltownTM 1. (XS) MeI 2. Ag2O, H2O 3. N-ethylcyclohexylamine



3. '



1. (XS) MeI 2. Ag2O, H2O



4. N



3. '



H coniine (toxin in hemlock, killed Socrates)



HO 1. (XS) CH3I



5. O



2. Ag2O, H2O, ' N



HO morphine



Me 6.



Ph2N



H



H



Me



1. H2O2 2. '



Et



20.1 Reactions



230 • Chapter 20 Amines



1. SOCl2 2. NaN3



7. cyclopropanecarboxylic acid



3. ', H2O



OH OH



1. (XS) MeI



8. 2. Ag2O, H2O, ' NHMe



HO



epinephrine



D H NMe2 H



9.



Hofmann elimination



Cope elimination



H 10. 3-pentanone + dimethylamine + formaldehyde



(Mannich rx)



NH2 N



11.



HONO N H



O



H2O uracil



cytosine



12.



1. Li



Ph Cl



2. CO2 3. H



4. SOCl2 5. NH3 6. Br2, OH, H2O phentermine (a diet drug)



20.1 Reactions



Problems • 231



OH 13.



Br2, OH



NH2



Me



NH3 +



H2O



O



1. NaNH2 2. ethylene oxide 3. PBr3 14. Ph2CHOH 4. Me2NH diphenhydramine (BenadrylTM - antihistamine)



1. HBr, ROOR 2. potassium phthalimide



15.



3. hydrazine



amphetamine (CNS stimulant)



Me2N OH 1. MeI



16.



2. Ag2O, H2O, '



MeO



3. H EffexorTM (antidepressant)



Ph OH



17.



(gives a positive DNP test)



1. SOCl2 2. NH3 3. Br2, OH, H2O



O OH



4.



I (2 equiv) DetrolTM (treatment of urinary incontinence)



18.



CO2H



1. a. Br2, PBr3 b. H2O 2. KO-t-Bu 3. HCN, CN 4. H2 / Pt pregabalin (LyricaTM - first treatment approved for fibromyalgia)



20.1 Reactions



232 • Chapter 20 Amines



1. Br2 2. NaNO2, HCl



19. p-toluidine (p-aminotoluene)



3. KI



1. Cl2, FeCl3 2. NaNH2 / NH3



20. benzonitrile



3. KNO2, H 4. CuCN 5. H3O



1. KMnO4, H 2. fuming nitric acid 3. Fe, HCl



21.



4. NaNO2, HCl 5. HBF4



1. Br2, Fe 2. Cl2, Fe 3. H2O, OH



H N 22.



O



4. I-Cl, Fe 5. HONO 6. H3PO2



1. NaH 2. H3O 3. NaBH4



CO2Me 23.



O



+



N



N



4. HBr (SN1) 5. ' (-HBr)



O



HO



H



1. 24.



O



OH NH



HO



nicotine



NaBH3CN, EtOH 2. HCl NubainTM (narcotic)



20.1 Reactions



Problems • 233



20.2 Syntheses Supply a reagent or sequence of reagents that will effect the following conversions. 1. methylcyclohexane



1-methyl-1-cyclohexylamine



NH2



2. cyclohexane



3. isopentane



3-methyl-1-butene



4. 3-methyl-1-butene



isopropylamine



OMe



OMe MeO



(via a Hofmann elimination)



OMe



MeO



OMe OMe



MeO



OMe



5.



NH2



O



H



NHPh



mescaline (from peyote cactus)



6. p-nitrotoluene



7. p-nitrotoluene



p-nitrobenzylamine



p-nitroaniline



20.2 Syntheses



234 • Chapter 20 Amines



O 8.



9.



NH2



HO3S



O



NO2



HO3S



N N



NEt2



methyl orange



N CO2Me



O



N



10.



OCOPh cocaine



11. toluene



tropinone



O



2,6-dichlorotoluene



O 12. p-nitroaniline



HO



N H



acetaminophen (TylenolTM)



O 13. 1-nitro-2,6-dimethylbenzene, ethylene oxide, diethylamine



N H



lidocaine



14. benzene



20.2 Syntheses



anisole



NEt2



Problems • 235



NO2



15.



N N



NH2



butter yellow



16. benzyl methyl ketone



H N



Ph



methamphetamine



Me



Me



H



Br



N



N O 17.



S



S S



O O



S



O



OH



O



OH



tiotropium bromide (SpirevaTM - bronchodilator)



N



OH



OH



, benzene



18.



NO2



N



para-red dye



D 19. benzene D



OH



OH



20. NHAc



propofol (intravenous anesthetic)



20.2 Syntheses



236 • Chapter 20 Amines



20.3 Mechanisms Outline a detailed mechanism for each of the following. No other reagents than those given are necessary. Use arrows to explain the flow of electrons and show all intermediates. H 1. butanamide + phenol + Br2



N



OH



OPh O



O 2.



1. Cl2, H2O, OH



CO2H



2. H



NH2



NH O



anthranilic acid



CO2H



1. HONO 2. adjust to pH 8



NH2



3. 1,3-butadiene



3.



O 4.



1. HCN, CN 2. H2 / Pt



O



3. NaNO2, HCl



O 5. cyclohexanone



1. NH2OH 2. H



NH H-caprolactam



(This is an example of the Beckmann rearrangement, similar to the Hofmann and Curtius rearrangements.)



20.3 Mechanisms



Problems • 237



6. Sir Robert Robinson (Oxford) observed that thebaine (a dimethylated derivative of the alkaloid morphine) forms phenyldihydrothebaine when treated with phenylmagnesium halide. Formulate a mechanism and draw the Hofmann elimination product. CH3O



CH3O 1. PhMgX



HO



O N



Ph 1. (XS) MeI N



2. Ag2O, H2O, '



2. H



CH3O



CH3O thebaine



phenyldihydrothebaine



7. The Curtius rearrangement not only occurs with acyl halides but also alkyl azides. Draw the bracketed structure and deduce a mechanism for its formation. Cl



N3



NaN3 SN2



O



H3O



'



NH3



H



- N2 an alkyl azide



8. Hydrazoic acid (HN3) undergoes addition to ketones to form a product that readily rearranges to an amide (Schmidt reaction): O



HO HN3



O



N3 '



NH



20.3 Mechanisms



238 • Chapter 20 Amines



9. The Fischer indole synthesis involves an isomerization known as a [3,3] sigmatropic rearrangement, shown by the arrows below: O H2SO4 PhNH-NH2 + Ph N Ph H N N Ph H 2-phenylindole H tautomerization



[3,3] H



N N H



N



Ph



H



N H



Ph



Outline a mechanism for conversion of the intermediate in brackets to the indole product.



10.



11. acetophenone



CH2O NH2



+



NH



H



CH2O



+



NH3



O



H Ph



N 3



20.3 Mechanisms



Problems • 239



12. Atropine, an antidote to cholinesterase inhibitors (e.g., nerve gases), can be easily synthesized from tropinone. The first total synthesis of tropinone required 17 steps. Years later Robinson (Oxford) accomplished its synthesis in a one-step, one-pot reaction (Robinson-Schopf condensation)! Sketch the critical intermediates in this synthesis. N



O



N 1. [H]



CHO + H2NMe + CHO



2. esterification



CO2 CO2



Ph O



O



tropinone



atropine O



OH



13. The Ritter reaction offers a way to prepare amides (or, by subsequent hydrolysis, amines) from good precursors to carbocations: O H2SO4 a. N + acetonitrile H



O O CN



O N H



b. MeO



H2SO4



t-Bu



MeO



14. A convenient method of synthesizing pure secondary amines involves (1) treating the sulfonamide of a primary amine with hydroxide, followed by (2) an alkyl halide, then (3) hydrolysis. Outline such an approach to preparing N-methylaniline.



20.3 Mechanisms



240 • Chapter 20 Amines



15. The Corey-Link reaction (step 2) may be used to prepare D-amino acids: O



OH



1. LiCCl3 R



H



R



H



N3



2. base



CCl3



R



3. NaN3, MeOH



CO2Me



H



NH2



4. H2 / Pd R



5. hydrolysis



H



CO2H



a. Outline a mechanism for steps 2 and 3.



b. Account for the product in a mechanistically similar reaction:



1. :CCl3



O



2.



HO



NH2



O



O



N H



16. Parkinson’s disease is associated with low levels of dopamine, a neurotransmitter. The enzyme monoamine oxidase (MAO) deaminates dopamine, thereby decreasing its concentration. One approach to treating Parkinson’s utilizes (-)-DeprenylTM, a “suicide inhibitor” to MAO. The mechanism first involves oxidation of the drug by a flavin cofactor of MAO, followed by a conjugate addition reaction between the reduced flavin and oxidized drug to irreversibly “kill” any future normal activity by the MAO enzyme. Outline the mechanism for formation of the adduct. H



R N



N



O



[H]



NH



N



H



N



H C C



[O] Ph



H



DeprenylTM



20.3 Mechanisms



H N



R N



O NH



N reduced flavin H



O



flavin cofactor



R N



O



H C



H oxidized drug



O



C H H C N Ph



Ph



O NH



N



N



H C C



H N



SOLUTIONS TO PROBLEMS



CHAPTER 1 THE BASICS 1.1 Hybridization, formulas, physical properties 1. a. SeldaneTM: C32H42NO2



RelenzaTM: C12H20N4O7 c



HO



OH



a



OH O



HO



b.



O



N



b



OH



OH N H



NH



O



2



d



NH H2N



c. a: sp3 – sp3; b: sp3 – sp2; c: sp2 – sp2 2. a. :C C:



d. SeldaneTM oxygens: sp3; nitrogen d: sp2



b. H C O:



c. O N O



d. the conjugate base of :NH2CH3 -H H3C N



Cl e.



N H



O



O



O



f.



H



H



3. a.



H



:C



sp2



H



b.



=> bond angle ~ 1200



H



H



=



CH2



a linear HCH bond angle implies sp hybridization; therefore, each lone electron lies in an unhybridized p orbital with spins aligned (Hund's rule) G+ N H



4. a. higher bp:



H N G-



b. lower mp: catechol O G+ H O GH



this isomer is capable of intermolecular H-bonding, thereby increasing intermolecular attractive forces and raising its bp relative to the other amine



5. a. no



b. no



6. a. CHCl3 H C



Cl Cl



d. yes



e. yes



f. no



g. yes



F vs.



P



C Cl Cl Cl



N



H H P H3C



h. yes c. SO2



b. CH3NO2



P



Cl



c. yes



catechol, unlike hydroquinone, can undergo intramolecular H-bonding, which decreases intermolecular attractions and results in lowering its mp relative to hydroquinone



vs.



O N



CH3



P



O



O C O linear, P = 0



vs.



S O O bent, P > 0



permanent charge separation (> H)



7. a. penicillin V: C16H18N2O4S b. arrow a: sp2



b: sp3



cimetidine: C10H16N6S c: sp



1.1 Hybridization, formulas, physical properties



244 • Chapter 1 The Basics



O c. Ph



O N H



N H Ph this resonance structure suggests some double bond character; electrons must be in a p orbital in order to resonate



d. lone pairs: penicillin V: 12; O N S H N O



cimetidine: 8. N: C



HN



N S



N



N H



O



N H



HO



8. a. sumatriptan: C14H21N3O2S



prostacyclin: C20H32O5



b. Sumatriptan contains 8 sp2 and 6 sp3 carbons; prostacyclin contains 5 sp2 and 15 sp3 carbons. HO c. lone pairs: sumatriptan: 7;



prostacyclin: 10.



H N



O S MeHN O



O O



NMe2



9. a. RozeremTM: C16H21NO2



HO



ChantixTM: C13H13N3



b. lone pairs: RozeremTM: 5; O



OH



RitalinTM: C14H20NO2



ChantixTM: 3;



RitalinTM: 4.



N



N H



O



H



H N



NH N



10. lone pairs: theobromine: 8; O HN O



O



melamine: 6. NH2



CH3 N



N



N N CH3



11. a. alkene, amide, amine, ester, ether



H2N



N N



NH2



b. alkene, amine, arene, carboxylic acid, halide, ketone



c. alcohol, alkyne, arene.



1.1 Hybridization, formulas, physical properties



O



Solutions • 245



1.2 Acids and bases 1. strongest base in ammonia: H2N



(H



H2N



:H



3. a.



O



b. Ph3P:



BF3



O



N



O



BH3



N BH3



CH3 O CH2CH3



CH3CH2 Cl



+



Cl



LA



H2C CH2



BF3



LB



LA



H3C O



AlCl3



O



Ph3P BF3



LB



c.



nitrogen is more electron-releasing than oxygen



AlCl3



4. a. CH3 O



b.



H2



+



H2N



2. stronger base: (CH3)2NH



c.



amide anion - the CB of ammonia



CH2 CH2 BF3



:CH2 CH3



(H



+



H3C O



H3C CH3



LA LB (also Bronsted-Lowry acid-base, respectively) d.



Cl Cl



AlCl3



LB



LA



Cl



+



AlCl4



S e.



CH3 N C S



:NH3



LA



CH3 N C



LB



pKa ~ 35 O 5. a. C20H28O



H) NH2



b. C



pKa ~ 16 O H +



NH2



C



C



C



H WB



NH3



WA



SA



H



c. Keq 4)



7. lowest pKa: b.



a. ~ 16



8. quantitative rx: b.



b. ~ 5



R C C (H pKa 22



c. ~ 16



d. ~ 10



e. ~ 38



NH2



Keq >> 1



SB



a. hydroxide (Keq 4)



1.3 Resonance CH2 1.



O



CH3 C O sp2



p*



H p* sp3 per



* not VSEPR; electrons may resonate if housed in a p orbital



1.3 Resonance



N sp2



Solutions • 247



-H



H) O C N:



2. lower pKa: H-O-CN



O C N:



O C N:



negative charge delocalization => more stable CB -H



H) C N:



HO C NH2 H



HO C NH2 H



3. a. 3.



negative charge localized on C



:C N:



HO C NH2 H



localized charge



b. 1.



saturated, no p orbital O



O



O



O



O



c. 5.



O



O



O



O



O



OCH3



OCH3



OCH3



OCH3



OCH3



CH2



CH2



CH2



CH2



CH2



d. 5.



NH 4.



Me



most basic +H



N H



NH2



H Me N H



NH



H



NH



NH2



Me



vs.



N H



NH2 H



vs.



Me



NH



N H



NH2



no important resonance contributions H 4 resonance structures => a more stable CA



Me



N H



H



NH Me



NH2



N H



H N 5. a. O O O



O O O oxygen 'octetted,' closer charge separation



H



NH NH2



Me



NH



N H



NH2



H N



b. carbon 'octetted,' additional S bond



1.3 Resonance



248 • Chapter 1 The Basics



OH H



H



C C N: H negative charge is borne by more electronegative atom



C C N:



c.



OH



H



d. carbon 'octetted,' additional S bond



O 6. a. 2. N H



N H



O



O



b. 3.



CH2 c. 1.



d. 3. O H



(Ha



O



O



7.



O



O



-Ha O



A



O



O



O



O



O



CB of A is stabilized by charge delocalization over three nuclei and, therefore, more easily formed => pKa of Ha is lowered O O



O +H



8.



OH



H



charge localized



H



vs. O



H



O



OH



H OH



charge delocalized, => > stability therefore, more favored CA species



9. a. 5.



NMe2



NMe2



NMe2



NMe2



H



H



H



NMe2



b. 5. H



c. 4. N



1.3 Resonance



N



N



N



H



not N nitrogen 'sextetted'



Solutions • 249



O d. 2.



O



O



e. 3. O



O



f. 4. N



N



CH2



CH2



N



CH2



N



CH2



g. 4.



OCH3



OCH3



OCH3



OCH3



h. 4. H



H



Cl



Cl



H



H



Cl



Cl



i. 2. O



O



O



O



O



O



vs.



10. A



B these additional resonance structures increase both H and d (P = H x d); therefore, PB > PA



N



N



S



S



O



N



N



S



S



O



11. O



O CB of oxyluciferin



1.3 Resonance



This page intentionally left blank



CHAPTER 2 ALKANES 2.1 General



1. highest mp: 4.



bicyclo[2.2.2]octane (most spherical)



2. highest bp: 1.



n-pentane (least branched)



3. eicosane, mp 370



dodecahedrane, mp 4200



spherical molecules (dodecahedrane) pack more closely in the solid state than linear (eicosane) ones, therefore requiring more energy to separate (melt) them 4. constitutional isomers for a. C6H14: 5.



b. C7H16: 9.



5. different kinds (constitutional) of hydrogens in



a. 2,3-dimethylpentane: 6.



Ha H Hc e H f Hb



Ha b. 2,4-dimethylpentane: 3. Hb



Hd Hb



Hc



Hc



c. 3-ethylpentane: 3.



d. 2,2,4-trimethylpentane: 4.



Ha



Hd



Ha



Hb



Hc



He Ha e. 2,5,5-trimethylheptane: 7.



Hb



Hd



Hd



Hf



Hb f. 4-ethyl-3,3,5-trimethylheptane: 10.



Hc



He



Hg



Ha



Hg



Hi



Hf Hc



Hh



Hj



2.1 General



252 • Chapter 2 Alkanes



2.2 Nomenclature I NO2 1.



1



2.



5 9



1



7



Br



3-nitro-4-ethyl-2,2,5-trimethylheptane



7-bromo-2-iodo-3-ethyl-5,6-dimethylnonane



7 4



3.



4. 1



3



8 1



4-ethyl-3,3,5-trimethylheptane



5-ethyl-3,5-dimethyloctane 8



4



5.



7



6.



F



1



4-fluoro-2-methyl-2-phenylheptane



5-ethyl-3,4-dimethyloctane



5



4



7.



9 (1)



1



5



1



8.



8



3



(3) 1



2,3,7-trimethyl-4-n-propyloctane



5-(1,2-dimethylpropyl)nonane



(choose path with more branching) 1



I



10.



9. 9



1-iodo-4-methylpentane



2,3-dimethyl-4-n-propylnonane



1



11.



7 4



(1)



10 (3)



12.



4 1



Cl 5-(2-chloro-2-methylpropyl)-4-methyldecane



4-t-butyl-2,2,6-trimethyl-4-n-propylheptane not 4-t-butyl-4 -isobutyl-2,2-dimethylheptane (less branching)



2.2 Nomenclature



Solutions • 253



1 10



13.



14. 8



1



2,3,5-trimethyloctane



7



5-ethyl-4-methyldecane



3



15.



16.



10 1



diethylpentane (3,3- not necessary!)



3,7-diethyl-2,2,8-trimethyldecane



OH



17. a.



b.



Br



c.



O



2.3 Conformational analysis, acyclic



1.



3.7 kcal/mol



Br H



3.7 kcal/mol -2.0 (2 x 1.0 kcal/mol) 1.7 kcal/mol



H H



PE



HH 1.0 kcal/mol



rot'n



H H



2



2. a.



=



Me



3



1



H b.



=



2



Me



OH 3. a.



Me H



H Me



H



OH



= H



H



largest R-groups are anti H



H Et Ph



H



H Me



H



isobutyl alcohol



b.



gauche: dihedral angle ~ 60 0



s-Bu H Et t-Bu H Ph



H =



Ph



1



7



H 4-t-butyl-3-methyl-5-phenylheptane



2.3 Conformational analysis, acyclic



254 • Chapter 2 Alkanes



H



PE



H



4.



Me



H Me



Me



dihedral angle only 600 between both methyls



rot'n about C2-3 bond



5. intramolecular hydrogen-bond stabilizes a nearly eclipsed conformer for FCH2CH2OH



H FO vs. H H



HH



P >> 0



2.3 Conformational analysis, acyclic



F H H



H F P~0



H



CHAPTER 3 CYCLOALKANES 3.1 General P! 1. highest molecular dipole moment: d.



Cl



a.



Cl



Cl b.



Cl



Cl



H



H



H



H



Cl



c. Cl C C Cl



P=0 Cl



Cl



Cl



2. constitutional isomers for a. dichlorocyclopentane: 3.



Cl



Cl Cl 1,1-



1,3-



1,2-



b. C6H12 that contain a cyclopropyl ring: 6.



Cl 3. cis/trans stereoisomers for a. dichlorocyclopentane: 2 pairs.



Cl Cl



+



trans-



Cl



1,2-



+



1,3-



Ph Ph



Ph +



b. diphenylcyclohexane: 3 pairs.



cis-



cis-



+



Ph



trans-



+



1,2-



1,3-



1,4-



Cl



Cl



cis-



Ph



Ph Cl



Cl



c. 2-chloro-4-ethyl-1-methylcyclohexane: 4.



Hg



4. different kinds (constitutional and geometric) of hydrogens in a. 1-ethyl-1-methylcyclopropane: 5.



Hf



Hc



Ha



b. allylcyclobutane: 9.



Ha



Hb



Ha Hc Hf Hb Hd



d. chlorocyclopentane: 5. Ha Hb



Hc



Hd



Cl He



Hi He



He Hd Ha and Hb are cis- and trans- to methyl, and so are 'different'



c. methylcyclobutane: 6. He



Hh



Hc



Hb Hd



e. vinylcyclopentane: 8. Ha Hb



Hf



He



Hc



Hd



Hg Hh



3.1 General



256 • Chapter 3 Cycloalkanes



H H H 5. least strained: a.



b.



H H



H transno strain



H



H



H d.



c. ring strain prevents alkene from being planar violates Bredt's rule



H



H



cisdiaxial strain



angle strain



Me Me



6.



H



H Me



Me



exo-



endostereoisomers



H



Me H



Me +



7. only 2.



=



=



H



Me



Me identical structures (for now!)



3.2 Nomenclature 4



1



1.



1



4



2.



2



1-cylclopropyl-3-methylbutane 4-s-butyl-1-ethyl-2-n-propylcyclohexane



1



(2)



3.



4. t-pentylcyclopentane (1,1-dimethylpropyl)cyclopentane 2-cyclopentyl-2-methylbutane



3.2 Nomenclature



(1)



4



7



4-(2-cyclohexylethyl)-3-methylheptane



Solutions • 257



5.



6. Br trans-1-bromo-2-s-butylcyclopentane cis-1-isopentyl-5-n-propylcyclodecane



Cl 7.



F (4)



(1) (2)



1



8.



6 3



(2-chloro-1-methylbutyl)cycloheptane 1-fluoro-6-t-butyl-3-vinylcyclooctane 1 (2)



9.



10.



I



(1)



6 3



9



cis-1-allyl-2-isobutylcyclohexane



5-iodo-3-(1-cyclobutylethyl)-6-ethyl2,2,8,8-tetramethylnonane 6 1



F



2



Ph



11.



12. 7



5



trans-1-fluoro-3-phenylcyclohexane 2,6,6-trimethylbicyclo[3.1.1]heptane



6



13.



5



7



14.



10



1



4



2 2



1



9



5-methylbicyclo[2.1.0]pentane



7-allylbicyclo[4.3.1]decane



2



15.



(1)



16.



(4)



9



1



8 7



2,9,9-trimethylbicyclo[5.2.0]nonane



trans-1-(2,3-dimethylbutyl)-2-n-propylcycloheptane



3.2 Nomenclature



258 • Chapter 3 Cycloalkanes



3.3 Conformational analysis, cyclic H



H



OH



H



Me



1. most stable conformer:



Me



O H H



H



menthol



H



neomenthol Ph



2. a.



Ph Ph H



degenerate structures (same energy) therefore, Keq = 1



Ph



H H



H



b.



H



H H > 1,3-diaxial interactions => less stable conformer therefore, Keq < 1



H



H H c.



H



Me



Et



H Et



Me larger ethyl group in more stable equatorial position therefore, Keq > 1



3. most negative 'Hcomb (=> least stable):



a.



t-Bu



t-Bu



(most stable, therefore, least negative 'Hcomb)



least stable



Me



Me



t-Bu



Me



Me Me



b. Me



> dimethyl repulsion therefore, least stable



c.



least stable



3.3 Conformational analysis, cyclic



(most stable)



Solutions • 259



4. least negative 'Hcomb (=> most stable): a.



= all alkyl groups are equatorial therefore, most stable



b. same compound!



H 5. most stable conformer for:



H



Cl trans-



t-Bu



vs.



H



t-Bu



:B



t-Bu



H



(-HCl)



Cl



cis-



t-butyl group prevents 'flipping,' so chlorine cannot assume the axial position in the trans-isomer therefore, the cis-isomer would react more rapidly



OH 6.



OH



F



vs.



OH



F



F



trans-



cistwist-boat stabilized by intramolecular hydrogenbonding; not possible in chair conformer (or in trans-isomer)



HO O



HO



7. a.



OH



HO OH OH



O



HO



HO



OH



HO 2



1



b. configuration 2 is less stable (one substituent must be axial) and would burn with a more negative 'Hcomb



H



Me Me



8.



Me



Me



5.4 kcal/mol -0.9 (2 Me-H 1,3-diaxial strain interactions) -0.9 3.6 kcal/mol (Me-Me 1,3-diaxial strain interaction)



5.4 kcal/mol less stable than



9. a. number of cis/trans stereoisomers: 8.



1



2



3



4



5



6



7



8



3.3 Conformational analysis, cyclic



260 • Chapter 3 Cycloalkanes



b. for conformational chair-chair flipping, Keq = 1 for configurations 1, 3, and 5: 3e/3a



2



1 3e/3a



3



4e/2a



3a/3e



4 5e/1a



3e/3a



5



6



7



8



3e/3a



4e/2a



4e/2a



6e/0a



c. least stable: 1.



three 1,3-diaxial steric interactions exist between two methyl groups (only one such interaction exists in configurations 3 and 5)



1



d. least likely to flip: 8.



8 all methyls are equatorial



3.3 Conformational analysis, cyclic



all axial!



CHAPTER 4 REACTION BASICS 1.



a. addition



b. oxidation [O]



c. substitution



d. substitution



e. elimination



f. reduction [H]



g. oxidation [O]



h. addition



i. reduction [H]



j. rearrangement



k. oxidation [O]



l. substitution



m. elimination



n. addition



o. reduction [H]



p. reduction [H]



q. rearrangement



r. elimination



s. substitution



t. reduction [H]



b. 'G = 11 - 7 = +4 kcal/mol +11 kcal/mol



C +7 kcal/mol



2. a. 'Go B



+3 kcal/mol



A rx



A



B



+3 kcal/mol



B



C



+7



A



C



+10 kcal/mol



TS 'G for rds



intermediate -'Go / RT b. Keq = e



3. a. 'Go 'Go =



c. rate = k[conc. term(s)] = koe



-'G / RT



rx



'G for rds



4. a.



B b. 'Go = -RT ln Keq



'Go



-'G / RT Keq = e = e -2,500 / (2)(300)



Br3C:



Keq = 1.6 x 10-2



A rx



'Go = +2.5 kcal/mol



4. Reaction Basics



262 • Chapter 4 Reaction Basics



5. a. type of reaction: rearrangement;



mechanism: polar / ionic. H



O



O



O



H) OH2



b.



H



O



O



O +



H)



A



B



H2O



c. Keq = [B] / [A] = 75% / 25% = 3.0;



H OH2



'Go = -RT ln Keq.



d. nucleophiles: A, H2O, and B.



e. TS



intermediate 'Go 'G0 = rx



6.



I



fast



rds



+MeOH, -H



-I



7.



OMe



a. pericyclic



b. free radical



c. pericyclic



d. polar / ionic



e. pericyclic



f. polar / ionic



g. free radical



h. polar / ionic



i. pericyclic



j. polar / ionic



4. Reaction Basics



CHAPTER 5 ALKENES AND CARBOCATIONS 5.1 General H 1. a.



1



3



b.



H Ph



Cl



8



H H



= H



H



1 2



H Ph



5



H



trans-5-phenyl-2-pentene



(E)-3-chloromethyl-4-s-butyl-2methyl-3-octene 1 3



c.



9



3



1



9



d. 7 6



3-n-propyl-1-nonene



2. a. (Z)-



b. (E)-



6-methylbicyclo[5.2.0]-3,8-nonadiene



c. (Z)-



d. (Z)-



e. (Z)-



f. (Z)-



3. a. number of alkenes: 4. H2 Pt b. least negative 'Hhydrogenation:



most stable (trisubstituted)



4. number of geometric isomers: 4.



trans, trans-



cis, cis-



trans, cis-



OMe



cis, transOMe



5. most stable carbocation: H N



O



6. a. no. deg. unsat: C17H36 - C17H20(18+3-1) = H16 => H16/2 = 8 deg. hydrogenation: C17H30F3NO - C17H18F3NO = H12 => H12/2 = 6 DB no. rings = 8 - 6 DB = 2.



F3C



fluoxetine HN



b. no. deg. unsat: C17H36 - C17H16(18+1-3) = H20 => H20/2 = 10 deg. no. DB = 10 - 4 rings = 6.



N



N OH



F O



O



CiproTM



5.1 General



264 • Chapter 5 Alkenes and Carbocations



N OH



c. no. deg. unsat: C28H58 - C28H34(35-1) = H24 => H24/2 = 12 deg. no. rings = 12 - 5 DB -1 TB(= 2 DB!) = 5.



C C



O



RU 486 O



d. no. deg. unsat: C17H36 - C17H10(14-0-4) = H26 => H26/2 = 13 deg. no. DB = 13 - 3 rings = 10.



O O S O



rofecoxib F



e. no. deg. unsat: C19H40 - C19H16(17+2-3) = H24 => H24/2 = 12 deg. no. rings = 12 - 8 DB = 4.



N



Cl



O S



N H O



N



O



floxacillin



O HO



H N



f. no. deg. unsat: C19H40 - C19H20(20+1-1) = H20 => H20/2 = 10 deg. hydrogenation: C19H32FNO3 - C19H20FNO3 = H12 => H12/2 = 6 DB no. rings = 10 - 6 DB = 4.



O



O



PaxilTM



F



7. number of stereoisomers for 2,4-hexadiene: 3;



O



for 2-chloro-2,4-hexadiene: 4. Cl Cl Cl Cl



Cl 8. a.



Cl



=>



b.



propylene dichloride (note: no double bond)



(Z)-3-methyl-2-phenyl-2-hexene Br



OH



OH c.



d.



, NOT Br styrene bromohydrin



5.1 General



OH



O e.



OH trans-cyclohexene glycol



isobutylene epoxide



Solutions • 265



+H



9.



1



1,2-R: shift



1



2



+Cl



2



3



H 'G0 'G0 =



1,2-H: shift



Cl



3



rx



+H



10. a.



CA



H



H H



most important contributing resonance structure



H



H 1,2-H:



+H



b.



shift most stable intermediate: benzylic carbocation



H



H ~H: 11.



H



H rigidity of the carbon skeleton prevents carbocation from being planar



HF



12. neither regiospecificity nor stereospecificity: a.



F + F



Br Cl2



b.



Cl



regiospecific



(XS) NaBr Cl c.



Cl2 / H2O



d.



anti-add'n



D2 / Pt syn-add'n



OH stereospecific



D D stereospecific



5.1 General



266 • Chapter 5 Alkenes and Carbocations



H +H



13.



E-pinene



-H



H



D-pinene more highly substituted double bond => more stable olefin therefore, Keq >> 1



5.2 Reactions HCl



1. Ph



+H



+Cl



1,2-H: shift



Ph



Ph



Ph



Cl



O NO2



HI



2.



NO2



N O



I



+H



3.



+H2O



1,2-R: shift



OH



-H Br 1. Cl2, '



4.



3. Br2



2. KOMe



Cl



MeOH



NMe3 5.



NMe3



HI



Br



CHCl3



NMe3



1,2-H:



NMe3



shift Et



6.



F



HF



Et



Et



Et



I



F



F



F F



7.



5.2 Reactions



DCl



D



1,2-H: shift



D



Cl



D



Solutions • 267



HBr



8.



1,2-R:



again! Br



shift



+H



9.



-H O H



O H HBr



CCl3



10.



O



O (H



CCl3



CCl3 Br



Et



Et



Et



Br D



DBr



11.



D H



Et D



+



H anti-add'n



2. Br2 / hv



1. H2 / Pd



12.



Et



Br



Br D



= H



H syn-add'n



Br



OEt +EtOH



+H



13.



-H H



HF



14. MeO



H



F



Cl



MeO



D



HI



H



F



D



+ OMe



D



D



syn-



15.



OMe



Cl



anti-



Cl



Cl



I Cl 16.



Cl2 / H2O OH



17.



1. B2D6



2. H2O2, OH D BD2



D OH



5.2 Reactions



268 • Chapter 5 Alkenes and Carbocations



Cl2



18.



G+



I



Cl



Cl



G+



I Et 19.



20. H2C C CH2



Et



Et 1. Hg(OAc)2, PhOH



2. NaBH4



OPh



OPh HgOAc



(XS) CH2I2 Zn(Cu)



spiropentane CHO



1. KMnO4, OH



21. AcO



2. HIO4



AcO



OH OH



AcO CHO



1. O3 22.



O



2. H3O, Zn H



O



HBr



23. Ph



Ph



Br



+HBr -Br



Br H note: opposite regioselectivity than HBr without peroxide and no rearrangement



O O



Ph



Et H2C N2 24.



+



hv



N2



Et transOH



25.



26.



Br



2. OsO4



1. base



OH



-HBr



I N3



3. NaHSO3



I



I N N3



N N



5.2 Reactions



Solutions • 269



.



1. BD3 THF



27.



2. H2O2, OH



HO



O 28.



O



O



+H



HO



D



OH



O



+MeOH H



H



OMe



-H



H +H



29.



-H H)



O



OH HIO4



30.



O H



+



OH



H



H



OH



OH 1. H2SO4



31.



2. KMnO4, OH



-H2O OH



O



H C C O



32.



HCl



H3C C O



H3C C O



H



OR 33.



H3C



Cl



Cl



OR



.



1. BH3 THF 2. H2O2, OH HO



5.2 Reactions



270 • Chapter 5 Alkenes and Carbocations



OH



Br Br



1. Br2, H2O



34. HO



OH



+ HO



HO



O a halohydrin 2. base -HBr



HO



H) +H



35. O



-H HO



H O



HO



OH



O 36.



Cl



1. OR



3. EtOH, H



2. mCPBA



-HCl



trans-



Br 37.



OEt



Br +s-BuOH -H



Br2



O



HO



OH O OH HIO4



38.



+ O HO



HO



H



O OH 39.



5.2 Reactions



KMnO4, H



O



OH O largest C-containing product



Solutions • 271



O OH 1. OsO4



O



40.



OH O



OH



O



O



O



3. HIO4



O



2. NaHSO3



O



H



O



OH



O



O



+



O



H O HCl



41.



1,2-R: shift



+H



1,2-H: H shift



Cl



+



Li (H 42. Ph CH Cl



:CH2 -H



Ph CH Cl



-Cl



Ph



PhCH



a 1,1- (or D-) elimination to produce a carbene



H3C 43.



Cl



O



Cl



O



OPh



(CH3)2CI2



Cl



(1 equiv) Zn(Cu)



Cl



CH3 O



OPh



O



more electron-rich (nucleophilic) double bond



5.3 Syntheses Br HBr



1.



OH 2.



3.



1. H2SO4



+Br



1,2-H: shift



Cl



2. HCl



-H2O



Cl



1. KOH, EtOH -HCl



2. HF



F



5.3 Syntheses



272 • Chapter 5 Alkenes and Carbocations



Cl 1. OMe, MeOH



4.



2. H2 / Pt



-HCl D 1. Cl2, hv



5.



3. D2 / Pd



2. NaOEt / EtOH



Cl



D



-HCl Cl 1. Cl2, '



6.



CO2H



3. KMnO4, H



2. KO-t-Bu



CO2H



t-BuOH



Cl



Cl2 7.



Cl



(XS) NaBr



Br Br H



1. O3



8.



O



2. Zn, H



1. CH2N2, hv



9. H2C CH2



10.



OH



2. Br2, hv



1. H2SO4



Br



2. CH2I2, Zn(Cu)



-H2O OH



1. Hg(OAc)2, H2O



no rearrangement



11.



2. NaBH4 OH H3O



+H2O



1,2-H: shift



-H O



Br 12.



2. O3



1. KOMe MeOH



3. Zn, H O



13.



1. Br2, hv



Br



2. NaOH



3. DBr



D Br



5.3 Syntheses



Solutions • 273



1. KO-t-Bu



14.



2. HBr



t-BuOH



Br



1. Br2, '



15.



Br



peroxide



Br



.



3. BH3 THF



2. KOH



OH



4. H2O2, OH Cl 1.



O



2. KMnO4, H



16.



CO2H CO2H



OH Cl



17.



Cl



1. OEt, EtOH



Cl



2. Cl2, H2O



-H OH2



18.



1. H



1,2-R: shift



Cl



+H2O OH



-H



2. O3 O



19.



1. Hg(OAc)2, EtOH



1. H3O



3. Zn, H



(not EtOH, H => rearrangement) OEt



2. NaBH4



20.



O



OH



2. H2SO4



3. HBr, ROOR



Br



Cl 21. H2C CH2



1. CH2N2, hv



2. Cl2, '



3. NaOH MeOH



4. KMnO4, H



CO2H CO2H



5.3 Syntheses



274 • Chapter 5 Alkenes and Carbocations



22.



Br



1. KOMe



2. H3O



OH



MeOH



+



OH



3. H



O



3. Hg(OAc)2, t-BuOH 4. NaBH4



or



2



OH



2. CH2I2, Zn(Cu)



1. H2SO4



23.



O 2



5.4 Mechanisms



+H



1.



-H



1,2-R: shift



(H



H



H) -H



+H



2.



H



H



H)



Me O



3.



OMe -H



+H H Me



O



H



H +H



4.



+I2



5.



-H



1,2-R: shift



(H



I



I



I



-H



-I CO2H



5.4 Mechanisms



O C O H



O



O H)



O



O



Solutions • 275



H +H



6.



-H H)



H +H



7.



-H H)



HgOAc



Hg



OAc



HgOAc O (H



1. Hg(OAc)2



8. OH



OH



:H -H



HgOAc O



O



-H



1,2-H: shift



+H



9.



10.



2. NaBH4



H N



+I2



H N



(H



H N



N



-H



-I I I



I



I



I



H2C N N 11. H2C N N



N



N



N N



5.4 Mechanisms



276 • Chapter 5 Alkenes and Carbocations



Br



Br 12.



Br



anti-attack



+H



Br 100% trans-



Br



H



+H



+Br syn- + antiattack



+



cis- and trans-



Br +Br



1,2-H: shift



Br



13. A is C14 => other aldehyde is CH2O; no. deg. unsat: C15H32 - C15H24 = H8 => H8/2 = 4 deg. hydrogenation: C15H28 - C15H24 = H4 => H4/2 = 2 DB; therefore, 2 rings are present



caryophyllene



OH



incorrect: cannot exist in cis/trans forms



isocaryophyllene



.



14. O



1. BH3 THF



1. Hg(OAc)2, H2O



2. H2O2, OH



2. NaBH4



O +



OH



[H]



ozonolysis H



C5H12



H2 / Pd (partial)



15.



A isoprene



+



+



D



C



B



16. no. deg. unsat: C10H22 - C10H16 = H6 => H6/2 = 3 deg. C10H16



H2 / Pt



hydrogenation: C10H22 - C10H16 = H6 => H6/2 = 3 DB C10H22 1. O3



O +



2. Zn, H myrcene



5.4 Mechanisms



acetone



O



O 2



H



H



+



formaldehyde



H



H O



A



O



Solutions • 277



O 17. hydrogenation: C10H20 - C10H16 = H4 => H4/2 = 2 DB B A



18. a. n Ph



Ph



+H



H H other ozonolysis product



poly(methyl methacrylate)



CO2Me



b.



A =



Ph



Ph



Ph



Ph



Ph



Ph



Ph etc.



H



O 19.



+H



O



O O



etc.



20.



23.



CH2



H2C N N



CH2



22.



t-Bu t-Bu O



O



O



H2C N N



21. CH2N2



O



O



H



t-Bu



N N



hv



H2C CH2



+



+



N2



N N



H2C: +



-N2



+H



+H



1,2-R:



1,2-R:



shift



shift



1,2-R: shift



-H



H)



(H



-H



5.4 Mechanisms



278 • Chapter 5 Alkenes and Carbocations



R



R'



S



H3C



24.



D



D



D



CH3



CO2H



D



-RSR'



D



D



D



-H



CO2H



C8H17 Hg



OAc



HO



1. Hg(OAc)2



+H2O



H2O



-H



O 2. NaBH4



O



D



H2C H)



C8H17



25.



1,2-D: shift



C8H17



C8H17



HgOAc



+HgOAc H) O



HgOAc



HgOAc -H



HgOAc AcO Hg



(H +H



26.



-H



R 27.



CO2H



=> trans- DB R'



elaidic acid



OH 28. a.



A



B



b.



A



Br2



C



NR (deep red color of bromine persists);



B or C



or Baeyer test: KMnO4 A NR (purple color of MnO4 persists);



B or C



5.4 Mechanisms



Br2



KMnO4



color discharged



brown ppt (MnO2) forms



Solutions • 279



OH



29.



OH2



+H



-H2O



rot'n



-H (H



30. a., b. R N N N



+



R N



A



N2



a nitrene



c. retention of configuration suggests a concerted (or pericyclic) mechanism



1,2-H: shift



+H



31.



H



1,2-R: shift H) 1,2-R: shift



-H



(H



:B



O



O 2. base



1. Cl2, H2O



32.



-HCl



Cl Cl



O



H



+Cl



3. dry HCl



OH



33. In



Br



CCl3



Cl



InBr + Cl3C



+H



Cl3C Br



etc.



CCl3



Br CCl3



+ Cl3C



(this mechanism is similar to the addition of HBr in the presence of peroxides)



5.4 Mechanisms



280 • Chapter 5 Alkenes and Carbocations



34. a. no. deg. unsat: C16H34 - C16H30 = H4 => H4/2 = 2 deg. hydrogenation: C16H34O - C16H30O = H4 => H4/2 = 2 DB c. E => a cis- DB at C12; F => a trans- DB at C10 1. O3 12



D



10



D



D



A



35. D



D



D



vs.



+



D



D H



D



C



2. Zn, H



D



+H



+



B



OH



H



path a



H H



not observed



-D D



D



(H D



path b



D



D D



-H



observed



1,2-D: shift D



D



D



D



therefore, path b is favored



36. The rigidity of the bicyclic structure in the conjugate base of A prevents delocalization of the negative charge onto oxygen: such a contributing resonance structure would violate Bredt’s rule (the olefinic region cannot be planar). Loss of this stabilization prevents the carbanion from forming (pKa of A is raised relative to cyclohexanone), as required by the proposed mechanism, and therefore prevents hydrogendeuterium exchange.



-H H



O



A



5.4 Mechanisms



O



O



CHAPTER 6 ALKYNES 6.1 Reactions 1.



1. NaH



H



D OPh



H, HgSO4, PhOH



2.



3.



2. D2O



Ph



1. B2H6



Ph C CH



2. H2O2, HO



1. OMe (E2)



Cl



4.



taut



H



H



Ph



OH



O 3. (XS) NaNH2 4. BH3.THF



Cl Cl



2. Cl2



OH



taut



H



5. H2O2, OH



O



RC C



5.



+



Cl



RC CH



1. Li / NH3



6.



3o R-X => elimination, not substitution!



2. HBr, ROOR Br



(peroxide effect)



7.



1. H2 / Pd(Pb)



C CH



2. BH3 OH



3. H2O2, OH 1. NaH



8.



2. CH3(CH2)12Cl 3. Lindlar catalyst (cis-[H])



Cl



9.



1. (XS) NaNH2



Et C C



2. H3O, HgSO4



OH



O



taut



Cl



10.



C CH



Cl



Cl2 / H2O HO



taut Cl O



6.1 Reactions



282 • Chapter 6 Alkynes



Me 11.



I



1. (XS) HI



Ph



Ph



Cl



..



2. Zn(Cu)



[PhCCH3]



I



Cl C



1. (XS) NaNH2



12.



C



OMe 1. LiNH2



O C C



(2 equiv)



C



C



D



2. D2O



OMe



13. HC C CH2OH



Ph



OMe



2. n-C5H11Br



O C C



(1 equiv) less stable anion therefore, more reactive



3. H OH C C



1. NaNH2 (1 equiv)



14. HC CH



HC C



3. NaNH2



n-Pr



C C



2. n-Pr-I



4. +



C C H



Cl



elimination, 3o RX!



not alkylation



6.2 Syntheses Br 1. (XS) NaNH2



1.



Et C C Et



O



2. KMnO4, H



OH



Br 1. NaH (1 equiv)



3. H2 / Pd(Pb)



2. HC CH



4. HBr, R2O2 Br



2. n-PrBr



3.



Cl



1. (XS) NaNH2



1. NaH (1 equiv) 2. Et-I 4. HC CH



Et C C 3. NaH



6.2 Syntheses



C C



4. n-Bu-I



2. H, HgSO4, MeOH



Et C C



n-Bu



5. Li / NH3 trans-[H]



O



Solutions • 283



5.



C CH



1. H2 / Pd(Pb)



2. HCl



Cl



1,2-R: shift



1. Br2



3. H2 / Lindlar



6.



cis-[H]



2. (XS) NaNH2



7.



1. NaNH2



3. H2 / Pd(Pb)



4. CH2I2 Zn(Cu)



2. Me-Br 1. Li / NH3



2. HBr, (t-Bu)2O2



8.



Br



or H2 / Lindlar OH



H, HgSO4, H2O



O



taut



9. 1. BH3.THF



taut OH



2. H2O2, OH



O H



1. Li / NH3



2. O3 O



3. Zn, H



10.



1. Cl2



C



H



C C



3. Et-I



C



2. (XS) NaNH2



11. Ph C C Ph



Et 4. Li / NH3



1. H2 / Pd(Pb)



Ph



Ph



2. CH2N2, hv O



Ph



1. Na / NH3 Ph



12.



Ph



trans-[H]



2. O3



Ph Ph



H



3. Zn, H Et



1. Na / NH3 Et



2. CHCl3, KO-t-Bu => [:CCl2]



Et Cl Cl Et



6.2 Syntheses



284 • Chapter 6 Alkynes



1. KOH 2. Cl2



13.



Cl 3. (XS) NaNH2



14.



HC CH



n-Bu Et



n-Bu



4. EtCl



CHCl3 Et



5. Li / NH3



1. NaH (1 equiv) n-pentyl



HC C



3. H3O, HgSO4



base



O



OH



15. HC CH



n-decyl C C 3. NaNH2



4. 1-bromo-5-methylhexane O 5. H2 / Lindlar 6. mCPBA



1. NaNH2



C CH



16.



Cl



taut



2. n-pentyl chloride



1. NaNH2 (1 equiv) 2. n-decyl bromide



Cl



O



3. O3 2 4. Zn, H (or 3. KMnO4, H )



2. n-Pr-I



OH



6.3 Mechanisms Br C HO



H



I



O C



C O



1.



Br C



H O



I



OH



O



O



O



-H



O



O



O



O



C



O



+I O



OH



Br C I



OH



O



O



Br



OH O I



H OH 2.



C C



+H



C C .. +H2O:



-H2O



O



H -H ~H taut



6.3 Mechanisms



OH (H



Solutions • 285



1. -H2



H



3.



2. O



H:



H



O 4.



5.



3. +H



1.



R C C CH2 H



O



O



C C Me



-H



C C



H



Me



OH



HO



Me C C



2. +H



R C C CH2



R C C CH H ~H



B: H R C C C H



~H



H R C C CH



H R C C CH



6.3 Mechanisms



This page intentionally left blank



CHAPTER 7 STEREOCHEMISTRY 7.1 General 1. chiral molecules: a, b, f, h, and l.



H N



Bn 2. a. 3.



N



S b. 6.



N



O O



N



CO2H



O



O



O



O



N O



CO2Me c. 4.



d. 2. O



O



Ph



O



OCH3



O



HO OH 3. a.



HO



NH2



Ph



(R)-



H



CH2CH2NH2



Me Br Br H Me (S)meso-



c. (R)-



b. H



(R)-



H



N



O Ph d.



(R)-



H2N H H Ph (S)NH2 meso-



CO2H



O



OMe



O



O e.



f. (S)H



HS



N H



g.



Me



Me (S)-



OH



HO (R)-



(S)-



4. a. enantiomers



b. enantiomers



c. diastereomers



d. enantiomers



e. identical



f. diastereomers



g. enantiomers



h. diastereomers



i. enantiomers



j. enantiomers



7.1 General



288 • Chapter 7 Stereochemistry



Ha Hc



Hd He



5. a. 8. Ha'



Hb



Hc'



c. 7.



Ha



Ha Hc Hd Hg



CH3 OH



H



b.



Ph



Cl



Hb He



Hg



c, d; f, g are diastereomeric



c, d; e, f are diastereomeric



Cl



H



Hd Hf



Hc



b. 7.



Hd'



a, a'; c, c'; d, d' are enantiomeric



6. a.



HbHe Hf



Cl



Br



c.



Cl (R)-3-chloro-4-phenyl-1-butene



(S)-1-chloro-2-propanol



(R)-4-bromo-5-methyl-4-npropyl-1-heptene



(R)H CH3 d.



I H



H



(S)e.



OCH3



f.



H



Me



Et



H



Et



Me



(R)-1-iodoethyl methyl ether



(3S, 4R)-3-s-butyl-4-isopropyl1,6-heptadiene



Br Cl



Br



meso-3,4-dimethylhexane



Br



Cl



Br



7. a. 4 pairs. _) Cl (+



_) (+



Cl



Cl Cl



_) (+



Cl



b. 5. Cl Cl



Cl



Cl



F



Cl



c. 2 pairs. _) (+



7.1 General



Cl



_) (+



F



Cl (+ _)



Cl Cl



Solutions • 289



Et



Et H H H



d. 2 meso-isomers, 1 pair of enantiomers.



OH Cl OH



e. 2 meso-isomers.



Et



meso-



meso'-



H Cl Cl H



Cl Cl Cl Cl



8. a.



CHO OH H 4 H CH2OH



H H HO



OH Cl H Et _) (+



Me Cl H H Cl Me



Me



H HO HO



OH H OH



Et



Me H H H H



H Cl H



Et



epimerize at C4



enantiomer of A



CHO H OH HO H H OH CH2OH D-xylose



(S)MeHN



H b. i.



MeHN H



Me OH



=



H OH



H



Ph



Me



Ph



_) 9. ee = +68o / +170o = 40% (+), 60% (+ therefore, % (-) = 60% / 2 = 30%



_) ii. ee = +10o / +40o = 25% (+), 75% (+ therefore, % (+) = 25% + (75% / 2) = 63%



(R)-



no. chiral carbons: 4.



N



N



OH H



Me CO2H



10. MeO



(S)-



7.1 General



290 • Chapter 7 Stereochemistry



11. a. ED



b. D



g. E



c. ED



d. ED



e. D



f. D



h. ED



Me



O



O



HS



NH



N



12.



13.



O



H



O (R)-thalidomide



NH2



AcO



HO



14. a. 11. N H



Ph O



Me CO2H



H



O



OH



O O



Ph



HO O O Ac O Ph



(S)-



_) b. ee = +24o / +120o = 20% (+), 80% (+ therefore, % (+) = 20% + (80% / 2) = 60%



O



Cl



Cl (!)



15.



O



Cl



O



meso-



CO2H



O



O A



Cl O



HO



no. stereoisomers: 2n = 24 = 16.



S



N H O



H2N



N



O



O CO2H



CO2H



O



_); therefore, % (-) = 20% / 2 = 10% b. ee = +82o / +103o = 80% (+), 20% (+



7.1 General



OH



_) (+



3 chiral carbons, 2 meso stereoisomers, 1 pair of enantiomers



16. a. no. stereoisomers: 23 = 8.



B



Solutions • 291



7.2 Reactions and stereochemistry OH Me



H



1. Ph



Me HO



1. OsO4 2. NaHSO3



Me



Ph



OH H Me HO Me Ph



H =



Me



+



enantiomer



syn-add'n



Br



Me Me



Br2, H2O Ph



H



Br Me



=



Me



H OH



+



enantiomer



Ph



OH anti-add'n



A 2. a. anti-add'n.



Me B



Me



H H



=



B



Me



H



Me B



rot'n Me



- A-B



A



H A Me



Me



H



H Me



H



H cis-



C



Me b. syn-add'n.



C Me



D D



C =



Me



C



c. anti-add'n.



Ph 3. a.



Et



rot'n



Me C



D Me



Me - C-C



D



D D



D



C



Me trans-



Me



OD



CO2H DO H D H CO2H



Cl Ph



D



DO =



D



H



HO2C



rot'n



H CO2H



H



CO2H



+H



Ph



HO2C - D2O



H



H



CO2H



CO2H



D



Cl Ph



Et



1,2-H:



Ph



shift



Et



H



(E)-



Cl Ph



Ph Cl Ph



Br



Ph Cl Ph



Cl



Et



Et



Et



Et meso-



Ph ClBr



Ph



+ Cl Cl Ph



Et



Et



Et



+



+Br



diastereomers => 2 fractions: each E



+Cl



Ph Et chiral



diastereomers => 2 fractions: 1 M + 1 E



7.2 Reactions and stereochemistry



292 • Chapter 7 Stereochemistry



Br



H b.



Et



Br2



H



anti-add'n



Et



H



H H



Et



+



Et



Br



Br



Et H



Br



enantiomers => 1 fraction: R



Et



CO2H KMnO4, H



c.



=> 1 fraction: M CO2H I 1,2-H:



+H



d.



Ph



Ph



+I +



shift



Ph enantiomers => 1 fraction: R



Ph



Ph



I



H H



e.



F Cl



HF



Cl



H Me +



diastereomers => 2 fractions: each E H



Me H



F Me



D



D2 / Ni



f.



Me +H H



diastereomers => 2 fractions: each M



D



Me H



H



D +



syn-add'n



g.



Cl



D



Me



1,2-H: H



Et H



shift



Me



OMe



H



Et



+MeOH -H



+ Me



Et



H



OMe



diastereomers => 2 fractions: each E



h.



1. BH3.THF + 2. H2O2, OH syn-add'n



7.2 Reactions and stereochemistry



H



OH



H



OH



enantiomers => 1 fraction: R



Solutions • 293



Et



Et



OH



Et



H3O



i.



H



Et



OH



OH



+H2O -H



+H, 1,2-H: shift



Et Et OH



OH Et



+



mesoEt



OH



chiral



diastereomers => 2 fractions: 1 M + 1 E



Et



H2 / Pt



OH



H



syn-add'n



1 fraction: E



Et



Et



OH



1. Hg(OAc)2, H2O H



OH



OH H +



H OH



H



2. NaBH4 diastereomers => 2 fractions: each E



OH



1. OsO4



j.



OH



+



diastereomers => 2 fractions: each M



OH



2. NaHSO3



OH OH



1. mCPBA



+ OH



O



+H



k.



O



O



+MeOH



Ph



syn-add'n



OMe



H



1. H2 / Lindlar catalyst



O



H



H



2. Br2 H H



Ph



+



Br



Ph



Br Br



Ph



Ph cis-



enantiomers => 1 fraction: R



H



Br Ph



anti-add'n



H



OMe



+



-H



4. a. Ph



enantiomers => 1 fraction: R



OH OH



2. H3O



H



Ph



racemate note: reduction of the alkyne to a trans-olefin, followed by Br2 addition, would yield the meso-dibromide (see next problem)



7.2 Reactions and stereochemistry



294 • Chapter 7 Stereochemistry



Br b.



Me



H



1. Li / NH3



Me



anti-add'n



Me



H



2. Br2, CCl4



Me



Me



anti-add'n H



Me H



Br meso-



OH 2. OsO4



1. Na / NH3



c.



H HO



3. NaHSO3



d.



Me



Me



H O H



O



1. mCPBA



H Me



Me



t-Bu



2. H3O Me



H



t-Bu



H



OH H



Me Me



b. diastereomers



Ph



Me



d. i. 2.



Ph



NHMe



+ H



NHMe



H



Me



OH meso-glycol



c. cannot predict (actual [D]D = +62o)



H2 / Pd



ii. 2.



CH2Ph H NHMe Me



+ _) (+



7.2 Reactions and stereochemistry



Me H



H OH2



5. a. 22 = 4.



_) (+



+ enantiomer



CH2Ph MeHN H Me



CHAPTER 8 ALKYL HALIDES AND RADICALS 8.1 Reactions 1



2



1 + 1 meso



H



Cl2, hv



1. 1



1



Cl



7 are optically active 2 are optically inactive



9 fractions



2 Br Br2, hv



2.



+ (no. H) x (reactivity) =



+



(+ -)



Br



Br 2 x 82 = 164



4 x 82 = 328



6 x 1.0 = 6.0



% racemic 2-bromopentane = 328/(6 + 328 + 164)*100 = 66%; therefore, % (R)- = 33%



1. Br2, '



3.



2. Mg



3. D2O MgBr



Br



4.



D



2. Li



1. conc HCl OH



Cl 3. CuI



1. Cl2, hv 2. Li



CuLi



3. CuI



2



4. CuLi 2 Gilman reagent



I



4.



5. HI



5.



I



I H 1,2-R: shift



6.



1. Br2, '



Br



2. Mg



Br



1. Li



7. 2. CuI



MgBr



1,2-H: shift 3. Ph



3. n-PrBr Ph2CuLi



H



Ph C C



Br



4. NBS, R2O2



Ph



+



Ph



OH 6. Br2



Ph Br



H2O



5. KOH Ph



8.1 Reactions



296 • Chapter 8 Alkyl Halides and Radicals



8.2 Syntheses 1. Cl2, '



1.



3. NBS



2. OMe / MeOH (-HCl)



Cl



t-Bu O O t-Bu



Br 1. Br2, hv



2.



2. OH



1. Br2, '



3.



O



3. O3



(-HBr)



Br



O



4. Zn, H



2. OEt, HOEt (-HBr)



Br



3. HBr, ROOR



Br



I 4.



1. Li Ph2CuLi



3. Ph-I



2. CuI



1. Br2, hv 2. Li



5.



6. Li 7. CuI



5. Br2, hv Br



3. CuI 4. MeI



Cl 6.



7.



O



1. Li 2. CuI 3.



1. H2 / Pt 2. Cl2, hv



4. O3



H



5. Zn, H



I



1. DCl 2. Mg or



3. Li 4. D2O



or 3. H2O



1. NBS, ROOR



1. NBS, R2O2 2. H2 / Pd 3. Li 4. D2O



Br



2. KO-t-Bu / t-BuOH 3. NBS, ROOR



8. 4. KO-t-Bu / t-BuOH



8.2 Syntheses



Ph



8. PhCH2I



D



Solutions • 297



8.3 Mechanisms H



O R



R O O R



etc.



+



1.



O2H H



-H O O O O



Cl



Cl Cl



2.



Cl2



+



H -H



Cl



+ Cl



Cl



Cl



Cl



Cl



Cl Cl Cl



Cl Cl



Cl Cl



D D



D



D



D



D



D



3. D



CH3 N O O 4.



H2 C



O



hv



AcO



H



AcO 6-membered ring TS H2C N OH AcO



O N O



H2 C OH AcO



8.3 Mechanisms



298 • Chapter 8 Alkyl Halides and Radicals



5. a.



b.



-HR



6. H



+O2 O



H R



O



O2



H R +O2



O



O O



O OOH



8.3 Mechanisms



O OH



CHAPTER 9 SN1, SN2, E1, AND E2 REACTIONS 9.1 General 1. faster reaction: b. AcO



SN2



Cl



+



OAc



solvent effect: acetate in HMPA (polar aprotic) is more nucleophilic than in ethanol (polar protic); the later H-bonds to acetate, thereby dampening its nucleophilicity



2. poorest leaving group: b. 'leavability' parallels the acidity of the CA of the leaving group; :NH3 is the weakest CA (of the choices, c has the best leaving group)



3. stronger nucleophile: a.



Et :N Et Et



Et Et N: Et b



rapid pyramidal inversion lowers nucleophilicity; such "flipping" is impossible with a



4. most reactive by an SN2 pathway: c. least sterically crowded target carbon; note that even though a is primary, it is neopentyl-like, which generally never undergoes an S N2 reaction



5. solvent that will maximize the rate of reaction: a.



Et3N: +



Br NEt3



SN2



Br



polar solvents (a or b) stabilize the developing charge in the TS; the amine is more nucleophilic in DMSO (polar aprotic) than methanol (polar protic): H



Et3N:



H-bonding stabilizes the amine, thereby increasing 'G



O Me b



Me



Me



H



Me 6. more reactive by an E2 pathway: b.



H



H



vs. Me



H



Br b anti-periplanar TS possible



a Br no trans-diaxial hydrogen available



Br 7. approximate kH / kD: c.



Ph



H(D)



O-t-Bu E2



Ph



a carbon-hydrogen (deuterium) bond is broken in the rate-determining-step; therefore, a primary hydrogen kinetic isotope effect (~7) is observed



9.1 General



300 • Chapter 9 SN1, SN2, E1, and E2 Reactions



8. reaction to yield the more stereochemically pure product: b. Et



Br



Et



Et



Br



or



a. Et



Et



MeOH



+MeOH



SN1



-H



Et



OMe



Et



Et



either diastereomer would give the same ratio of diastereomeric ethers because of a common intermediate H



b.



OMe



OMe SN2



Br



Br or



H (S)-



(R)-



H



OMe SN2



H (S)-



OMe (R)-



stereospecific: either enantiomer gives an optically pure, but different, ether



9. change in rate of reaction: b.



Ph Br Ph



EtOH



Ph



SN1 rds



Ph



H



+EtOH



Ph



-H



Ph



OEt



rate = k[RX] ; changing the concentration of EtOH has no effect on the rate



O-t-Bu



10. a.



~100% E2!



Br



OH



b.



OMe



vs.



Br



vs.



SN2 > E2



OH



Br



Br 30 RX => ~100% E2



OR



c. Br



+ OR



20 RX => SN2 + E2



SR



vs. Br



>> SR



RS is a better nucleophile, and weaker base, than RO ; therefore, SN2 / E2 ratio is larger for RS



9.1 General



Solutions • 301



11. expected primary hydrogen kinetic isotope effect: b. H) KO-t-Bu H(D) a. Cl E2 - Hofmann



KOH



H(D) (H(D)



b. Cl



E2 - Zaitsev



(H c.



no carbon-hydrogen (deuterium) bond is broken in rds; therefore, kH / kD ~ 1



H(D)



KOMe Cl



(D)H



O2 S 12. C: TsO H



OMe



H(D)



+



SN2 + E2



no carbon-hydrogen (deuterium) bond is broken in rds O2 S



O GG- CH3 C TsO H



if intramolecular



O CH3



a carbon-hydrogen (deuterium) bond is broken in rds; therefore, kH / kD ~ 7



Gunfavorable TS: Nu O2 S



however, if bimolecular



O



R



GL bond angle not linear O2 S



CH3



C: O2 S TsO H H3C O



CHOTs



TsO



O



CH3



GC H



C H3 O G-



O2 S



CHOTs



a linear TS is possible => < 'G ; therefore, an intermolecular reaction is kinetically favored



9.2 Reactions KOMe, MeOH



Br



1.



SN2 > E2 I



O



Me



OEt



2.



E2 - Zaitsev Cl 3.



E2



O



+



Hofmann



Br 4.



+



E2



N 2



Hofmann



9.2 Reactions



302 • Chapter 9 SN1, SN2, E1, and E2 Reactions



KCN / DMF



I



5.



C



N:



SN2



+MeOH



MeOH, RT



6.



Cl



-H



SN1 > E1



OMe



refluxing EtOH



7.



-Cl



O



Br



10.



O



Br



-H



Me2NH



+



+



+



Me N Me



-H



E2 O



I



OAc racemate



Me N Me (H



SN2 > E2



O-t-Bu



11.



O



+HOAc



O



SN1



Cl



9.



Zaitsev



E1 > SN1



Br



8.



-H



OAc



O



SN2 > E2 Cl



Cl SH (1 equiv) 12.



SN2



Cl reactivity:



10 >



SH



20 OEt



13.



EtOH



+EtOH



SN1



-H



+



Cl



OEt



Br 14. Ph



9.2 Reactions



-AgBr



1,2-H:



SN1



shift



Ph



OAc Ph



Ph



OAc



Solutions • 303



Et 15.



Me Cl



Me



H H



=



H



H



Cl



rot'n



Me



H Et



Me



H



Me



Cl



H



E2 Hofmann olefin t-Bu



D



-HCl



HD



= D



Cl



Cl



18.



Me



OMe, -HCl Cl trans-diaxial TS



D



H



Et



t-Bu



H



H Br



E2



H



=



17.



Me



OEt, -HCl



Cl anti-periplanar TS Me



16.



Me



Et



E2



H



D



D



(C-H bond slightly weaker than C-D bond)



CH3 D H Ph



H =



Br



H



D



rot'n



H CH3



H



Ph



Me Ph



Me D



E2



H Ph



Br



-Br



19. OH



Br



-H



SN1



O H



O H



O



PPh3 I



I :PPh3 20.



D



-HBr



+



SN2



O -t-Bu



O -t-Bu



OH 1,2-H: SN1



MeOH



21.



S



Cl



N 22.



shift



I



+MeOH S



SN1



-I



S



-H



S



OMe



I N



intra- SN2



9.2 Reactions



304 • Chapter 9 SN1, SN2, E1, and E2 Reactions



Cl 23. HSe



+



OH



SN2 >> E2



H N



24. Ph



Ph



25.



O Me Me



OTs



ret



HO



Me



HO better leaving group



(1 equiv)



+



Me :N H



Me N



F



SN2



OH OH



refluxing MeOH 29.



NR!



Cl



F



rigidity of bicyclic structure prevents formation of a planar carbocation backside attack impossible Bredt's rule precludes double bond at bridgehead



I



SePh (XS)



30.



Se



Ph (vinyl halides unreactive under SN2 conditions)



SN2



O 31. H2N O



9.2 Reactions



BF4



F



Br



OH



I



Me



OH



S



SN2



OH



O



H



SN2, inv



:NH2



+



28.



Me3N



2. OH



H



NHMe



Ph



SN2



H



S



OH Me N



-Me2O, -H



1. TsCl



26.



27.



Ph



SN2



OH



OH



Cl (1 equiv)



Me



Me Me3N



SeH



NEt2



EtBr (1 equiv)



O H2N



SN2 more nucleophilic nitrogen



O



Br NEt3



Solutions • 305



1. NaNH2



32. Ph C CH



Ph C C:



Br



2.



Ph C CH E2 > SN2



MeOH E1



33.



1,2-R:



+



-H



shift (H



I OTs S C N:



+



34.



NR! (aryl tosylates unreactive under SN conditions)



OAc



Br 1,2-R:



HOAc, RT SN1



35.



1. MeI S



36.



shift



S



SN2



+HOAc -H



-H



2. refluxing EtOH -Me2S, E1 O



O



O-t-Bu



37.



E2



O



O



Br



Hofmann olefin



38. :N



N:



antiH Br 39.



Me O



a.



(XS) MeI



N Me



OEt



H



2I



O



E2 - Zaitsev



O



O H



synH Br b.



Me O



O H



Me N



SN2



H OEt



O



E2 - Hofmann



O H



9.2 Reactions



306 • Chapter 9 SN1, SN2, E1, and E2 Reactions



9.3 Syntheses Ph 1.



Ph



H2O, Ag Ph



Ph



SN1



Br



Ph



1,2-H:



OH



Ph OMe



Ph



E2 - Hofmann



Ph



-H



Ph



NaOMe, MeOH SN2 LDA or KO-t-Bu



Ph



shift



Ph



+H2O



Ph



Br MeOH, '



2.



-H



E1 (not OMe! => E2 - Hofmann olefin) D



3.



H



= Br H



-DBr, E2



H



D



OEt



Br



H



Hofmann olefin



(not HOEt, '! => E1 - Zaitsev olefin) Ph 4.



Me H



Me



H I



=



Me



I Ph



H



H



H rot'n Me



Me



Me



I



5.



Ph



Me



KOEt, EtOH



H



E2



Me



H



I



EtOH, '



1,2-R:



E1



shift



Et -H



OPh 6.



Br



PhOH, AgNO3



1,2-R:



+PhOH, -H



SN1 + E1



shift



or, -H



+



O 7.



9.3 Syntheses



Cl



Ph



O OH



SN1



Ph



+PhCO2H -H



O



Ph



Solutions • 307



Br 8.



1. KO-t-Bu, t-BuOH



2. HBr, ROOR



E2 - Hofmann



Br



2. EtOH, RT



1. Br2, hv



9.



Br



EtO



SN1 (not OEt! => 100% E2)



O 2. O3



1. MeOH, '



10.



E1



3. Zn, HCl



O



Br 1. KO-t-Bu, t-BuOH



CO2H



2. KMnO4, H



E2 - Hofmann



11.



CO2H



Ph



1. NBS, peroxide



Ph



3. HBr, peroxide



Ph



Ph



2. NaOMe (E2)



Ph



4. KO-t-Bu (E2 - Hofmann)



Ph



1. KOH, EtOH



12. Ph



Ph



E2



OTs



OH



SOCl2



O



-HCl



Ph



.



3. BH3 THF



E2



Br



14.



OTs



3. TsCl



Ph



2. KOMe



1. Br2, '



13.



OH



2. H3O



4. H2O2, OH



S O



Cl



OH



Cl -SO2



[SN2 reactivity slow (neopentyl-like); avoid SN1 (rearrangement)]



15. H2C CH2



1. Br2, CCl4



Br



2. Br



HS



S SH



base, SN2



Br



S



-Br SN2



S S



9.3 Syntheses



308 • Chapter 9 SN1, SN2, E1, and E2 Reactions



1. HCl 2. Li



16.



3. CuI



C



CuLi 4. vinyl chloride



5. Cl2



2



6. (XS) NaNH2 H



.



7. BH3 THF



OH



taut



O 8. H2O2, OH



1. Li



17.



3. Br2, hv



2. H2O



I Li (SN or E not possible)



H



Br



H



MeOH, '



D H



-Br, E1 D



H



D



-H



D



D



18. D



Br D



D



=



H



OMe / MeOH



H



-DBr, E2



H Br trans-diaxial elim



D



9.4 Mechanisms Br 1.



SH Br



-HBr SN2



2.



S



-Br



S



SN2



Br



HOAc



1,2-R:



SN1



shift



-H



Cl



CH3 N CH3 3. :N C Br



9.4 Mechanisms



+HOAc



=



OAc



HOAc



SN2



CH3 N CH3 C



-CH3Br Br



N:



SN2



CH3 N C N:



C:



Solutions • 309



Cl



HO



-Cl



4.



Ph



N



SN2



Et



Et2N: O



H



O



Ph



SN2



Et



O



intra-SN2



5.



NEt2



Ph



O



H



inter-SN2



O



OH



O



inv



inv H



Cl



double inv = net ret



OH



OH HO



O



(in conc OH, product is



O , formed by initial inter-SN2) H



DMF



I



6.



7.



O



SN2



N O



N O



H



H



Br



(H H



H O



H HO



N H



-



-Br



H



H



Cl



OH



O



Cl



O



-H



-Cl



intra-SN2 with inv possible



H trans-A



H O



Cl HO



H



B



HO therefore, inter-SN2 with inv



rds



Cl



OH H



S



+H2O -H



-Cl Cl



intra-Walden inv not possible



H



OH



S



B



Cl



H



H H cis-A



9. Cl



S



-H



-I SN1



SH



8.



(H S



H S



repeat



S Cl



OH



S OH



OH



OH2



9.4 Mechanisms



310 • Chapter 9 SN1, SN2, E1, and E2 Reactions



9. (cont.) similarly, Cl



Cl



rds



N:



+H2O



N



-Cl



repeat



N



-H



Cl



N OH



OH



OH



Cl OH2 AcOH H



H OTs intra-SN2 (NGP) not possible O



10. O



I



therefore, inter-SN2:



OTs



OAc



+HOAc -TsOH



OAc



OAc



trans-enantiomer only



vs.



AcOH



OTs NGP



H II



-TsO



O



O



OAc



+HOAc



O



OAc +



-H



OAc



O



OAc



racemate



H OTs



O



11.



NGP



O



Ac



O



X



-H



rds H



NGP not possible therefore, no kinetic enhancement H O



+EtOH



NGP, rds



9.4 Mechanisms



EtO



OH



less strained intermediate => < 'G therefore, k >> k'



vs.



Cl



O



Ac



-H



k



H O



O



OAc



+HOAc



O



II



Cl



O 60%



NGP



O



NGP, rds



OAc



-H



Ac



X



I



O



Ac O



O



vs.



13.



OAc 40%



H)



H



H O



O



-H



O



- OTs



12.



(H O Ac



k'



O



H



+EtOH -H



EtO



OH



Solutions • 311



H OTs



Ac



H



OTs



14.



O



OAc



- OTs



vs.



+HOAc -H



II



I NGP not possible



ret



carbocation stabilized by S electrons TsO + OAc



NGP 15.



= OTs



CH2



NR"2



O



dil OH



16. RNA:



H



OAc



OAc



CH2



AcO



=



H



- OTs



NR"2



O



-R'O



CH2



NR"2



O



-H, NGP O O R'O P O O



O OH R'O P O O CH2



NR"2



O



CH2



2'



O



O + OH



NR"2



CH2



HO (H O



O P O O O



or



O H) OH P O O (H O



DNA:



O



O R'O P O O



17.



Cl



O



O



OH



NR"2



O



OH P O O O



2'-phosphate CH2



O



3'



OH



O P



3'-phosphate



NR"2



NGP not possible; therefore, more stable in dil base



-H



'



+



-Cl



(H 1,2 -R: shift



racemate



(H -H



9.4 Mechanisms



312 • Chapter 9 SN1, SN2, E1, and E2 Reactions



2-



18.



HO6P2



O O O P O



adenine



adenine



O



O OH



O 2-



OH



O P O HO6P2 O (H O



OH



adenine -H



O O O P



O



O O - HO P O P O O O



OH



O OPP



OPP



. .



19. a.



OH



b.



..



-BH -OPP



(H :B



+H



= PPi



OPP



rot'n



-H2O



+H2O -H OH2



OH c. coupling mechanism: OPP



.



+I-PP



. conversion of A to vitamin A:



..



-H, -OPP OPP (H



OH



OH



+H



A



H



H



(H vitamin A



9.4 Mechanisms



-H



bond formed OPP



OH



Solutions • 313



OPP



+ OPP



- OPP



d.



PPO



F-PP



N-PP :H



OPP



. .



H)



..



[H] - OPP



OPP F-PP



-H-OPP



squalene



OPP



N-PP



CO2H H3C



S



O O 20. PP O P O



CH3 S



NH2 adenine O



H2N



SN2



OH



adenine O



CO2H



OH



OH



OH



SAM OH HO



NH2



OH



CH3 S



HO



N CH3 H



adenine



HO



SN2



O



H2N



HO



epinephrine CO2H



+H



21. Ph2 C N N:



OH



OH



-N2



Ph2CH N2



Ph2C



H) OTs



Cl Ph CH2 22.



-Cl



:P(OMe)3



Ph



SN2



Cl Cl2C:



OH 23.



Cl3C (H



Cl O P CH3 (OMe)2



-Cl



Cl2C:



-H



Ph



OMe P OMe O



SN2



+I



I



I



Ph



Ph



-H



note: HCCl3 +



+HOEt



Cl2C I H OH



OEt



+



CH3Cl



Cl2C I H



HCCl2I via SN2



9.4 Mechanisms



This page intentionally left blank



CHAPTER 10 NMR



Cl 1.



OH



O



2.



3. Cl



4.



O 5.



OH



OH



O



F O



O



6. Br



O



8.



Cl



7. F



O



Br Cl 9.



O



10.



Cl



Br



11.



12.



OH O



O Br



13.



14.



HO



J => trans-



H



16.



15. F



OH



O



O 17.



O H



Fa 18.



Ha Hb



Cl CH3



Ha and Hb are diastereomeric protons; 19F (I = 1/2) therefore, max multiplicity for Ha or b = doublet x doublet x doublet = 8 lines



Fb



Br



Ha



Br



Me



19.



Ha



Br



vs. Me



Ha A



Br



methylene protons are identical => singlet



Me



Hb B



Me



Ha => doublet; Hb => doublet (appears as a multiplet)



10. NMR



316 • Chapter 10 NMR



Ha



Ja,b = 16 Hz Ja,c = 8 Hz



Hb Hc 1



20.



2



Hc 3



Br



multiplicity: 5 lines (pentuplet)



Ha



Cl 21. a.



F Ha



Hc Hb



Cl



highest field proton is Ha Ja,F => doublet Hb (Hc)



Jb,c Jb,F Jb,c ~ ~ Jb,F => triplet



b. Hb and Hc are diastereomeric:



22.



Hb Hc H a CO2H Ph NH2



Hb and Hc are diastereomeric and independently couple with Ha; if Ja,b Ja,c, Ha would appear as a doublet x doublet = 4 lines (assuming no coupling through nitrogen)



O 23.



O 1 2



3 5



24. a. Ha (lowest field proton): doublet x doublet => 4 lines Hb DO



Hc Ha



-SbF5Br



25. Br



Br



Me Me



Br



Me Me



SbF5 all methyls are equivalent therefore, appear as a singlet



26.



31P



(I = 1/2), nP = 2; therefore, 2nI + 1 = 3 (triplet) (i-Pr-O)2



10. NMR



8 7



b. C7 and C8 are diastereomeric carbons; therefore, 8 chemical shifts



Br



6



4



Ha



Ha



P O



P O



(O-i-Pr)2



Solutions • 317



Ha 27. a. amplitude: signal at G -16.1 is highest amplitude because most molecules (66%) contain Pt with I = 0 (no further spin-spin coupling with Ha is observed, i.e., JH,Pt = 0)



Cl



JH,P



PPh3 Pt Ha PPh3



multiplicity: 31P (I = 1/2), so JH,? = JH,P > 0, nP = 2 therefore, 2nI + 1 = triplet -16.1 Ha



JH,Pt JH,P per above



b. amplitude: signals at G -13.6 and -19.6 arise from fewer (34%) molecules containing 195Pt (I = 1/2) multiplicity: Ha now undergoes spin-spin coupling with both P and Pt to give a doublet of triplets (JH,Pt >> JH,P)



-13.6



-19.6



G+ Pt



c. Ha is very highly shielded, essentially a hydride, because of the polarization of the Pt-H bond (much higher electron density around Ha than typically encountered in C-H bonds)



GHa



Ha



Ha



Hb



Bo Hc Hc



28.



Ja,c



Because of magnetic anisotropy of the aromatic ring current, Ha experiences diamagnetic (and Hb paramagnetic) lines of force relative to applied field Bo. Therefore, Ha is more shielded (and Hb deshielded) than normally observed in hydrocarbon protons on sp3 carbons.



Ja,b



pseudo-quartet (same for Hb)



5.5 ppm!



0 0.5 (Ha)



5.0 (Hb)



H 29. multiplicities:



H



11B



H H



vs.



H



H 11B



(I = 3/2) therefore, 2nI + 1 = quartet (higher amplitude)



10B



H



H 10B



(I = 3) therefore, 2nI + 1 = septet (lower amplitude)



relative amplitudes of quartet/septet reflect the natural abundance of 11B/10B = 80%/20%



10. NMR



This page intentionally left blank



CHAPTER 11 CONJUGATED SYSTEMS 11.1 Reactions H +H



1.



+Br



Br



(1,4-addition)



D



D DCl (1 equiv)



2.



1,4-add'n most stable carbocation D



D +Cl



Cl



CO2Me 3.



CO2Me



D-A



=



CO2Me =



MeO2C



CO2Me



CO2Me



retro-D-A



4.



= O



O



O



HBr 5.



H



H



+H



Cl



Cl +Cl



+Cl H



H 1,2-add'n product of thermodynamic control more conjugated system than 1,4-adduct, therefore, more stable



1,4-add'n



11.1 Reactions



320 • Chapter 11 Conjugated Systems



'



6.



+



retro-D-A



DBr (1 equiv), ROOR



7.



+DBr



1,4-add'n



-Br



Br



Br



O



O



O N N N



8.



D-A



N



(4 + 2)



N



Ph



O



H



D



Br



O N Ph



O H



N Ph



9.



N



D-A Ph Ph



Ph



Ph



1. NBS, R2O2 10.



Ph



3.



= 2. KOMe (E2)



1. retro-D-A 11.



'



Me



2 Me



12.



11.1 Reactions



=



2.



Me Me



(E)-



intra-D-A



Br



Solutions • 321



O



O



O



1. D-A



13.



2. KO-t-Bu E2, -HCl Cl



Cl



H 1. D-A



14.



O



2. O3 3. Zn, H



CO2Me



CO2Me



CO2Me O



H



O O '



15.



+



retro-D-A



1. retro-D-A



16.



'



2



Ph



2. Ph Ph



Ph cis-



CO2H 17.



HO2C



=



CO2H '



s-cis-diene



CO2H



O



O



(4 + 2) 18. MeO



O



MeO



O



11.1 Reactions



322 • Chapter 11 Conjugated Systems



AcO



19.



AcO CO2H



= OAc



'



CO2H



'



CO2H



+ CO2H



HO2C



CO2H



CO2Me



20.



(4 + 2)



CO2Me



CO2Me



CO2Me



O



O



O



N



N



'



21.



OAc



(4 + 2)



N



- :SO2 O2S



O B:



O



O



H) base, E2



22.



(4 + 2)



-NMe3 MeO



MeO NMe3 I



MeO C19H24O2



MeO R 23.



MeO



Si Me2



Br



D-A



R



Si Br Me2



H



CHO



O OMe



OMe N



24.



R'



+ Me3SiO



11.1 Reactions



R



R



(4 + 2)



N



R' R



Me3SiO



R



Solutions • 323



11.2 Syntheses D 1. Cl2, hv



3. NBS



2. KOMe (E2)



ROOR



4. KOMe (E2)



1.



5. DBr 1,4-add'n



Br



Br



1. Cl2, hv 2. KOMe



2.



5. ethylene CH2



3. NBS, R2O2 4. KOMe



6. H2 / Pt



D-A



H2C



Me



1. NBS, peroxides



3.



2. KO-t-Bu, t-BuOH



4. H2 / Ni



3.



Me 1. NBS, R2O2



4.



3. 2-butyne CH3



2. KO-t-Bu (E2)



D-A



H3C



O O 5.



(4 +2)



A



O



Me



Me N



O 6.



O



NMe +



= O



H



O



O



O



H



O +



O



O



O



7.



CO2Et



N



(4 + 2)



= H



CO2Et O



'



CO2Et OH



11.2 Syntheses



324 • Chapter 11 Conjugated Systems



11.3 Mechanisms O



O



O



O



> pH 8.5



1. O



O



-H



(H OH



HO



HO



- > conjugation results in a 'red shift;' absorption occurs at a longer wavelength, moving into the VIS, and the molecule, therefore, is "colored"



- sp3 carbon prevents conjugation from one ring to the other two; therefore, absorption occurs at shorter wavelengths (UV in this case)



'



2.



'



+



retro-D-A



D-A



O



O '



3. a.



(4 + 2)



O



O O



O



O



O



'



3. b.



longest Omax: n



4. a.



O



'



S*



N b. low probability



c.



A = H c d



H (molar absorptivity) only ~ 10 - 100 for n S* transitions) (vs. > 10,000 for S



no non-bonding electrons in the CA of pyridine; therefore, no n N H



11.3 Mechanisms



S* transitions



S* transition



Solutions • 325



5.



+H



-H2O



OH



OH2 G 1.70 H



OH2



H G 4.10



OH =



-H



+H2O



OH2



OH G 2.25 H G 1.79 H G 5.45 B



O O



6.



O



O



retro-D-A



D-A



-CO2



R



O



O A



R



intra-D-A R R



R



O



R R



O



O



8.



B



inter-D-A



=



D-A



=



H CH2



(H C H2 O



O



O '



taut



9.



ene-reaction



Ts



Ts



N 10. Ts N



O



H CO2Me



R



R = -CO2Me



7.



Me



'



=



O CO2Me



O



N N



hv - :N N:



Ts N



=



N CN CN CN



CN



11.3 Mechanisms



326 • Chapter 11 Conjugated Systems



a OH N NH



11.



H N



OH



OH



N [O]



N



[H]



CO2H c site of redox



N



H N



N b



CO2H CO2H



OH



CO2H biliverdin (green)



bilirubin (red)



Increased conjugation promotes a ‘red shift’ in Omax, causing the color of pigments to move toward the green-blue end of the VIS spectrum: x biliverdin is conjugated from Ca to Cb, whereas bilirubin’s conjugation is disrupted (as a consequence of reduction) at Cc x biliverdin, therefore, absorbs at longer wavelengths (red) than bilirubin; alternatively, biliverdin is transparent to shorter wavelengths (green).



12.



a.



c.



b. (4 + 4)



(2 + 2) thermally forbidden



11.3 Mechanisms



(4 + 2) thermally allowed therefore, most likely to occur



CHAPTER 12 AROMATICS 12.1 General 1. The following compounds obey the Hückel (4n +2) rule and would be expected to have aromatic character: = lone pairs of electrons are in a p orbital (other lone pairs are in sp2 orbitals)



N N N N



d.



b. O



O



f.



H



N B



N H



N B



H H



OH taut



HN O



j.



i.



H



O k.



N



H B



N



N H



HO



2 Li



m. product:



2-



2 Li



(6 S electrons)



H



n. product:



H



(10 S electrons)



2 Li



-2 CH4



(H



H



:CH3



Br



ZnBr Zn



o. product:



H



2 MeLi



H) H3C:



(6 S electrons) N



-ZnBr2



Br



Br



both rings are aromatic P >> 0!



SbF5



Note: l. carbocation from the reaction of Cl



-SbF5Cl



(8 S electrons = 4n+ 2)



12.1 General



328 • Chapter 12 Aromatics



2. largest P: a. G+



etc.



G-



P



both rings are aromatic



note: flow of electrons in either direction in b or c would result in one ring being aromatic and the other anti-aromatic, thereby lessening the benefit of charge separation and lowering P. O



N



N



N



3. N H



N



N



H3C least basic (delocalized, part of aromatic ring current)



4. least stable: b.



O



most basic (localized)



N CH3



O anti-aromatic



a and c have corresponding aromatic, and therefore stabilizing, contributing resonance structures



-H



5. most acidic: d.



etc.



(H aromatic CB



loss of a proton from a, b, or c would produce a resonance-stabilized, but not aromatic, CB



O



O



O



-Cl



6. most likely to undergo an SN1 reaction: a. Cl



most basic O H 7. a.



N more basic (localized)



12.1 General



more basic (localized) OH



OH N



+H



N



c.



b. O



aromatic (4n + 2) contributing structure stabilizes carbocation



O



O aromatic



N



Solutions • 329



_ -Cl



8.



=



0 +



Cl aromatic - all protons are equivalent



O



all bonding MOs are filled



O O vs.



9. largest molecular dipole moment: b.



O



d.



aromatic contributor with longer charge separation (>d)



P=H d -aromaticity promotes charge separation in b and d (but not a or c), thereby increasing H -charge separation distance (d) is greater in b than d



O H 10. Ph



OH



OH



aromatic contributor with shorter charge separation



OH



BF4



OH



HBF4



Ph



Ph



Ph



Ph



Ph



Ph



Ph



Ph



Ph



aromatic cyclopropenium moiety



H



H



+H



11.



+Cl Cl



note: does not undergo a 1,2-H: shift!



aromatic



(10) Hb ~ G7 12.



Ha



(4)



Ha ~ G-1



Hb 1H



NMR: G10



G0



magnetic anisotropy causes the four Ha protons to be highly shielded (above TMS) and the ten Hb protons to be deshielded (into the aromatic region)



12.1 General



330 • Chapter 12 Aromatics



12.2 Reactions N H



1.



N H



fuming sulfuric acid O



HO3S



OH



OH Me



o-isomer



no! (avoid 1,2,3-subst'n)



Me



HONO2 / H2SO4



2.



+



O



NO2 H PH2



o-, p-director PH2 3.



H2SO4, SO3



m-director PH3



+H SO3H



(H



(H Cl2 / Fe



4.



N H vs.



N H



Cl H



N H



Cl



1. AlCl3 Br



N H



-H



Cl



Cl



N H



more important set of contributing resonance structures



Cl N H



1,2-H:shift



Ph



Cl



H



N H



5. Ph



(H



PhH



Ph



Ph



F-C alkylation



CH2



2. NBS, R2O2 3. KOMe



Ph



Br



Ph



E2



Br Br2 / CCl4 Br



Br Br



6.



Br2, Fe Br



Br NBS, R2O2



12.2 Reactions



+



Br



Solutions • 331



G+ G7. I Cl



Se



-FeX3Cl



[I ] +



Se



Me EAS



FeX3



N 8.



O



N



Br2, FeBr3



N



O



p-isomer



O



+ Br



SH



Cl2, FeCl3



9.



+



I



Br



SH



Me



+



p-isomer



Cl



H



Cl



H



N



H



N least important



Cl2, BF3



10.



Cl



N



(H



Cl



N (H



(H



Cl



Cl



Cl



N



Cl



-H N



N



N



more important set of contributing resonance structures



OH



OH O 11. H



OH



+H H



H



OH



H



H HO



H



EAS Cl



Cl



Cl Cl



OH



Cl



OH



EAS



+



Cl



Cl



Cl



Cl



OH



OH



Cl



-H2O



Cl



+H



Cl Cl



OH2



Cl



Cl



Cl



Cl



Cl



O 12.



O



1. -CO2, -N2



+



2. D-A



N N: benzyne



12.2 Reactions



332 • Chapter 12 Aromatics



Me



Me



OH O2N



13.



NO2



+ Me



NO2



Me



NO2



a S-complex



F



F



CN



add'n - elim mechanism Cl



Cl



NMe2



NMe2



NMe2 1. MeLi (-HBr) 15.



Cl



Cl



NO2



2. NaOMe, MeOH NAS, add'n - elim mechanism



CF3



CF3



+H



Me



OMe NO2



EAS



O



2. H Me



1. HNO3, H2SO4



16.



NMe2



+ MeLi



NAS, benzyne mechanism



Br



17.



CN



-HF



nucleophilic aromatic subst'n



Cl



Me NO2



NH2



NH3 CN



:NH3



14.



OH



O2N



Me



CF3



O H



OH EAS OH +H



EAS



-H2O



OH 18.



12.2 Reactions



+H



+



OH



OH



EAS again



Solutions • 333



Br Br2, Fe



19. O



H) O



EAS



O



Br H) O



O



Br



-H O



O



O



most stable intermediate



Br



Br O2N



1. fuming HNO3



20.



N NO2



NO 2



NAS, -HBr



EAS CF3



CF3



CF3



OMe



OMe



OMe



OMe Ha



3. KOH



2. NBS, ROOR



1. MeI, AlCl3



21.



O2N



2. i-Pr2NH



SN2



Hb



Br



OH 1H



NMR: aromatic a-b quartet suggests p-subst'n



I 22.



I2



HO



HO



catalyst



CO2H H2N



I



H



N O



H)



H



Cl



N O



2. Cl2, BF3



23.



H2N



H



Cl 3-subst'n



Cl



N O Cl



thyroxine



CO2H



H)



Cl



N O H)



Cl



Cl -H



4-subst'n (or 2-subst'n)



N O



N O best resonance structure



N O



3. [H]



+ N



N



Cl



12.2 Reactions



334 • Chapter 12 Aromatics



12.3 Syntheses 2. Cl2, Fe



1. CH3I, AlCl3



1.



3. H2 /Pt



F-C Br 2.



high T, P



Cl D



1. Br2, Fe



Cl



Li D



3. Li



H



D



D



D



4. H2O



D



2. dil D2SO4 (EAS) D



D



3. D2O



2. Mg



1. Cl2, AlCl3



Et2O



(x2)



D



MgCl



Cl



O 4.



D



MgCl



Cl 3.



D



OH



1. PhCH2COCl



H followed by



2. H2 / Ra-Ni Ph



AlCl3



Ph



hydrogenation



Ph



hydrogenolysis



Br 1. Cl2, BF3



3. KOMe, MeOH



5. 2. NBS, ROOR



1. cyclohexyl chloride 6.



AlCl3



E2



Cl



2. NBS



Cl



3. NaOH



ROOR



Br



1. O3 2. Zn, HCl



E2



4. SOCl2



7. 3. O2 [O]



CO2H



5. AlCl3 (F-C) O



12.3 Syntheses



H



Solutions • 335



Cl



1.



8.



2. HONO2, H2SO4



AlCl3



NO2



Cl



1. Cl2, Fe



9.



2. PhLi



NO2



3. H



PhLi



-HCl



Ph



Ph



4. MeI, AlCl3



2. NaNH2



1. Br2, FeBr3



10.



CO2H



3. KMnO4, H



NHMe



Br



NHMe



NHMe



:NH3



~H N Me



N (H Me



O O Cl 2.



1. EtCl, BF3



11.



AlCl3



Et



O



1. H2SO4



3. H2, Ra-Ni



OH



Et



Et



OH



OH



HO



12.



OH



2. PhH, H



EAS



+H, -H2O



t-Bu HO



Ph



3.



,H



HO



Cl



NAS



O Cl



1. NaOH Cl



HO



O Cl



(Cl)H



EAS



EAS (see 12.2, 18)



t-Bu



13.



Ph



2. Cl



CO2 SN2



(Cl)H Cl



CO2 Cl



(Cl)H Cl



12.3 Syntheses



336 • Chapter 12 Aromatics



Br



OH



O 2. a. SnCl2, HCl



1. OH (NAS)



14.



OH



(1 equiv) -HOAc



NH



3.



b. neutralize NO2



O



O



NH2



NO2



O



O CO2H



CO2H



4. SnCl2, HCl



2. KOH



1. HONO2 15.



CO2H



CO2



H2SO4 OH



Cl



3.



NO2



5. neutralize



NO2 (1 equiv)



OH



NH2 O



O



12.4 Mechanisms H EAS



Ph



1.



-H



Ph (H Ph



Ph



O OH



H)



O



+H



2.



O



O EAS



O



-H H)



OH



OH



NMe2 O 3. Cl



O AlCl3



AlCl3 Cl



Cl



O AlCl3



Cl



Cl



NMe2



Cl



O



EAS



Cl



NMe2 EAS



Me2N



NMe2



NMe2



C O



AlCl3



Cl -AlCl4



-Cl



Me2N



O



Cl



O



O C O OH 4.



O



O 1. OH -H



12.4 Mechanisms



2. CO2



OH



O (H C O



O



-H



CO2



3. H



CO2H



Solutions • 337



[Br ]



Br



Br Br2, AlCl3



5.



-H



+



(H



O 6.



1. AlCl3 R



X



R C O:



-AlCl3X Ph



EAS



Ph R



R C O:



H)



O



H2O



7.



R



R EAS



HO R (H



R



AlCl3 O O



O



HO



~H



R



AlCl3



+H



O H



H)



-H3O



O



2. HBr



Ph R



-H



AlCl3 O



H O



R



OH



~H



R



(H :O C R



R



O



O



HO Cl



Cl



8. Cl



Cl



Cl Cl



-HCl NAS



O O



Cl



O



Cl



Cl



Cl



Cl



Cl



NAS



Cl



Cl



-Cl NAS



Cl



Cl



-Cl



Cl



Cl HO



O



O



Cl



Cl Cl



Cl



Cl -HCl



Cl



O



Cl



NAS



Cl



-BF3Br



9.



Br BF3



MeO



MeO



MeO (H



-H MeO



EAS MeO



12.4 Mechanisms



338 • Chapter 12 Aromatics



O :C O:



10.



EAS



H C O:



O



H



-H



H)



H



H



+H



11. H O O H



H



O



O H



H



N



H)



Cl 1. NAS



N



-H



N



O Cotton



Cl -HCl



N



N



2. Cotton-OH



N



Cl Cl



N



Cl



HO



OH



Cl 12.



EAS



H O -H2O



N



H2N



Cl



HN N Dye



Dye



Cl



-2 HCl NAS x2



N HN N Dye



N O



Cotton



H2N Dye



O



OH



+H 13. Cl3C



H



Cl3C



Cl



OH



H



Cl3C



OH Cl



H



EAS



CCl3 +H -H2O



Cl



H Cl



Cl



Cl EAS



CCl3



CCl3



1. BF3



14. Cl



H



-BF3Cl



EAS



BF3 -H



(H



2. H 1,2-R: shift



12.4 Mechanisms



H



Solutions • 339



15.



H O



H OH



16.



O



+H



-H



-H2O



OH



H OH



OH



-SnCl5



Cl



(H



EAS



E1



H



OH



O



-H



OH



OH



-H, EAS



O



SnCl4



+SnCl4



O -MeOSnCl4



+Cl



SN1-like Cl



O



Br



1. +Br2



17.



Br



Br



2. :B



+Br



-Br



Br Br



SnCl4



-HBr



Br Br



C7H7Br



H) C7H8Br2



3. H2O, -Br



O



OH



+H2O SN1



-H



-H



aromatic



Me 18.



H Ph



OTs H



=



rot'n



Ph



Me



Me



OTS



H



OTs



H Me Me



H



Ph H



Me Me



H HOAc



-H



-OTs NGP



Me



+HOAc



H



Me H Me H OAc



Me Me



H



Me Ph Me



H HOAc H +HOAc -H



OAc H



enantiomers



12.4 Mechanisms



340 • Chapter 12 Aromatics



Cl



OR 19. Cl3C (H



-Cl



Cl2C: Cl



Cl2C:



+



Cl



N H



N H



Cl



Cl



-H N



N H



+H 20.



-Cl



1,2-R: shift



H



H



1,2-R: shift



-H (H



21.



O HO P OH OH O (HO)2 P



+H



O HO P OH2 OH



OMe



-H



-H2O



H) H2O3P



12.4 Mechanisms



O HO P OH



OMe



EAS OMe



CHAPTER 13 ALCOHOLS 13.1 Reactions O



OH



1. NaBH4 1. Ph



Cl 3. PCl3



2. NH4Cl



Ph



2. H2SO4



Ph



Ph



E1



Ph



OH



Hofmann, E2



Ph



OH



1. H2 / Pd



O



1. i-PrMgBr



2.



4. KO-t-Bu



2.



Br



+



Hofmann



Et3COH



OH 1. H2SO4



3.



2. H3O



E1



OH



HCl, SN1



1,2-H: shift



+H, -H2O



O



Cl



O



O



1. TsCl



4.



+Cl



2. NaOAc



-HCl



OH



SN2



OTs



O O



OH



O



1. NaH



5.



O



2. Me OSO3Me



Me



-OSO3Me, SN2 O 6.



Ph



O



O



O



1. PhMgCl



PhMgCl Ph



-n-BuO



Ph



Ph



Ph



Ph



2. H



Ph3COH



not isolable O



1. LiAlH4 Ph



-n-BuO



O



LiAlH4 H



Ph



not isolable



H



2. H



PhCH2OH



H



O O 7. CH3I



1. Li -LiI



CH3Li



2.



OH 3. H



13.1 Reactions



342 • Chapter 13 Alcohols



1. HBr



8.



3. BH3.THF



2. LDA, E2



OH



HO



Hofmann



Br



4. H2O2, HO OH



O



CO2Me



1. NaBH4



CO2Me 9.



2. H O



OH O2CPh



Ph



OH



1. LiAlH4



O



+ PhCH2OH OH



2. H



OH



CO2Me



H2 / Pt



O2CPh O O PCl2



Me 10.



H Me



OH D H



POCl3 py -HCl



H Me



rot'n



H Me



D Me



D H



H



H



1. OH



Me



-HOPOCl2



O



SN2



NMe



NMe



HO



HO



OH



HO



OH



OH



HO



O



O



CrO3, H



12.



D



O



2. Me-I



NMe



Me



:py



Me



O



O



Me



E2



O



HO 11.



OPOCl2



HO



HO



HO O



1. Br2, H2O



13.



OH



2. Me3SiCl



Br



3. Li



OSiMe3



4.



Li



5. H3O



OH OH



O 14. O



O



O



1. MeLi BnO



Ph



O



-OBn OBn



BnO



-OBn



O



BnO



Ph



O OH



13.1 Reactions



O



MeLi



2. H



MeLi



Solutions • 343



CO2H



15.



O



1. LiAlH4



2. (XS) HBr SN1



O



HO



O



HO



OH



OAc



O



Br



OAc



HO 1. NaBH4



16.



OH 2. H O



OH



HO



HO 1. LiAlH4



+ EtOH HO



2. H



OH



OH +H



17.



18.



Ph OH OH



1,2-R:



-H2O



OH



O



O



shift



H



+H



1,2-R:



-H2O



shift



Ph



O



-H



-H Ph



Ph



O (H



H



O



O



OH 1. NaBH4



19.



2. H



HO



OH



O



O



HO



MgCl



O



HO



1. SOCl2, Et2O



20.



3. H



2. Mg



O



N Me



Ph



n-PrMgCl



1. n-PrMgCl -OEt N Me



HO



Ph



Ph



OEt 21.



O



O



Ph



2. H N Me



N H



Me



13.1 Reactions



344 • Chapter 13 Alcohols



O



OCH3



OMe O



OMe O



1. '



22.



2. H



D-A



TMSO



taut



Si O



O



13.2 Syntheses O 1.



O



OH



1. H2 / Pt



3. H3O



2. H2SO4



4. CrO3, H



7. POCl3 / py



1. HBr



O



3. CH2O 4. H



Li



2. 2. Li



H



5. PCC [O]



O



1. H3O



3.



OH



OTs



H



OH Ph



2.



H



OH (SN2 - inv)



H



OH



Me



HCl



+Cl



Et H



1. PCl3 (inv)



Cl 2.



Cl



1. Br2, hv



1. Cl2, ' 2. KOMe (E2) 3. NBS, R2O2



13.2 Syntheses



*OH



MgBr 4. H



*OH



(SN2 - inv)



5. H2SO4 OH



4. KOH (SN2) 5. Jones reagent



6. H3O



E2



O



Br



(* = 18O)



H



double inv => net ret



3. CH2O



5. 2. Mg



racemic



H



SN1



6.



8. Na2Cr2O7 [O]



4. H



1. TsCl (ret)



O



6. i-PrLi 7. H



3. PhMgCl



2. CrO3, H



4.



D



5. NaBD4 6. H



HO



O 6. MeLi



Me 7. H2SO4 E1



Solutions • 345



O



1. Mg 7.



3. H2SO4



Cl 2.



E1



H O 1. TsCl



OH



8.



2. KCN / DMF



OTs



C



N



SN2



CO2H



9.



1. LiAlH4 2. H



Cl



O TMS



OH 1. TMS-Cl



10.



O TMS 2. Mg



(protect)



3. CH2O



HO



CH2O



H



O



O 4. CH3CHO



2. Me3SiCl 3. Li



5. H3O 6. PCC



TMSO



HO



4. Li 5. CH2O



12. Br



3. PBr3



OH



6. H



1. Br2, hv



3. BH3.THF



2. KO-t-Bu / t-BuOH (Zaitsev E2)



4. H2O2, OH



O



[O] CH2OH



1. PCl3 (not HCl)



1. BH3.THF 2. H2O2, OH



Cl



5. PCC



Li



11.



14.



OH



OH



(deprotect)



OH



D



5. D2O



4. H3O



Cl



Cl



13.



4. Mg



3. SOCl2 or PCl3 OH



5. K2Cr2O7 OH



1. AlCl3



2. H2 / Pd



F-C



hydrogenation, then hydrogenolysis



O OH OH



5. LiAlH4



CO2H



6. H



CO2H



[O]



O OH



3. KMnO4, H



13.2 Syntheses



346 • Chapter 13 Alcohols



15.



O



3. B2H6 4. H2O2, OH



OH 1. HCl (SN1) 2. LDA (E2)



O 6. MeLi 7. H



H



5. PCC



Me



8. PCC



H OH 16.



Cl



1. Me3SiCl



OTMS MgCl



2. Mg



3.



OH



4. H3O



OH 17.



HO



O



O



OH



2. O3



1. H2SO4 (E1)



4. MeMgI



3. Zn, H



5. NH4Cl (weak acid to avoid dehydration)



O



OH



1. TMS-Cl 2. BH3.THF



18. HO



3. H2O2, OH



5. H



CH



MeO



MeO



O



OH



C CH



C CH



3. H3O



1. TMS-Cl 2. LiC CH



C



4. HC CLi



O



HO



OH



O



3. CrO3, H



HO



C CH



HO



6. H3O



1. NaOH 2. MeI (SN2)



OH



OH



4. CrO3, H 5. LiC CH



TMSO



OH



19.



O



5. KMnO4, H



O



4. CrO3, H



O TMS



1. Mg



3. H



20.



O



-H2O



2. CH2O Br O



OH2 1,2-R: shift



-H H)



13.2 Syntheses



Solutions • 347



1. NaBD4



OH



SbF5



21. O B



etc.



(- OH)



2. H



D



D



D



deuterium is 'equilibrated' among all five cyclopentenium carbons



13.3 Mechanisms 1.



+H OH



-H



-H2O



OH



O H



H)



1. NaBH4



2. +H



2. H2SO4



-H2O



H



2.



O



O



1. H: O



HO



H



2. H -H H) O (H OH 3. OH



+H



OH



-H2O



H



H



-H



O H



shift G 9.5 (d)



Ph 4.



1,2-R:



1729 cm-1



OH



+H



OH



-H2O



Ph



H



OH



Ph 1,2-H:



H O (H



shift



Ph



-H



O



(H +H 5. OH



-H2O



1,2-R:



-H



shift 1,2-R: shift



-H (H



13.3 Mechanisms



348 • Chapter 13 Alcohols



OH



H



6. OH



-H2O



OH



OH



OH



OH



Ph



+H



CO2H



(H H



~H



O H



E2



H



-H3O



OH2 O



H



1,2-H: shift, -H



H O (H



Ph 1. H3PO4



8.



OH



1,2-H: shift



-H2O



OH



H H



1,2-H: shift



O



H



+H



7.



H



H H OH



+H



-H2O



H O



EAS



OH2



-H



C



O



O



O 2.



-HBr



4. HBr (SN1)



3. H3O



Br



9.



+H



O



O O



O H



O



O OH2 O H



HO



H2O



~H



O taut



O H O O H



10. H



Me



Me



HO H



-H



OCH3



O H)



Br



Br



H HO



+H2O



O



O



H



OH



5. Me2NH



NMe2



MgCl



+H H



H



Me Me



OH2



-H2O



H O O



H



H



H H



+Br



Me Me



Br



Br H



Br



Me =



Br H



Me



+Br H



H Br



Me Me



H Br Me



Br



Br



13.3 Mechanisms



Me



H



Br



O O H



(+) -



Me =



H Br



Br H Me



Solutions • 349



Br



Br



Br



+H



11.



NGP -H2O



OH



+Br



anti- OH2



trans-



Br Br



Br +H



OH2



OH cis-



gauche-



Br



SN2 +Br, -H2O NGP not possible



Br



Br trans-dibromide



O



O



OH



12.



H



+H



O



OH



CO2H



H O (H



CO2H CO2H O



O CO2H



OH



CO2H



2. -H2O



OH



H



-H



CO2H



taut



O



1,2-R: shift



1. [H]



OH



E1



CO2H



H 13. OH



+H



-H



-H2O



+H



-H



no energy benefit to 1,2-H: shift



14. H2C CD2 OH OH



H



+H H H



-H



pathway (1) - E2



HO



D



H



D



+



-HOH or DOH



H



D



H



O



O



H, taut



OH



1,2-H: shift



H



+



CD2H



H3C



D



NOT formed pathway (2) pinacol +H, -H2O



H) O H



D



H +



H



D



H



D D



1,2-H: or D:



O (H



shift, -H



O



O +



H



CD2H



DH2C D formed



-- therefore, pathway (2) is favored



15. a. dehydration-tautomerization: A



D



H



H, taut



D O



OH



vs. pinacol-like: A



-DOH



+H -H2O



D D OH



NOT B



D 1,2-D: shift



D O (H



-H



B



-- therefore, the pinacol-like pathway is favored



13.3 Mechanisms



350 • Chapter 13 Alcohols



15. b.



1. OsO4



OH



2. NaHSO3



OH



O



3. CrO3, H



O



OH 4. NaBD4



D D



5. H A



O



OH



OH



+H



16. OH



OH



alternatively,



H



H O



H OH



taut



OH (H



OH



H 1,2-H: shift



~H



OH



-H OH O (H



O



OH



taut



O (H



~H



O



O



Cl



Cl



1. Li



3. +2H



17. 2.



+



+



-H2O



O



aromatic carbocation



Cl 18.



Ph3P:



CCl3 Cl



SN2



Ph3P CCl3



-Cl



O



SN2



O PPh 3



-HCCl3



Cl - Ph3P O



D D



D



OH



OH2



+H



H -H



13.3 Mechanisms



D D



(H



D



19.



OH



-H2O



C4H8



CHAPTER 14 ETHERS 14.1 Reactions 1.



1. HBr O H



SN1



3.



Ph



O H



2.



OH



3. KOAc



2. TsCl



Br



OTs



HI



S



-Me2S SN2



S



H



O



Ph



SN2



Br



OAc



OH



I



HI



+



SN1-like



Ph



Br



Me



-H



S H



Ph



S



NR!



Me



(H O KOH



4.



-HBr Br O H



5.



1. HF



F



SN1



2. PCC



F O



[O]



OH



H 6.



NaCN / MeOH



:N C: O



C OH



O



O



1. PhLi



7. Ph



N



SN2



Ph



Ph



E1



:Ph H O CH 3



8.



Ph



2. H Ph



OH



1. HI



O



2. [O]



OH 3. - 4. [H]



SN2



D



I



9.



1. PhCO3H



2. H O



+PhOH, -H O H



SN1 OPh OH



14.1 Reactions



352 • Chapter 14 Ethers



H



O



Me OMe H, MeOH



10.



H H OH



O H



trans-diaxial ring opening determines regioselectivity F



F



MgI



2.



F



1. ClCH2COCl



11.



F



AlCl3



3. H



Cl



OH



F



O



Cl



F



F 5. 6. H



OH



F



4. base O



F



N N



N N N



N Me NH2 12.



Ph



1. mCPBA Ph



Me



2.



Ph



NHMe



O Me OH



OH



O



O



1. NaOH



OH H



3. '



13.



taut



2. RX



O



H



CO2H



14. a.



'



O CO2H



OBn



OBn O



HO



CO2H



14. b.



'



HO



O O HO2C



14.1 Reactions



+H -H2O CO2H



(H O



CO2H



-H -CO2 HO2C



CO2H



O O



Solutions • 353



'



15.



O



O



O '



16.



OH



'



taut H



OH



OH



O



'



17.



taut



O



H2N



CO2H



[O]



18.



H2N



SH



HO2C



S



NH2



CO2H OH



19.



S



HO



[O]



HS



S S



SH HO



OH



14.2 Syntheses Br



1. Br2, hv



OMe



2. HOMe



1.



SN1 not OMe ( => 100% E2!)



2.



1. mCPBA



OH



2. H3O



O



OH



O



MgBr 3.



1. NBS, ROOR 2. Mg



O 3.



OTs 4. H 5. TsCl



14.2 Syntheses



354 • Chapter 14 Ethers



S 2. H2N



1. NBS, ROOR



4.



3. OH, H2O 4. H



Br



Li



1. Cl2, ' 5. 2. Li



6.



SH



O



3.



OH



O



S



O H



[O]



-H2O



H



O 1. HCl



N



conjugate addition



O



2. thiourea 3. OH



O Cl



4. H HO2C



HO2C



1. NBS, R2O2



Br



CO2H



N



HS



N



HO2C



8.



S



3. H2 / Pd



2. H2SO4



H



:H



7.



5. I2 [O]



5. PCC



4. H



1. NaBH4



O



NH2



2. HBr



Br



Br



3. thiourea



SH



S S



6. Br2 [O]



4. OH CO2H 5. H



CO2H



SH



CO2H



CO2H



14.3 Mechanisms O



O BF3



BF3



1. Ph



2.



O



Ph Ph



O



CH2 (H



N



H



H



~H:



BF3



H



Ph



2. H O



PhCH2CHO



O BF 3



1. LDA 2



-BF3



OH



H



H) -H



3. O H



OH



OH



-- see 14.3, 6 for an even more impressive polycyclization!



14.3 Mechanisms



OH



Solutions • 355



O



O



HO



O



O



O



O



OH



4. HO



H) OMe HO



O



O



HO



HO



O



O



O



H O



O



O



5.



OH



O



H



SN2, ~H H



O



H



O O H H HO ~H



product



O



H



H



H



O



H



O



~H



O H



O



H



H



O



H



H



6. Me



HO



H O



Me



H Me



Me



H



H



-H Me



H



HO



D 7.



Me



HO



H O



D



OH



D



H



two 1,2-H: shifts followed by two 1,2-R: shifts



O



OH



H



H 1,2-D: shift path (b) D



methyl group determines direction of ring opening



(H



D



-H



OH



OH H



OH D



-D path (a)



H



observed



not observed



14.3 Mechanisms



356 • Chapter 14 Ethers



R



R



OH 2.



R'



8.



OH



R'



BF3



O



R



OH



R'



O BF3



1,2-R: shift



O (H R -BF



O



R' ~H O BF3



R' OH



R



3



O BF3 H



9.



N H



PhO



S



O



-DBN-H



(H



N



O



CH2



O



Cl



N



O



O



DBN:



O



S



N H



PhO



Cl S



N H



PhO O



~H N



O



O



S



N H



PhO O



O



N H



DBN: DBN H



14.3 Mechanisms



-Cl O



CHAPTER 15 ALDEHYDES AND KETONES 15.1 Reactions 1. CrO3, H OH



1.



N 2. H2NNH2, H



NH2



O O



O



1. Ph3P



Br



PPh3



O



3.



2. 2. MeLi a vinyl ether



a Wittig ylid



O



3. O



acetal



O



H3O



Ph



O



O



H H3O



H



+



Ph



OH



OH



OH



+



4.



H



O



H



O



H3O



5.



HO



hemiketal



CHO



1. PCC



2. H3O



H OH



OH



3. H



Cl



1. KO-t-Bu / t-BuOH



OEt



3. HOEt, H O



O



O 7.



Ph



O



OH 6.



N opsin



O



OH Ph



-H2O



opsin-NH2



O



O 2. HCl



E2



conj. add'n Cl



O 1. NaBD4 8. 2. H



D



OH



3. H2SO4



D



E1



15.1 Reactions



358 • Chapter 15 Aldehydes and Ketones



[O]



1. KMnO4 9. 2.



HO



3. H2 / Pt



O



H2NNH



NH2



HN NH



NH2



(-H2O)



NH2



O



O



O



O



O CH



10.



[H]



N NH



OMe



1. HO



OH , H



2. DIBAH,



-78o



3. Ph3P=CMe2



O H



H



4. H3O



O



O O CHO 11.



1. Ph3P



O O



2. H3O



O2N



H O2N OH



1. Ph3P=CHOCH3



O



12.



O CH3 2. H3O



O



O CH3



(+H2O)



H3O



H



(-MeOH)



O 1. Ph3P:



Ph3P-CHOR



13. RO-CH2-X



3.



OR



H



H 1. CH2I2



O



14.



O



OMe



H



H



2. H3O



O



H H



Zn (Cu) H



OMe



3. Ph3P=CHC=CH2



H



OMe



H



O



H



O N NH2



15.



OH 2. EtMgI



1. H3O



H 3. H3O



16.



PhO



OPh



Ph



Me



15.1 Reactions



H



(-HOR)



2. MeLi



OMe



O



4. H3O



O



1. H3O (-2 PhOH)



Ph



Me



2. H2NOH



Ph



(-H2O)



Me



N OH



Solutions • 359



O 17.



CHO



O



H3O



OH



OH O



H



OH



OH O 18.



1. Ph3P



O



O



O



O



Br



3. H



2. n-BuLi



acetal O 19.



O



H3O



O



O



C CH



20.



H O



O



O



PPh3



hemiacetal OH H3O H



O



1. H3O, Hg2-



H O



O O



2



etc.



H



H



H



W-K



OH



N NH 2



O



O



OH Br



1. Br2, H2O



21.



O



2. H2NNH2



+H2O, taut



O



H3O



+



H



O



4. H3O



2.



,H



O



O



3. Li Li OH



O



5. H3O



2. H2NOH, H



1. HONO2, H2SO4 CHO



O



4. O



O



HO



22.



O



O2N



CHO



O



O2N



N OH



O



note position of EAS!



23.



Et



H3O



O



Et



O



OH



H



24. O



O



OH H



OH



Et



HO O



HO



O



O



H3O



O



OH



O 1,2-H: shift



O H



HO



OH



~H



O O



15.1 Reactions



360 • Chapter 15 Aldehydes and Ketones



H



CHO



D C D



CHD2



1. D2NND2, OD, D2O



25.



2. HI



W-K



OMe



OMe



OH



CN O



O OH



OH



CO2H Ph



O



H3O



H



OH



OH



OH



HO



CN



Ph



H



+



OH OH



O HCN



+



Ph



H



O



O



OH



OH



O



O



H3O



27. O



H3O



HO



HO



OH O



MeI



OH



OH



CO2H 26.



+



SN2-like



1715 cm-1 O



O



O



O



MeOH, H



28.



H H G2.2 O



O



OMe



HO



HO



O



OMe



H H 4.9 2.8 HO



O



H 3.4



HO



OH



H3O



29.



OMe OH



HO -H2O -HOMe



O 30.



OH



H3O



O +



O



H



OH



H



NH2 31.



H



1. H



CO2H



O



N



-H2O



O



O



2. H2 / Pt CO2H



N H HO



O



CO2H



OH OH



OH 1. LiAlH4



32.



+ MeO MeO



15.1 Reactions



2. H3O O



EtOH



+



MeOH



Solutions • 361



O



O



O



O



33. H



H



H



OH



H



O



1,2-H: shift



OH



O



H



intra-Cannizzaro



HO



~H



OH



H



O



H



O



H



O O O



34.



OH



1. LiAlH4 EtOH



O



-H2O



OH



+



2. H3O O



HO



HO



O O



HO



HO O



35.



O OH OH



H3O



O



O +



O F



F



O



OH N



H2NOH



36. O



N OH O



37.



O



OH



O O acetal



OH



O



OH OH a hexose



n



OH H



38. OH



O



H3O



OH



N



1. NH2OH, H



H



H



OH



OH



H OH



OH



OH



2. Ac2O -H2O



OH OH



OH



OH H



OH



OH O a pentose



C OH



N



OH



an unstable cyanohydrin -HCN



15.1 Reactions



362 • Chapter 15 Aldehydes and Ketones



O



O N



39.



Me



N



mild acid



N



N H



H



H



O



O



OH



acetal



O



OH



O



40. Me2N



+



N



N H



O



O



Me



S



H N



H N



H



OH2 NO2



S



O



H H O N NH2Me



~H



H



NO2



H



-H



H N



O



Me2N



H OH2 N NHMe



mild acid



H N



-H



NO2



NO2 -MeNH2



O (H NO2



N N



N



41. N H



NH2 O



H3O



N H



S



N



OH



S



O



O



O O



N H



S



O



2. LiMe2Cu



H 3. H3O



O



H3O



O



OH +



H



H



OH



acetal



F



F



NH2



N



H



[O]



15.1 Reactions



+



H N



43.



O2C



N



CO2H



H



[O]



H N



44.



NH2 H3O N H



1. PCC



42.



N



CO2



O2C



CO2



O H3O



HO2C



CO2H



+



NH4



Solutions • 363



O



O ketal



O



H3O



45.



OH OH



HO



HO



OH



46.



O 2. MeLi



1. PCC EtO



EtO



EtO



OH Me



3. H3O



O



EtO



O



N



O



N 1. HC CNa / THF



OH



47. O N



2. H2 / Lindlar catalyst



O



1. HS(CH2)3SH, H



S



2. MeLi



S



1. n-BuLi



S



2. CH3(CH2)9Br SN2



S



Ph



SN2



S



Et



O



4. H3O Ph



O



3. H3O



1. HS H



3. EtI



S



S b.



c.



Ph



H



O



H



O note: addition to ketone, not amide carbonyls



O



48. a. Ph



N



H



S



H



SH, H



S



S



O



3.



O S



2. NaNH2 O



S



O



or -H2O



4. H3O HO



15.1 Reactions



364 • Chapter 15 Aldehydes and Ketones



N



H2N 49.



H



H N



H2N +H2O



N



H



N O



N N



-H2O



N



H N N H



O



+ H



nitrogen analog of an acetal



O



H formaldehyde



O HN



HN



O HN



CO2H



CO2H tetrahydrofolic acid



CO2H



N



N



N



N



N



-H2O



O



Cl



N



H



NH2



50.



CO2H



N



Cl



XanaxTM - (anxiolytic)



15.2 Syntheses O



1. H3O 1.



HO



3. CN, HCN



CN



HO



4. H3O



CO2H



2. CrO3, H 1. Hg(OAc)2, H2O



OH



O 3. KMnO4



2.



H



1. HI -CH3I



OH H



2. Cr2O72-



O



3. NaBD4 4. H



3. H2NNH2, OH W-K



15.2 Syntheses



NH2 5. H2 / Pt



-H2O



2. NaBH4



OCH3



NH



4. NH3



OH D



Solutions • 365



O



3.



OH



1. HCN, CN



CN



O



2. H3O



OH



1. NaBD4



Cl



3. SOCl2



D



2. H



D



SNi - ret



OH



O 1. HCN, CN



H



CO2H



3. H2SO4 (-H2O)



4.



5.



4. H2 / Pd



CO2H



O 3. CrO3, H



CO2H



CO2H



2. H3O O Cl



6. Ph



O



1. OH



OH



Ph



SN2



[O]



O



O



2. PCC



3. ethylene glycol, H



O



Ph



O



Ph (1 equiv)



H



O



(aldehyde more reactive than ketone)



OH



1. LiAlH4 O 7.



OH



2. H



O



1. NaBH4 OMe



OH



O



OH



O



OMe



2. H



H2 / Pd



OMe O



1. LiAlH4 2. H



O



7. (cont.)



OH



OMe



OH 3. H2 / Pd



O



1. ethylene glycol, H (protect ketone) OH 2. LiAlH4 3. H3O O



.



1. BH3 THF



8.



OH



3. PCC



H



4. Ph3P



2. H2O2, OH



O 9.



1. H3O conj. add'n



O



OH



2. H



O



MeOH, H OH



O OMe



15.2 Syntheses



366 • Chapter 15 Aldehydes and Ketones



O 2. PCC



1. MeOH, H



10.



H



OH



OH



MeO



O



MeO



OMe 3.



4. H3O MeO



O



OMe



Ph3P



OMe



O 1. HO



H 11. Br



O



H O



OH, H



MgBr



3. HO



O



2. Mg



4. H3O CHO



12.



1. H2NNR2



O



H



N



NR2



NR2 2. n-BuLi



NR2



N



N



3. PhCHO



O O



OH



4. H3O



Ph



Ph



CHO 13.



O



O 1. HO



OH



2. KMnO4, OH



O



or 2. a. OsO4 b. NaHSO3



H



O



3. CrO3, H 4. H3O



HO



O



OH



O



O



O 14.



CHO



H



1. LiMe2Cu



H



2. H2NNH2, OH W-K



O



OH



HO C CH



1. ethylene glycol, H 15. O



15.2 Syntheses



2. K2Cr2O7



3. HC CLi O



4. H3O O



O



Solutions • 367



O



OH 1. EtMgBr



H



16.



Et 3. HBr



Et



2. H



Li



4. Li



O 5. R



Ph



Ph



Et



Ph



Et 6. H3O



-H2O Ph



OH Ph R



R



OH



1. NBS, R2O2



O



3. PCC [O]



O



4. Me2CuLi



17. 2. OH (SN2)



18.



5. H



1. DIBAH, -780 CO2Me CO2Me



3. Ph3P=CH2 CHO CHO



2. H



O 2. O3



1. PCC



H



19.



O



3. Zn, H OH



H



O



O



H OH



O



1. Me3SiCl



20. Br



TMS



Br CO2H



O



5. H (deprotect)



2. Ph3P



O



3. MeLi



PPh3



TMS



O 4.



TMS



H



6. CrO3, H



O 21. Ph



22.



SH Ph



SH



H



O



1. HNMe2 -H2O



S



S



Ph



Ph



H2 / Ra-Ni



NMe2



PhCH2Ph



2. O3 3. Zn, H



O H



N O



15.2 Syntheses



368 • Chapter 15 Aldehydes and Ketones



15.3 Mechanisms H



O



O



OH2



OH2



+H2O



+H



1.



HO



H2O



~H



(H



O



O H



O



-H2O



-H



= 18O



O +H



2. N



-H



~H N H



H



OH2



N H



H



H



OH2



N H



O (H



H



O



OH2



O



O



O OH



O H



4.



OH



conj. add'n



H



~H CA of a hemicetal



H



HO



-H



O H



Cl



N N H H H



-H2O



Cl



O



N N H H



OMe



-Cl OMe



H



OMe



O



O O



Me O



O



H



O



6. R



OH



O



O



R H2N



R H2N OH



R HN



R



R N O



15.3 Mechanisms



-H3O



R



-H2O



R R



N O OH2



~H



R N O OH H



H R



R N



O H



Me



H) OMe



R



R OH



OH H)



R



O OH2 O



~H



Me



Me



OH O



~H



OH2



N N H (H



OMe



OH



OH



NH2



N N H



O H



O (H



H



H



HN



-H



5.



OH2



-H



taut



NH2 H NH2



H2N NH2



NH2



H



3. O



H



O



H



R N



O H



O ~H



Solutions • 369



H



H O



O 7.



O O OH



OH



OH OH



O



O



O (H



O (H



O H



H O



OH



O



-H



O



O H



O H



H



O



8.



OH



O



O



O OH



OH



OH



OH



OH



O HO



OH



O O H



OH



OH OH OH HO



-H



O



H3O



OH



hydrolysis



OH



OH



OH



O 9.



H



O



H



O S



O



O C S H



O H



O



O H



O S



+



O H



OH -H



10.



(H O



O



O O



O



H



Cl



Cl



H



H



O



11. H



Cl



Cl



O



OH



O



O



H2O



O



~H



O



H O



H2O O



H)



O -H H



+



O



taut



O H



O O



+



H)



O



H



15.3 Mechanisms



370 • Chapter 15 Aldehydes and Ketones



OH



OH



OH H



OH



H



H



O



O



12.



OH2 O



OH2 (H



-H3O O



O



OH2



~H



OH



OH



~H



-MeOH



OH



OH



O



O



O 13.



N N



O H



O



1,2-R: shift



+



CH2 N N



Ph



Ph N



Ph



N



N



Ph N OH2



14. N



N H



Ph



H



N2



NHPh



Ph



OH2



NHPh ~H



O



O



-H



O



Me



Me Me



H



H



Me



H 2.



O Me



-OPPh3



Me PPh3



rotate



H



PPh3



Me



P(OMe)3



Me O



O H



Me



O



15.3 Mechanisms



NHPh



PPh3



H



:P(OMe)3



NHPh



PPh3



H



Me



16.



OH



H



Me 1. mCPBA



O



NHPh +



H



15.



(H



Ph H N



H



O P(OMe)3



Me



-OP(OMe)3



H



H



Solutions • 371



HO



HO



OH



O OH



O



+H



17. OH



OH HO O OH



O



-H2O OH HO



H)



OH



OH



OH



HO



EAS



OH



OH



NHR



O



-H OH



:NH2R



O



OH



NHR



OH



+H



18.



HO



OH2



OH H) -H



HO HO



OH



OH -H, EAS



O



Et



19.



H



O



N H2



H2N Et



Et



+H HO



-H2O



Et



~H H



(H



-H



N H



taut



Et



N



~H N



H N



OH



1. -H2



20. a.



O



Cl



O



(H :H



O



Cl



O



O



2. SN2 Williamson ether synthesis



Cl



O H Et



- OH



N



OH



O MOM



Cl



3.



b.



O



O H



OH



H



HO



O



OH



O H



O



H



+



MeOH



H3O



O OH



OH



H2O +H2O



+



H2C O Me



-H



15.3 Mechanisms



372 • Chapter 15 Aldehydes and Ketones



Br 21.



OH2



Br



Br



H3O



OH2



Br



H O (H



O



O



O



HS Me



Me S



22.



-HBr



H



OH



O (H



(H



~H



O



C N



23. O



OH



OH



O



HO H



-HCN



H



OH



(H



SMe



~H taut



SMe



conj. add'n O



-H



Br



H + CN



O :C N



CN



NC



H



O



:Me O



OEt O



1. MeLi



24.



OEt



H2O



2. H



OEt



-H2O



1,2-add'n O (H OEt H



O -H -HOEt



H CHO



OH2 OEt



~H



OH2



Et O



CHO



EtNH2



25.



N



-H2O



H



~H



H



OEt



+H2O



Et N H



H



Et HO



H N



O



(H Et N



Et N



-H



-H2O



H2O



Et N



~H



H)



OMe N



26. O TMS



Ph



15.3 Mechanisms



H



OMe Ph



N



2. D-A O TMS



Ph Ph



3. H



OMe N



O



Ph Ph



(H



-H -MeOH



N O



Ph Ph



Solutions • 373



O OH



27. a. Cl2C (H



O Cl2C



Cl2C:



D-elim



Cl Cl C H



~H



H



Cl



H



b. Me



Me N



O C



OH H



2. H



H



O C



O O P Cl N C Cl Me H Me



-Cl



O



Cl O P Cl Cl



O



HO



O



Cl -HCl



H)



O



O SN2



C H



O Me O P Cl N C H Cl Me Cl



+Cl



Me



-Cl



H N C



Me



Cl



O2PCl2



Cl



OH



OH



OH H



Me



(H



1.



C N



-H



NMe2



OH



-Cl



NMe2



Me



Cl



Cl



Cl OH CHO



2. H3O



NMe2



hydrolysis



O 28.



Ph



O Ph



H



OH



Ph



O



O



Ph



Ph



CN O



OH O



H



Ph



CN



:C N



NH H



OH



~H



H



H Ph CN



O OH - CN



Ph



~H H



Ph CN Ph



H N



H



OH H



29.



N



~H



OH2



OH



OH



N



OH



N OH



-H



-H2O



N (H OH



EAS



OH



15.3 Mechanisms



374 • Chapter 15 Aldehydes and Ketones



HO 30.



HO



OH



O



H O



+H OH hemiacetal



OH



OH



HO



H O



-H OH OH



OH



NH2



H N



31. HO2C



NH2



H NH



H N



HO2C



NH2



HO2C



+



H2N



32.



-H NH2



O :NH2R



O H



OH R N



Ph O H CO2H



OH O CO2H



R



H



O CO2H (H



R N



+H



Ph



O



+H H



H



O



Ph



OH O CO2H



OH O CO2H



O



Ph



R N



-H3O



OH2 33. RO2C



O



O



OH2 Ph



N



OH2 NH2 NH2



~H



-H



-H



H



Ph



H2O:



+H2O



O O CO2H



O (H NH2 NH2



R HN



H



+H -H



H N H



Ph



NHR H



HO



H N



O CO2H



CO2H



O



NH2



R H) O N H



O O



OH



HO2C



HO2C



Ph



Ph O



OH



+H2O



NH2 O



OH



NH2



OH2 NH2



NH2 NH2



H



top-side attack



DOH OH



OH



H O



bottom-side attack



OH



HO O



HO



OH E-



OH2 O



H



H



~H



H



PO3R' OH RO2C



+



O PO3R'



15.3 Mechanisms



O H



(CH2)nCH3



-H



H O



O (H



H



H



Solutions • 375



H



O Ph



34.



OH



Ph



Ph



O R



O



O



Ph O



O



(H



OH O



Ph



O R



35. a.



O



Ph



O



Ph



HO Ph



OH



OH 1.



b.



O 1.



Ph



Ph



O



O



O



Ph



Ph



O OH



1,2-R:



O



O (H



:B



Ph



OH



O



OH



O OH



O



shift



R



2. H



2. H Ph



Ph



OH



R



Ph



Ph



OH



OH 1,2-R:



R



O



OH



O



Ph



OH R



shift R



O



~H



Ph



Ph



shift, ~H



+H R



37.



HO



shift



1,2-R:



OH



36.



O



Ph



O



O



O O



O



c.



Ph



(H



O Ph



O



1,2-R:



RCO2H +



-H



Ph



OH



O



O



O



O



1,2-R: shift



R



O Ph



O



O H



Ph



H



O



-H R



(H



R



R



R



OH



OH



OH



1,2-R:



+H -HOTs



shift



-H (H



OTs H) 38. O



1,2-R:



+H HO



HO



shift



-H HO



HO



15.3 Mechanisms



376 • Chapter 15 Aldehydes and Ketones



+H



1,2-R:



39. HO



O



shift



HO



-H



HO



1,2-R: HO



shift



H)



HO



OH



O



40. O



. .



HO O



O +H HO



. .



HO



-H



. . ..



HO H) O



O



HO



. .



1,2-R: shift O



. .



1,2-R: shift



HO



OH O O O



O 41. RO



H)



Cl



O



OR



-HCl



H) OR H



H) OR



Br



RO O



42.



(H



O OR



O



O -HBr



Br



H



RO



OR



OR



-Br



CO2R



Br



Br OR



OMe H +H



43.



1,2-R: shift



-MeOH O



NMe2



-H (H



O



NMe2



O A



15.3 Mechanisms



NMe2



O



NMe2



Solutions • 377



OH2



43. (cont.) NMe2



O



OH2 O



O



A



~H



NMe2



NMe2 O +



-H



NMe2



H



NMe2



OH



R



N



N



-Br



44.



R



N R CHO



O



~H



N



Br H R N CHO Br



-Br



N



NH2



O H HS



CO2R



~H



N



OH NH 2 S



O



CO2R N



CO2R



-H



H



N



N CO2H



S



O



O



H2N:



N H



CO2R



N (H



N S



O



NH2



N H



HO



NH2



CO2H



S



CO2H



~H



O



H



CO2H



O H



+H



H



46.



S



NH2



-H2O



O



O



OH2



O



CO2H



H



CO2H



-H



O CO2R



+H



O (H



Br



O CO2R H O



H R N



OH2



(H N R CHO



-H



O (H



R



N



Br OH2



Br Br



45.



O H



NH



N H



OH



HO



HO



HO



HO



OH2 -H2O



OH NH



NH -H N H



N



N H



NH



HO HO



HO OH



OH



HO



15.3 Mechanisms



378 • Chapter 15 Aldehydes and Ketones



S 47.



H



Br



SH



Br



Br



Br



+H3O



Br



Br OH2



O H



SH2 Br



~H



Br



OH2 Br



O



Br



Br



-H



Br



-H2S



Br (H



Br



Br



Br OH2



H) HO



OH



Br Br



O H



Br



O



OH



+H3O



Br



Br



Br



H) O



H



~H



OH O



O O



Br



OH



H



48.



HO



-H



Br



O



H



H



O O



O



-H 1,2-H: shift



O OH



2



O O 1. +H



49.



!!



O



-H2O (H



OH O



OO



O



:B



O



O 2. +H2O H)



15.3 Mechanisms



OH



-H



O O OH2



CHAPTER 16 CARBOXYLIC ACIDS 16.1 Reactions



1.



CO2H



KMnO4, H



N



N



N



1. OH



CO2H



2. Ph



O



Ph



O



3.



Ph 4.



O



O



O



O H



3



O



2. CrO3, H



OH



acetal



O



E D



1. NaCN SN2



O



SN2



O (conj. add'n) OH



Ph



C N



3. LiAlH4



CO2H



4. H3O



Ph



C N Ph



OH



3. H3O



NH2



-H2O



C



N



2. DIBAH, -780



C



N H



Ph



Ph O



O 1. SOCl2



OH



O



3. BH3



2. PhMgX



OH



4. H3O



O



1. OH 2.



O



2. '



O Br



6.



7. PhCH2Cl



O



1. OH



OH



OH



8.



Me



OH



1. H3O O



O



Ph



O



2. H



Ph



Ph



5. J Br



OH



1. NaBH4 OH



SN2



BF4



O O



2. -Me2O



O



3. H3O



O H



16.1 Reactions



380 • Chapter 16 Carboxylic Acids



1. (XS) PhLi



9.



2. H



CO2H



O Ph



O



O



O



-H2O



+



conj. add'n



O



OH



OH



2. H



1. HCN, CN



11.



Ph



OH



1. LiAlH4



10. CO2H



O



OH Ph



HO



3. BH3



2. H3O O



O



CN



CO2H



O



4. H3O



OH



12. Ph



CO2H



O Ph



1. EtLi



NMe2



Et NMe2



1. H3O



CO2H



-H2O



O



CO2H 14. CO2H HO



N 3. CrO3, H H OH



16.1 Reactions



CO2



OH



labile carboxyl CO2H 2. -CO2 D E CO2H O



CO2H



[O]



H)



O



CO2H O



N 4. ' -CO2



O



O



H



N



CO2H 15.



H



O



O +



H



1. [O]



NMe2



OH



taut H



O



[O]



HO



Et



Ph



2. PCC



CO2H



conj. add'n



O Ph



2. H



Ph



Ph



13.



O



O



Solutions • 381



O



OH CO2H 16.



OMe



OMe CO2



1. OH (2 equiv)



CO2



2. MeI (1 equiv)



CO2H



3. H



SN2 more stable anion, therefore, less reactive



17.



CH2CH2N(CH3)2 COO H CH2 CH2 N COOH H



CH3NHSO2CH2



a salt!



16.2 Syntheses CO2H 1.



1. LiAlH4



OH 3. TsCl



2. H



1. NBS, ROOR



3. NaCN Br



2. HBr, ROOR



O



Br



OH



SN2



conj. add'n



CN



1. HO



OH , H



4. 2. Mg



O



' OH



Jones reagent



O



OH



O



2. CrO3, H



O



O



HO



CN



O OH



O



4. H3O



O



1. H3O



OH



Cl



CO2H



4. KCN (SN2)



2.



3.



CN 5. H O 3



-CO2



O



O 3. CO2 4. H3O



MgCl



CO2H



O 1. Cl



5.



O



2. H2NNH2, OH W-K



AlCl3



CN



CO2H 5. H3O



3. HBr 4. KCN



16.2 Syntheses



382 • Chapter 16 Carboxylic Acids



1. PCC



OH



6.



n-Pr



2. n-PrLi



3. HCl



O



n-Pr



Cl n-Pr



5. NaOH, H2O



CO2Na CO2H



O



7.



8.



Ph



O



2. CrO3, H



1. KCN (SN2)



Br



4. NaCN



CN



1. H3O OH



n-Pr



HO2C



Ph



O



O 4. BH3



3. ' (-CO2) OH



CO2H



2. DIBAH, -78o



CN



N



Ph



9.



CN



O



1. DIBAH,



CHO O



2. H3O



CN



1. KMnO4, H



10.



-H2O



1. LiAlH4



RCH2OH



2. H3O



H



N N



-H2O



O



CO2H



HO2C



O



Ph



CHO



3. NH2NH2, H



2. '



O



HO



-2 CO2



CO2H CO2H



11. RCO2H



3. H3O



N NH2



H



CHO



HO



hydrolysis



H



-78o



5. H



O



3. SOCl2 or HCl



OH O



O



5. R'MgX RCH2-CN



RCH2COR' 6. H3O



4. NaCN



or



5. H3O 6. R'Li 7. H3O



O



O



12.



1. BH3 OH



3. HO OH



2. H3O



1. H2SO4 (E2) 13.



O



Br



16.2 Syntheses



Br



O



O O



O



5. PhMgBr



OH Ph



H 6. H3O



4. PCC



3. (XS) KCN



OH 2. Br2, CCl4



OH , H



O



NC



4. H3O CN



HO



OH O



Solutions • 383



O



O 1.



14.



O



Cl



OH



2. CH3Cl



3. H2 / Ni



AlCl3



hydrogenation



AlCl3 CO2H



a benzylic alcohol 4. KMnO4, H



hydrogenolysis



CO2H 15.



HC CH



1. NaNH2 (1 equiv)



3. KMnO4, H



HC C



HO



2. n-pentyl chloride O O



O



OH



2. Et-I



1. NaH (2 equiv)



16.



OH



O



(1 equiv)



O



OH



3. H O



Et



Et



more reactive anion



16.3 Mechanisms O +H



1.



O O



CO2H



O



H O (H



-H



O



H



H)



OH



O CO2H



O C



taut



2. n-pentyl



OH '



O



n-pentyl



-CO2 n-pentyl



O tautomerization to E-ketocarboxylic acid facilitates decarboxylation



O



H)O



Cl



HO



Cl



O2C



Cl +OH



3.



O



CO2 -Cl



-H Cl



Cl



Cl



Cl



16.3 Mechanisms



384 • Chapter 16 Carboxylic Acids



+H



4.



+CO



O 5.



R



HO ~H



OH



OH



R



OH



H)



O



CO2H



O



HO



N H



H2N



R



-H



O (H H



OH2



C O



HO



O



+H2O



C O



N R



-H2O



O



HO



N



H -H



N



R



(H



O H



O



OH2



OH +H



6.



O



CO2H



-H



O



7.



R



+MeOH



O N -H2O



R N



O



O (H



-CO2



N R



R



H R'NH2



+H



OH R'HN H



H



R' N



R'N H



OH



H3O hydrolysis



N R



OH2



H



hydrolysis -RCHO



O



-H2O



R



R'



H N



H H



R' N H



O



H2N



NH2



O



R



16.3 Mechanisms



R



~H



taut



H



+



-2 H2O



H



OH



O



dimerize



N



8.



-H2O



Me



O O



O



O



O



H O



O



O



CO2H



Me



O



O



NH2



O



(H O



Me



O



H



O O



~H



O H



R



C N



N C



R



H3O



Solutions • 385



O 9.



CO2H



HO



H2O



-CO2



O



O



N



O



O (H R



-H2O



O N



O



O



O N



-H



O + H2N



O



O



O



O2C



H



O



O2C



H) OH



H NH2



R N



H NH2



NADH



NAD+



O



O



R N



+



O



O



-CO2



CO2



CO2



R' 13.



OH



H



O



O



O 12.



H2O



O



-H2O



(H



R N



R -RCHO



O



O



11.



H



1. -CO2 2. taut



O



blue dye



CO2H



O



CO2H H2N CHR



O



10.



-H



CO2H



O



O



(H



O



+H



CO2H



O O O P O P OH O GTP



-H



R N



O



+



H OH -H



R N



S



S



R N



O



OH O



H)



R'



R' H



-CO2 O



CO2 O



R'



S



R N



S



(H



O



PO3H



R'



R'



S



CO2



-GDP



(H



OH



S



R N H



O



(H



16.3 Mechanisms



386 • Chapter 16 Carboxylic Acids



O



R'



14. PLP + histidine



R' =



NH



N



H



-H2O



H N



R



H



O



R' -CO2



OH



H H



O



16.3 Mechanisms



+H



H



O H



MW = 60



H



H



N H



O OH



H



H3O



O 2



OH



N R' OH



imine hydrolysis



15.



R N



N H R



PLP + histamine



N



O



MW = 120



intermolecular hydrogen bonding forms a tight dimeric complex in nonpolar solvents



CHAPTER 17 CARBOXYLIC ACID DERIVATIVES 17.1 Reactions O 1.



Cl



2.



OEt



Et2N



-HCl



more O reactive than ester O



O



Et2NH (1 equiv)



OEt



O



O



O +



O



MeNH2



O N H



Me



+



OH



O



O (XS) EtOH, H



O



3.



OEt



OH



+



transesterification O O



4.



+ OH



OH



O



Cl



O



O



-HCl HO



Cl



O



1. PCl3



O



O



-HCl



O



O



Cl



O



2. LiAlH(O-t-Bu)3



O



5. HO



(or SOCl2)



OH O



6.



Cl



H



3. H



H



H3O N



CO2H



hydrolysis



+



NH2



O



O O



7.



Cl



Ph



1.



MgBr



MgBr



1.



or OH



2. H3O



- OPh



-H2O



not isolable



O 8.



O MeOH, H



O O



NAS



Me O CO2H



MeO



MeOH, H



O O



1. LiAlH4



9.



3.



O



O O



NAS



2. H CO2H



OMe



OH



O



O



17.1 Reactions



388 • Chapter 17 Carboxylic Acid Derivatives



O O



O



OH, H2O



10.



HO



saponification



H N



Bn 11.



O



O



D



H



NH2 S



CO2



OH, H2O



N



O



S



O2C



+



H



N



CO2H



CO2 O



O OR



Et 12.



H2N



+ Et



Et



- 2 HOR O



H2N



OR O



O



N



1. OH



O



Ph



O



N 3. CrO3, H



OH



PhCO2H + + MeOH



2. H



N H



O



N O



13.



NH



Et O



4. '(-CO2) O



OH



O O



OH



O



OH SCoA



14.



NH NH2CH2CO2H



A



HO



CO2



B -HSCoA



OH



H



N 15.



2. CH2N2 N H O



O



O O



O



OH OH



OH O OEt



1. H3O



O



-HOEt



O



OCH3



OH



2. PhMgCl 3. H



a J-lactone



17.1 Reactions



OH



(diazomethane)



N H



O



H



N



N



1. H3O



N



16.



HO



HO



Ph



or



Ph



-H2O



Ph Ph



Solutions • 389



O



O



O



1. LiAlH4



17.



OH OH



2. H



O O



18.



N



1. Cl



N H



Cl N H



Cl



-HCl



OH



O N



N



2. LiAlH4



N



-HCl



N



protein OH



O



O



P



-HF



O



Me O



O H



H



H



CO2H N



20.



N



3. H



protein



O O P F Me



19.



HO



O



O H



O



=



NEt2



Cl N



1. SOCl2



N



2. HNEt2 -HCl



21.



N H lysergic acid diethylamide



N



N H



H



O S Cl O tosyl chloride



O + H2N



NH



n-Bu more nucleophilic nitrogen



OH, H2O



NH



O



S O



O



+



O HO



N H



1 equiv



:NH2Ph



NH3



O O



NH2



24. H2C C O



N H



SO3



O



23. HO



O



O



O 22.



O S N H O



-HCl



O H2C C



NH2Ph



~H



OH H2C



NHPh



+



taut



HOAc



O NHPh



17.1 Reactions



390 • Chapter 17 Carboxylic Acid Derivatives



25. dimethyl phthalate + HO



H



OH



O transesterification O



O



O



O



O



O



O



O



O



O



a polyester



O O



O 26. HO



OH



+



Cl



Cl - n HCl



O



O



O



O



O



O



O O



OH 27.



H



O



O



OH



O



O C N Me



O



O



N Me



O



N Me taut



~H



O O 1. Li



LiCu



O



O 3. Ph



Cl



2. CuI



2



O



Ph



O



O



28.



N Me H



4. H3O



Gilman reagent



Cl



O O 29. F3C



NHMe



Me N



2O



1.



OH



-



2. LiAlH4 3. H



O



O O F3C



17.1 Reactions



Me N



Solutions • 391



HO



O O



O 30.



H2N



O :NH3



O



O



+



NH2



OH OH OH



O O



OH C CH



31.



1.



C CH



OH, H2O



2. H3O N OH



+ HOAc + NH3OH



O



O MeO 32.



MeO



1. LiAlH4



N H



2. H3O



HO



N H



HO



O H2N



O



H2N



1. H2O, OH 2. SOCl2



S



O 33.



N N



CF3



HO



N N



HO O



O



F + HSCH2F +



O



OH



F



F



CO2Na MeO



O OH



H3O



F O



CF3



NH2



HO



34.



35.



H O



F O O



S



O



3. H2N



S



O



N



O 1. PhLi



O Ph



O



2. H3O -H2O



MeO



Ph



17.1 Reactions



392 • Chapter 17 Carboxylic Acid Derivatives



O



O O S O



N



36. N



Me



N



HN



N



H N H



H3O



N



Me N H



OEt



O 37.



1. base



O



N



HN



N N



OEt



O



O NH2



2.



-Br



CO2H



Br



O HO S + O



N H



O



SN2



OH



Br O



O NH



38.



O



OH



NH O2C



~H



NH2



O2C



~H



NH2



N H O



O O2C



O



H N



N H



O



O NH



39.



O



1. Cl



N



OEt



N



OEt



2. Et2NH



OEt



N



OH



H N



N H3O



N



Cl



-CO2



N



N



Cl



Cl



O NH



NEt2



N



-HOEt



O



N 40.



O



N



-HCl O



NH



etc.



N H



N



H N



Ph



H Ph



O 1. Ph



41.



OEt



2. LiAlH4



-HOEt



3. H



Cl Cl



17.1 Reactions



Cl



Cl Cl



Cl



Solutions • 393



H2N OMe



OMe O CO2H



1. SOCl2



42.



OMe O



N



O Cl



OMe



S H N



CO2H



2. -HCl



OMe



OMe



S N



O



CO2H



CF3



O



O



N H



OH H3O



43.



+



CF3 O



CO2H



N H



CF3



H3N



O



CO2H 44.



CF3 H3N



O



H2N



H3N



Ph



O N



hydrolysis



N O



phenylalanine



N



CO2H



N Cl



N + H N O H a carbinolamine



N



O N



-CO2



H N



N



MeOH



Ph



CO2H N



exhaustive



N



OH +



CO2H



aspartic acid



Cl



N



H3N +



OMe



O



45.



CO2H



H3O



N H



N



CO2H



+ N



Cl



+



H



N



N H2N



O



O



OH



1. NaBH4 46.



CO2H



OH



OH OH a tetrose



O



OH H



47.



OH



- 2 H2O



2. H3O 3. SOCl2 OH



O



O



O



OH



OH Cl 4. LiAlH(t-BuO)3



CN OH OH a cyanohydrin



O



H



HO



OH



OH



1. HCN CN



O



+



2. H



O



HO



OH



O



5. H



HO OH HO O H a pentose



17.1 Reactions



394 • Chapter 17 Carboxylic Acid Derivatives



R



O 48. a.



O



O b.



O



Cl



:NH2



R N H



H



CO2H



O N H O



O



O



+H OH



O H



R' R



R



O



-HCl



R N H



CO2H



N H



(H



O N H O



-H OH



R'



+



O



H2N O



O



-CO2



N H



H)



OH



O



R N H H



R'



O N H O



OH R'



OH



O 49.



+



SCoA



-HSCoA transesterification



CO2 NMe3 O



CO2 O NMe3



CH3(CH2)14CO2H, H



50.



O



-H2O



CH3(CH2)14



HO



O



O 51.



H3O



HN O



NH4



+



CO2



+



HO



N H



O 52.



O



H3N



1. ATP OH



O



O P O OR' O



NAS



2. HSCoA -HPO4R'



17.1 Reactions



OH



2. H2N



-HPO4R' (AMP) O S CoA



O N H



OH



Solutions • 395



+H



O



53.



O O H glucose



O H)



O



N



H



transesterification



O glucose



N



1. SOCl2 2. NH3



OH 55. S O



O



N N H



N O



F



OH



O



N



H3O



S



H3N



OH



O OH taut



+ S



-CO2



NHMe



taut SO3H



O



O NHMe



H SO3H



N



OH NHMe SO3H



NHMe SO3H



H OH



NHMe



C O



NH2



O



O



N



N



O



F



CO2H



F



O



N 3. SOCl2



N



HO-glucose



O +



O



O N



N



N



54.



-H



O



SO3H



OH O



H3O



MeNH3



+



H SO3H



(aldehyde gives a positive Tollens' test)



17.2 Syntheses O 1.



1. H3O -HOAc



O



3. Li



2. PCl3



4. CO2



Cl



O 2.



O



1. H2O, OH R



NH2 2. SOCl2 O



1. H3O R



5. MeOH, H



R



CO2



Cl



R



4. H O



3. LiMe2Cu



R



3. H, -H2O



O 3.



H O



or 2. MeLi (2 equiv) Me



O



O



3. LiAlH(O-t-Bu)3



2. SOCl2 OH



MeO



R



OH



O NH



1. LiAlH4 2. H



NH



3. Ac2O



N



-HOAc



17.2 Syntheses



396 • Chapter 17 Carboxylic Acid Derivatives



.



3. CrO3, H [O]



1. BH3 THF 4.



O H



2. H2O2, OH



CO2H



5.



Cl



4. PCl3



1. D-A



C



5. AlCl3, -HCl O



2. Ac2O, or



CO2H



'



C



F-C acylation



O



O



H2SO4, -H2O



HO2C



O



CO2H O



6.



HO



1. BH3



H O



or 1.



O



7. Ph



O



1. H3O NH2



Ph



2. SOCl2



H



b. H3O O



3. LiAlH(O-t-Bu)3 Cl



O 8.



2. a. LiAlH4



CO2H O



O



Ph



4. H O



1. AgNO3, EtOH



OH



Cl



O



Cl



O



O



3. H



Me



-H2O



O



Ph



NCH3



Cl , AlCl3



Cl



O



Cl



H NCH3



O Cl



Ph O



H



F-C acylation



Cl CH3 O N



O



OH



O



NCH3



Ac2O



H



(2 equiv)



O NHCH3



5. HO



O



2. MeLi



(Tollens' reagent)



9.



O



O



OH H



OH



H



H



2. H



O HO



HO



Cl



O



Cl



H2O,



OH



-HCl, NAS H3C



CH3 O N NH3 (SN2) -HCl



17.2 Syntheses



Cl



O



O



N NH2



H -H2O



Cl



N



Solutions • 397



O 10.



HO



2. NaBH4 CO2H



1. LiAlH4 2. H



O 11. Ph



O



1. ' (-CO2)



CO2H CO2H



H CO2H



3. H



O



4. KCN (SN2) Ph



OMe



OTs



3. TsCl



6. CH2N2



O



Ph 5. H3O



O



Ph



-N2



OH



O NaO



O



-H2O



OCH3



O F3C



N



F



O



N



12. O



nucleophilic aromatic subst'n



O



F3C



OH, H2O



O O



N H



OEt



Cl



O



OEt



NH2



O



F3C



F3C



1. LiAlH4 H H N



:H



H N



-EtO



H



H H N



+H:



OEt O O



+AlH3 H



O H N



H N OAlH3



O



CH3



H N



+H: 2. H3O



F3C



:H - OAlH3 2CH2



O 13. Ph



N



1. NBS



Br



peroxide



Ph



2. Li



N



O



O



N



4. EtOH, H



EtO



NMe2



N Ph



Ph



3. CO2



HO



Cl



NMe2



2. a. NaBH4 b. H



1. Me2NH



14.



O2C



NMe2



3. PCl3



conj. add'n O F3C



Me N



O H



5. Cl 6.



O



OH, H2O -CO2



NMe2 4.



OEt F3C



F3C



O SN2



(continued on next page)



17.2 Syntheses



398 • Chapter 17 Carboxylic Acid Derivatives



14. (cont.) Mechanism for step 5: O



NMe2 Cl



F3C



-Cl



OEt



Cl



CH3



NAS EtO



O



+Cl



CH3



N



Me N



O



-CH3Cl



O



F3C



O



OEt



O Et



1.



O



Cl



15.



Br



2. NBS, R2O2



Et



AlCl3



3. H2 / Ni (or W-K)



HO2C



BrMg



5. CO2



4. Mg



6. H



O



O 1. KCN, HCN



3. BH3



2. H3O



16. CN O



OH



4. H



CO2H



O



7. MeLi OH



O



O



5. HO



O



6. PCC



8. H3O



O



O



O



OH , H



OH



H O



O 1. KMnO4, H



17.



HO



O OH



O



2. ' OH



-CO2



O



O 3. OH



O OH



O



H O



Cl 18.



4. LiAlH4



OH



O



OH



O



5. H3O



O



O



1. Li 2. CO2



CO2H



4. SOCl2



Cl



5. Et2NH



NEt2



-HCl



3. H



H N Ac



O NH2



HO



1. KOH



Me



NH2



O



3.



19. N H



17.2 Syntheses



OH, H



2. MeI



N H



more nucleophilic than



2O



-HOAc NAS



Me



O



N H



Solutions • 399



O 20.



Br



O



H2 / Pt



CN



(XS) HBr



(XS) NaCN / DMF



high pressure/temp



Br Cl



1. H3O 2 . SOCl2



CN



H2 / Ni



CN



Cl B



O CN



SN2



O



H2N



NH2



or 1. LiAlH4 2. H



C



21. Poly(vinyl alcohol). Vinyl alcohol is unstable and rapidly tautomerizes to acetaldehyde: O taut OH H 1. H OAc OAc



OAc



OAc



OAc OAc OAc



HOAc, H, Hg2+



2. H3O



HC CH OH



OH



or saponification



OH



OAc OAc OAc



poly(vinyl alcohol)



poly(vinyl acetate) CH3O



O



HO



22. a.



1. NaOH



O



2. CH3-I



O



N HO



HO



HO O



CH3O



O



O O



O



O



O



NAS



N



N



O



O



O heroin



O N (H



H



hydrocodone



CH3O



CH3O



d.



O codeinone



1. H2 / Pd 2. PCC



codeine



morphine



(XS)



c.



O



SN2



N



N



b.



etc.



~H taut



~H



O N H)



O



CH3O



CH3O



H



taut



+H2O



O N O neopinone



H



O



-H



N OH O oxycodone



17.2 Syntheses



400 • Chapter 17 Carboxylic Acid Derivatives



17.3 Mechanisms O



O



HO



OH2



+H



O



1.



H ~H



O



O



H) O



O (H



HO



OH2



O H



OH O H



=



-H O



-label appears in both carboxyl oxygens - but NOT in alcohol oxygen



O



-H O OH



HO



+



O



O



Cl



O



R



:R



O



O



1. (XS) RMgX 2.



OH



HO



O



+



R



R



R



:R



R R



:R 2. H



2. H



t-BuOH



R3COH



OH O



-H2O



O



3.



D-lactone does NOT form because of ring strain



O



OH



O



O -H2O OH HO2C



intermolecular condensation



O



-H2O



O



O



intramolecular condensation



=



O



O



O much less ring strain



O



O



4.



O



+H



H



O



H



O



Et



O



Et



-H



+ (H



O



Et



O



30 carbon O



OEt O



5.



O PhMgCl



OEt



Ph



OEt



O Ph



O



- OEt



O



O



O



Ph



(1 equiv) Ph:



ketone more reactive than ester



S O 6.



Ph N C S H2N



R=



PhN N H



NH2



R R N H



H PhN



~H



Ph + H2N



17.3 Mechanisms



CO2H



N O



+H



NH



R N H



O S



CO2H



S H N HO



-H



Ph H)



NH



HN



O H



R



S NH



S



Ph



N



O HN H R



NH



~H



Solutions • 401



Me



O



O



NH2



NH2



7.



Me O 1. Me3O BF4 Me -Me2O



OMe H2O



NH2 OMe



OMe



-NH4



O



S O



Cl



Cl



-Cl



S



Me R b. R



O



:NR3



O (H



(H



Cl



+Cl



Cl



S Cl



+ CO2



O



Cl H



O



O



Me 8. a.



~H



NH3



O O



OMe NH2 OH2



2. H3O



:NR3 -NHR3



R



(H



-NHR3



-Cl



R



O S



-Me2S



:C O:



+



O R



R



S Cl



O 9.



S



O S Cl



Cl N



N



O



-HPO42-



PO3H



NAS



H2N



H2N



H2N



HO



~H



HO



CO2H



N CO2H H H



O



O



O CO2H HN N H



CO2H



O Br2P Br 1. POBr3 O



11. CF3



N H



H) O HN



-H3O



CF3



~H



O



Br



N H



N H



N CF3



N



Br



CF3



N



(H



2. Li 3. CO2 4. H



5. C5H4NLi, -600 N CF3



CF3



CF3



CF3 CO2H



7. [H]



CO2H



-HO2PBr2



CF3



O



CO2H



OH



OPOBr2



+Br



-Br



N H



H2N



CO2H



O POBr2



CF3



mefloquine



HO



OH2



N H



O



Br



R



OH



O O



O



R



[O] (mechanism per 17.3, 8)



O



O 10. H2N



O



R2CHOH, NR3



6. H3O



N



CF3



CF3



17.3 Mechanisms



402 • Chapter 17 Carboxylic Acid Derivatives



O 12. a. R



O



O Cl H :C N N: H



-Cl



-H



N N:



R H



N N:



R



(H



H :CH2N2



1. SOCl2



hQ



2. CH2N2



-N2



b. CO2H



C O H N N:



C



O



O



H



2. W-K



1. H2 / Pd hydrogenolysis of cyclopropyl bond O



13.



cleavage here H N



O



O



1. BrCN



N H



R



S



H N



R' -Br



O S



Br N



C



R



H



H N



N



-MeSCN



O O



R'



CN R



H N



H3N



+



R' N H



R



O O



O



O



R'



2. H3O iminium hydrolysis (see 17.3, 7 for mechanism)



a carbinolamine O



OH N



N H



H



14.



O



O



O



H2O2, H (see 15.3, 34)



N



N



O



O



O



N H



N O A



O



+H O



N



O HO



-H2O



17.3 Mechanisms



N O



O



N O



H O N



O H



-H



N O



N H



O



H O



Solutions • 403



Ac O



N



O O



O



15. N



O



-HOAc



CO2H



H) O



O



O



O



O



:py



Ac



O



O



-pyH



O



O



O



N



-CO2



O =



Me



N



O



OAc



O



O



S



S 16.



O



O



+H



N H



O



R



N



R = cyclohexyl



O



N H



O



CO2



RN C NR



+H



NHR



+ N H



PhO



S



O



N



taut



O H)



CO2



OH :P OH OH



~H



S



-H



N O



O H P OH OH



N N H H dicyclohexylurea



CO2



H



H



17.



O



- OAc



CO2



R = -CH2CH2NH2



nucleophilic form O R



(H



O



PCl2 Cl



H2N



R Cl



-HCl



OH O P OH OH O P OH OH



H



O



1. :PCl3



O



+Cl



PCl2



-H



(H O R P(OH)2 P(OH)2 O



2. +3H2O -3 HCl



O



H :PCl3



PCl3 P(OH)2 O



-HCl -H O



R



:PCl3 P(OH)2 O



O +



O OMe



H



R



O



OH P OH R Cl O (H



OH



+H O



:P(OH)3 Cl



OH



O 18.



R



-POCl2



H)



O



OMe



Me C O: an acylium ion



OMe



-H O



OH Me C O:



O H)



O



O



O Me



O



O Me



17.3 Mechanisms



404 • Chapter 17 Carboxylic Acid Derivatives



19. a. Carboxylate as a nucleophile: O



O O



O



O ~H



O



O



O O



H



O



O



HOAc



+



OH H



18O-label



appears in salicylate



b. Carboxylate as a base: O H



O



O



O



O H



~H



OH



O



O



HOAc



OH



O O



+



O



no label!



HO c. Therefore, pathway b is preferred.



NH2



H



O



H



H 1. -H2O



20. CO2Me



N H



N H



O N N H



17.3 Mechanisms



:H



N C



H) N



-HOMe N H



OMe O



H OR



CO2Me



2. NaBH4, HOR 3. H



CHAPTER 18 CARBONYL Į-SUBSTITUTION REACTION AND ENOLATES 18.1 Reactions 1. LDA



1.



2. n-PrBr



O



O



O



H O 1. OMe



OMe



2. O



MeOH



O



O



O



1. LDA



3.



' -CO2



Ph



CO2Et



Ph 2. (PhCO)2O



3. EtI O



CO2Et



Cl 5. NC-CH2-CO2Et



H



1. OEt N



C



O



NO2



O



Ph



-CO2



NC



OH



HO2C



CN



CO2H



2. H3O, '



CO2Et



-Cl nucleophilic aromatic subst'n



-CO2 NO2



NO2



NaCH(CO2R)2 H



cis-



transO



O



O 1. H3O 2. CrO3, H



Me



HC (RO2C)2



OTs



7.



Ph



CO2Et



NC



SN2



O



O



H Me



H



Et



-CO2



H 6.



O



Et 4. H3O ' CO2Et



OEt



3. H3O, '



3. H3O



O



2. OEt



OEt



CO2Et



O



O



O



EtO



1. base



Ph CO2H



O 4.



CO2Me



O



NAS



CO2Et



Br



O



O O



2. Ph



O Ph



O



O



OMe



3. NaH 2 equiv O more reactive enolate



4. PhCH2Cl 1 equiv O



O



O



5. H O



Ph



Ph



18.1 Reactions



406 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



CO2Et



EtO2C



1. OEt



H



CO2Et



CO2Et



2.



8.



EtO2C



EtO2C



3. H3O, '



O



-CO2



O



OH



OH



O



O



O



O



1. (XS) OEt



9. EtO



O



O



2. Br(CH2)4Br



O



Ph Se



O



O



-PhSeOH



4. MeOH H



O O



3. LiMe2Cu



O



2. KO-t-Bu



O



O



H



1. Br2, H



11.



O O



O



OMe



O



O 4. H3O



O



O 3. H3O, '



2. (CN)2CH: SN2



Br



O



O



O 1. Br2, H



12.



-CO2



CO2Et Br



3. H2O2



O



O



3. H3O, '



-Br



OEt



1. LDA 2. PhSeBr



10.



O



CH(CN)2



OH



-CO2



O



O EtO2C



1. OEt



13.



EtO2C



H



2. n-Pr



EtO2C



EtO2C



O 14.



O Cl



NAS



EtO2C



-2 CO2



O O



OH 2. PCl3, Br2



haloform rx



3. H3O, '



EtO2C



O



1. a. Br2, OH (-CHBr3)



H



Cl Br



H-V-Z rx



O 3. MeOH



b. H



H 15. H



18.1 Reactions



OEt



H



+EtOH O -EtO



H



-H2O OH



OMe Br



Solutions • 407



O 16.



O



Cl



2. Cl2, H -Br



-H



Br



O



O



1. LDA



Br



OEt 1. HCl 17.



2.



O



3. H3O, '



O



Cl



conj. add'n



EtO2C



-Cl



-CO2 O



O O



O 18.



O 3. KMnO4



O OH



O



O



1. Cl2, H



1. Cl2, H



3. H3O



2. OH



2. E2



4. [O] O



19.



Cl Cl



C(CO2Me)2



-Cl



-Cl



LiH :CH(CO2Me)2



CH2(CO2Me)2



LiH



CO2Me



1. KOH



CO2Me



EtOH 2. '



Cl O NMe2



O 20.



O



O



base



O



NMe2



O Ph



1. SOCl2 2. Me2NH



O



3. mCPBA



O



CO2



O



O



taut



conj. add'n O



O



O



Ph



O



18.2 Syntheses O 1.



O



1. PCl3, Cl2



O OH



OH 2. H2O H-V-Z rx



Cl



3. KCN SN2



O OH



CN



4. H3O



OH CO2H



18.2 Syntheses



408 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



2.



CO2Me



1. OMe, MeOH



CO2Me



2. Br



(CO2Me)2 OH



CO2H



3. H3O -CO2



OH



-H2O



OH



O



O



O 3.



MeO2C



CO2Me 1. OMe CO2Me 2. Br



CO2Me



-CO2 4. PCl5



5. LiAlH(O-t-Bu)3



H H



6. H O



O



O 5. H2N



CO2Me



4. CO2Me



Cl Cl



O



1. OMe 2. 2-chloropentane



CO2Me



3. H3O



CO2Me



CO2Me



O



3. OMe 4. allyl chloride



NH2 NH



(urea) -2 MeOH



CO2Me



O



N H



O



O CO2Me



5.



CO2Me



1. OMe 2. EtI



Et



CO2Me



3. OMe



Et



CO2Me



5. H3O, '



H



CO2Me



4. PhCH2Br Bn



CO2Me



-CO2



1. BH3.THF



6.



2. H2O2, OH OH



O



1. OMe



CO2Me



CO2Me O



2.



(CO2Me)2



NAS



O



CH(CO2Me)2



-CO2



3. H3O (-CO2) 4. LiAlH4



OH



Br



6. HBr OH



5. H



Br



SN2



O 3. H2NNH2



1. NaOEt, HOEt 8. O



O 6. H3O, '



OMe



O



Et



5. (MeO2C)2CHNa



Cl



OH



8. H (-H2O)



7.



O



4. SOCl2



7. NaBH4



O



CO2Me



Ph



3. CrO3, H OH



OH



O



18.2 Syntheses



2. MeI



Et



O



O



OH, ROH W-K



4. NH3 Et



O



O



H2N



O



Solutions • 409



O



O



O



O



1. OEt



O



9. Et



O



O



O



2.



O



EtO



Et



O



OEt



O



O



1. KOEt / EtOH O



2. Cl



O



Et



O



O 2.



O



OH



O



3. OEt 4. MeI



4. NaBH4



O



-CO2



EtO2C O



O



O



1. OEt 2. EtI



12. O



O



3. H3O, ' O



Et



O



O



-HOEt transesterification



O 1. OEt



Et



O



3. H OH



O 11.



O



O



10. Et



OH



-CO2



OEt



O



O



3. H3O, '



Et



5. H 6. PCl3



Cl



O



O



Me



5. H3O, '



Et O



-CO2



O



Cl



6. I2, OH



O



haloform rx + HCI3



O



O



O 1. Cl2, H



O



3. H3O



13.



4. Ac2O



2. KO-t-Bu (E2) [or 3. HCl, 4. NaOAc (SN2)]



OH



OH



O 1. Jones reagent



O Br



14.



OAc



3. KCN



CO2H



4. H3O



2. Br2, H



[or 3. ethylene glycol, H, 4. Mg, 5. CO2, 6. H ]



O 15.



O



taut



O



O



O (H



O -H



+H



18.2 Syntheses



410 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



O



O



1. OMe



O



16. Me



O



O



2.



O



O



Me



O



O



O



1. LDA



17.



O



3. H3O ' -CO2



O



O



O



O



3. H2O2



O



-PhSeOH



2. PhSeBr Se



Ph



OH



6. CH2O, H O



OH



1.



Cl



O



O



Cl



OH



Cl



N -t-Bu H



1. KOH



Br



3. Br2, PCl3 4. H2O



CO2H



O OH



CO2H



O



19. 2.



O



-HCl



CO2H



O



Cl



NH2



3.



AlCl3



OH



4. H3O



O



2. Cl2, H



Cl



18.



O



5. H2 / Pt



O



O



Cl



Se



Ph



H-V-Z rx N H



O



O



7. LiAlH4 8. H



5. SOCl2 6. H2N-i-Pr



N H



Br



9. OH ((SN2)



20.



O



1. NaOMe / MeOH CO2Me 2. EtI



MeO



S



O OMe



5. H2N



CO2Me 3. NaOMe / MeOH 4. 2-iodopentane



21.



CN 1. NaNH2



NH2



thiourea



HN



NH



O



O



6. NaO-t-Bu (1 equiv)



HN



N



O



O



-2 MeOH



NC



H MeN(CH2CH2Cl)2



Ph



SN2 (-Cl , ) -H



NC intra-S N2



NMe



Ph Cl



NMe Ph



NMe



O 3. EtOH, H



EtO



NC Ph



-Cl



O



18.2 Syntheses



S Na



S



2.



O



NMe Ph



OH, ROH



Solutions • 411



18.3 Mechanisms O H



O



(H



+H



1. OH



O H



OH



OH



O



OH



OH



O 2.



2. O



-H



O



Et



O



O



3. Ph



OH



Ph



H O



Ph



OH



H



O OEt



O



-OEt O



I



O



I2



O



-H



O



I



O



I2



O



OEt O



O



I O



H



O (H



O



O



O



OH



H



OH



O H



O



1. OEt Et



-H



HO



H +H



O



Ph



OH



Ph



I3C:



H) O



Ph



Ph



-H



PhCO2



I



O



I



Ph



+



OH



I



O I3CH



PhCO2



+



I3C



O



I



Ph OH



(H O 4.



H



OH



+H



(H



-H



OH



-H +H



O



+H -H



O



-H +H



H achiral



H



H



O



O +MeO



5.



O



O MeO



H) OMe + -MeO



O O



MeO



O



H O



H



O taut



6. O



+H



O O H



O



~H



H O



OH



-H3O OH2 ~H



O



H) H)



18.3 Mechanisms



412 • Chapter 18 Carbonyl Į-Substitution Reactions and Enolates



O



O O H



O taut



7. HO C 2



HO2C



HO



N



H) O



NH HO2C



H



OH



OH H



8.



H



taut



OH -HPO42-



taut



9.



18.3 Mechanisms



Me3N:



O



SN2 Si Cl



-Cl



O H



-H



O (H



H O



OH H



O O H PO3H



O O PO3H



OAA + biotin



-H



CO2H



S



H



CO2H



O



H)



O



taut



H O



Si -H



O TMS



CHAPTER 19 CARBONYL CONDENSATION REACTIONS 19.1 Reactions 1. 1. PhCHO + PhCOCH3



2. :CH(CO2R)2



OH Ph



-H2O aldol



Ph HO2C



O



H



H



taut



H



aldol



O



O



OEt



OH



O



t-Bu-CHO



O



O



O



O



O



O OMe



OMe



t-Bu



OH



O OMe



4.



or



t-Bu



Knoevenagel O



3. H3O



-CO2 Ph



H



H



O 3.



Ph



O



OH O



Ph



Michael



Ph



2.



CO2R O



RO2C



O



- OMe



-H O



CO2Me 5.



O



O



CO2Me



1. OMe



OMe



OMe



O



CO2Me



- OMe Dieckmann



O



O



O



O



2. H3O -CO2



O



O



OH, ROH



6.



conj. add'n



retro-aldol



OH O



O



O



HO



OH



7.



-H2O



-H O



Et



O



Et



O Et



O Et



19.1 Reactions



414 • Chapter 19 Carbonyl Condensation Reactions



H



8.



O



1. BrCHCO2Me



O



O



Br



taut



CO2Me O H



-CO2



OH



H



O



-Br



CO2Me



H) O



2. H3O, '



O O



O 9. MeO



O



1. base



CHO



O



MeO



MeO



CO2 (H



O



O O



O



NAS



O



CO2H 2. acid



MeO



CO2



MeO



-CH3CH2CO2H



OCH3



OCH3



OCH3



base



10.



-H2O



Michael



O



aldol (Robinson annulation)



O



O O O



OH



OH



11. O2N CH3



PhCHO



O2N CH2



NO2



Ph



CO2Me



MeO



retro-Claisen



MeO



O



O



O 2. NH2NHPh conj. add'n



OH



O



O O



1.



O



O



O



-H2O



aldol



OMe Cl 2. O O



O



O



-Cl



CO2Me



O



15.



OH



O



Cl



1. :CH(CO2Me)2 Michael



mesityl oxide



19.1 Reactions



NHNHPh



O



O 3. H3O, '



H



O



aldol



-CO2



O O



OMe



O



1. NaOEt



14.



CO2Me



O



13.



NO2



Ph



O



OMe, MeOH



12.



or



H



O



O



O O



-MeO



OMe CO2Me



-H2O



2. H3O O CO2Me



-CO2



O dimedone



Solutions • 415



HO



CHO



CHO 16.



O



OH



O



-2 H2O



O



O



CHO HO



OH



OH



17. OH



O



OH



H



O



HO



H



retro-aldol



H



OH



(H



OH



HO



+



taut



O



HO



O



H



H



O O 1.



N



18.



2. H3O



3. NaOH



N



O



O



19.



O



O



O H



mixed



+



H



H



aldol



O



O again



H CH2OH



HOCH2



O again



H CH2OH



O



Ph



~H taut



H



C(CH2OH)4



O



OH



HO H OH



H



mixed Cannizzaro



OH



O



OH



20.



+



H OH



O HCO2



HO



O



H



-H



H mixed aldol



-H2O HO



Ph



Ph



OH CHO OH



OH



O



CHO O



+



O H



O OEt



-HOEt transesterification



O



OH



O



again



+ OHC O



O



OH



O



1. SCoA



O



O OHC



-2 H2O aldol



O



O CO2H



-H2O



KOH



+



23.



CO2Et



CO2Et



2. H



O



CHO 22.



CO2Et



CO2Et



1. :CH(CO2Et)2



21.



SCoA CO2H



2. H3O



OH CO2H



19.1 Reactions



416 • Chapter 19 Carbonyl Condensation Reactions



OMe MeO



CHO



24.



+



OMe



CN



1. OEt



2. H3O



MeO HO



OMe



OMe



CN OMe MeO



O



(H



OMe



O



-CO2



MeO



-H2O HO



OMe



O



H



O



OH



O



1. H3O



25.



2. KO-t-Bu



conj. add'n



taut H



retro-aldol O (H



O O



H



retro-aldol



O



O



H



O



O



CO2



CO2 26.



taut



O2C



CO2



O H)



CO2



H



H



aldol O



O



O



CO2



CO2



CO2 HO O



C



OEt 27.



O



taut



C



O



O



O



O -H2O



O



H)



O taut OH



OH



19.1 Reactions



H OH



OH



H OH OH



OH



aldol O



O O



O2C



O



O



Michael EtO (H



O



HO



SCoA



O



O



O



CO2 hydrolysis



SCoA



28.



OMe



H



O



OH



~H OH aldolase



OH



OH



OH



Solutions • 417



O CO2



29. O C 2



+



CO2H



OH



O



CO2



O2C



SCoA



H3O



SCoA



HO



CO2H CO2H



O



O



OH



30.



O



O [O]



H3O



SCoA



O SCoA



OH SCoA



SCoA



O



HO



O



O



O



C



-CO2



O A



O 32. a.



O H



D-A



+



H EtO



OH



B



1. H2 / Ni (1 equiv)



EtO O



CoA



OH



H3O



SCoA CoAS



S



retro-Claisen



[H]



O Claisen



H)



taut



+



O 31.



SCoA



SCoA



O



HO H



O



OH



H



2. a. LiAlH4 b. H



EtO a vinyl ether



HO



HO H OH



H



H



aldol -H2O



O



H O



R O



taut C H CO2Et



2. MVK, base



1. H3O



HO H H



Michael



OH



O



R



R 3. +H C C OEt OH



2. a. EtO C C MgX b. H



R



OH



O



X , t-BuO



1.



b.



H



O



R



+H2O C C OEt OH



C C OEt



-H2O



-H



R C C OEt



19.1 Reactions



418 • Chapter 19 Carbonyl Condensation Reactions



O



O



1. a. OsO4



c.



O



2. KIO4



OH OH



O



b. NaHSO3 OTs



OTs



O O



OTs



O



O



3. OMe -H



-OTs H



OTs O



O



O



O



1. RO2CCO2R



d.



O



I



2. I2, OH O



O



OR



I



O



CO2R



CO2R 3.



O O



I



O



I



O



C OH O



O OH



C



I



OH I



O



'



O



-CO2, -I



O



O



O ~H



taut



O



O



O



-CO2



O



O



I



I C O O



OAc



O



taut 4. KOAc SN2



OAc



OAc NC



OH



O O



O



1. HCN



e.



CN



2. -H2O



OAc



O



3. KMnO4,



OH



O O



OAc



4. H3O



cortisone



NC



OH -HCN



O



OAc O (H OH



O cortisone acetate



O 33.



CO2Me



1. - OMe Dieckmann



CO2Me



19.1 Reactions



O O OMe



2. H3O, ' -CO2



Solutions • 419



O OMe



34. O2N CH2 (H



O2N CH2



H OMe



OH



H



O O



OH O



H) NO2



O2N



35.



O N



Na O



NO2



O Et3N



-H



O N



O



O



+H



O



-H



O



Michael



O



taut



19.2 Syntheses O 1.



O



Ph



+



H



OH



O 1. H3O



Ph



2. H2 / Pt Ph



-H2O



Ph



Ph



Ph



O O 2.



N



1. H



+



-H2O



N H



N



2. O



O 3. H3O



O



O H



3. O



OH, ROH O



OH O



4.



O H



H



H3O



O



H



H



O



OH



O



-H2O



O O



O 5.



1. OH (aldol) -H2O



HO 2. H2 / Pd



3. H2SO4 (E1) 4. H2 / Pd



19.2 Syntheses



420 • Chapter 19 Carbonyl Condensation Reactions



O 6.



1. LDA 2. MeI



O 4.



3. Cl2, H



HO



H (protect)



Cl



6. MeLi



PPh3 7. acetone Wittig



O



1. NaCH2CO2R



O 2. OR, HOR



OR



Claisen



CO2R



O



O



O



CO2R



Dieckmann



OR



O



O



O



O



O 1. Cl2, H



O



3. H3O



8. 2. KO-t-Bu (E2)



5. NaH (2 equiv)



4. CrO3, H



O



O



O



O 7. H



Ph



6. PhCH2Br



Ph



O



.



9.



4. H



N H



N



,H



O 5.



Cl



H



-H2O



3. PCC



(1 equiv)



O



O



1. BH3 THF 2. H2O2, OH



O



5. Ph3P:



O



O 7.



O



Cl



8. H3O



- via a Wittig, not a mixed aldol!



CO2R



O



OH



H



6. H3O



OH O 10.



1. CH2O,



H



O



OH



mixed aldol



H



O



OH 2. NaBH4



OH



3. H



O



O OR, ROH



+



11. O



O



1. O3



Michael



O



O



-H2O, aldol



O



3. KOH, EtOH



-H2O



aldol



2. Zn, H O



O



O



O



12.



19.2 Syntheses



OR, ROH



OH



Solutions • 421



1. Br2, H 2. ethylene glycol, H



O 13.



5.



O



O



O



PPh3



3. Ph3P: (SN2) 4. n-BuLi



O



6. H3O



- the reaction of cyclohexanone with acetone via an aldol would yield four possible products! O O



O



O 1. OR, HOR



14.



3.



O



OR



OR, -H2O



Michael



2. MeI O



H



2. Zn, H



H O



3. H



O



aldol



H



O



O



O



-H2O



H



O



O



O



OH, HOR



3



O



OH



O



15.



aldol



O



O



O



1. O3



16.



,



aldol



aldol, -H2O



-H2O



conj. add'n O



19.3 Mechanisms O



OH



OH +H



1.



O taut



-H



OH taut



retro-aldol



HO



H) O



O



O -H -H2O



O



O



O



OH



(H ~H



+H



OH2



OH



1,2-R: shift



O



aldol



O O



2. :CH2 N N:



N N:



+



N2



19.3 Mechanisms



422 • Chapter 19 Carbonyl Condensation Reactions



O



O



O



H) OEt



retro-



3.



O O



O CO2Et



OEt



Claisen



OEt



O



OEt



H) OMe



4.



OMe



OMe



1. conj. add'n NH



O



O



Me



:NH2Me O



1. again



OMe O



Me



CHBr3



OH



O



Br3C:



O



N



-Br



Cl



H



OH



-HBr HO Br



CO2Et



CO2Et



1. OEt,



O



CO2Et -H2O



aldol O



O



Michael



Br



-Br



O



O



O



Br



HO



OH Cl



O



6.



O



Cl



CBr2 Br



Cl



CO2Et



2. OMe -H



OMe



Dieckmann



O Cl



O



OMe



- OMe N Me



N



CO2Me



O



O



MeO



5.



Me



O HO



O



(H O



H) OH



2. H2O, OH



O



3. ' O



O



O H



7.



O



OH



-CO2



O O



O



O H



1.



-H2O



2. H



aldol O



(H



O



-H



O



O



8.



OEt OEt



19.3 Mechanisms



retroClaisen



O



O OEt



+



EtO



O EtO O Ph



O



Claisen - OEt



EtO



Ph



Solutions • 423



O 9.



OH



O



OH, Michael



O



CHO



CHO



HO



H



OH



O



aldol



HO



O



O



(H



O



O



O



H O



~H



- OH -HCO2 RO (H



HO



HO



HO



HO



H O 10.



OH



OH



H



OH O



OH OH



(H



taut



O



H



OH



O



OH



(H



OH



taut



OH



OH



OH



H



O



OH



OH OH A



(H



O H



D-D-fructose



OH



retro-



H



O (H



OH A



R2N



R2N



CO2R (H Br



Br



OH



Ph



12.



O



base



Ph



O



-H



Br



R2N Br



O R2N



OR (H N



Ph



O



OR O



Ph



Ph - OR



Ph RO2C



O



1. OMe



O



(H



N



-H



O



OR



-Br



NH



CO2R



13.



OH



CO2R



NH



NH



O



~H taut



OH



CO2R



RO2C



OH O



H



HO



H



(H



+



aldol



O



RO2C



H



O



HO



11.



-H



HO



HO



R2N



OH



OH



OH



-H



Ph



CO2R



Ph



CO2



:B



O



O



O O



O



O



H) OMe



O



19.3 Mechanisms



424 • Chapter 19 Carbonyl Condensation Reactions



OH



OH 2. H



13. (cont.)



-H



O



OR



O



retro-



O CO2R



H



O



OR



O ~H



CO2R Dieckmann



OR OR



OR



EtO



-H



O EtO



H)



O



EtO



OEt



EtO O



O EtO



O



O O



O



O



EtO (H O



O



O



O 1. a. O3



2. OH



16.



O



b. Zn, H



O



O



O



O



1.



H) NH, H



O



-H2O



OH H



-H N



3. H3O



A Et



A - a dienamine 2. EtI (SN2)



O



3. H3O



O Et



I



N



(H



2. EtI (SN2) N



aldol



OH



+H N



O



HO (H



-H2O



17.



O



O



O



O 15.



O



Claisen



OR



O



O



O



O



OR 14.



(H



O



taut



OH



N



Et



A I Et



O



O



O



H B



:B 18.



taut



Michael MeO



Michael OMe



O



19.3 Mechanisms



O



O



CO2Me



CO2Me



Solutions • 425



O



O



O



O



1. NaH



19.



2. H2O



MeO



MeO O



O



OH R'



R



R' =



O



HO HO



R'



taut, +H2O



HO



O



O



R'



O R



R'



21. a. Mannich



b.



O H



I



R' HO O



R



NH2 5. H R



[H]



N H H O



-H2PO4



HO



CO2H



O CO2H OH



HO



CO2H



O



CO2H



O H H3N



OH



H OH OH



3. -H2O, taut



HO



CO2H +H



aldol



-H2O NH2 H



HO2C



taut



O



O



H



HO



H, -H2O O



OH CO2H 4. H



aldol



H



CO2H



H3N



CO2Et



N H



H) O



HO



HO



OEt , H



OH (H



O H) -H2O



N R



-H2O



2. aldol



O



N H H



HO2C



OH



HO2C



R



SN2



O



OH



O



1. H3O



R O (H OH R' H



OH



H



(H



aldol- like



3. -NMe3



N H O



H



OH



CN



R



SN2



4. LiAlH4



R'



N



2. -I



CN



N H



H3N



-H2O



:N C:



NMe2 Me R



c.



23. H)



HO H) O



R'



N H



22. PEP



like



OH O R



HO O



OH



R O



(H O



R'



taut



HO O



O



R'



retro-aldol-



O (H



R'



O



MeO



OH



R OH



H O



R'



O



MeO



O



OH



20.



(H



HO



O



CO2H



CO2H



OH



CO2H



O



CO2H



-H (H H3N



N H



H3N



N H



19.3 Mechanisms



426 • Chapter 19 Carbonyl Condensation Reactions



O



O



O



O



Cl



N



-Cl



N



N Cl O



HS



O



O



O



OMe



+MeOH



HS



- OMe taut



N



N



-H



O



H



O



O



Cl



O



O



H)



N



HS



O



-HOAc



~H O



b.



H)



H)



O



O



N



O O



-HOAc



O



NH



Cl



O AcO



O O(H



24. a.



O



O



OMe



HS N H



N MeO (H



O



O



O



O



O



O



-CO2



25.



O



SR



RS



SR



SR



R'



1.



S



R N



S



R N R N



S



OH



H



R



R N



OH HO



O



H



H



H) O



(H



S



S



- R N



2.



+ O



R'



R' O H



R'



R' 26.



O



- SR



O



-H



R



O (H OH



-H O R



H



H



OH O



O 27. a.



Claisen SCoA



OH aldol-



SCoA like O (H



-HSCoA O H



O



O



OH



SCoA SCoA



O



partial SCoA



hydrolysis CO2



O



SCoA



PO3H



b.



O O O



19.3 Mechanisms



P2O6H 2-



-CO2 -HPO4



O



2-



(H H



P2O6H 2-



~H



O



P2O6H 2-



CHAPTER 20 AMINES 20.1 Reactions O 1.



O



NH



O CO2Et H CO2Et



1. base N



2. ClCH(CO2Et)2 O



SN2



(CO2Et)2



3. base N



4.



Cl



O



O



O phthalic acid



CO2H



+



CO2H



5.



NH3



N



5. H3O



CO2H



-CO2 O



Cl NH2 2.



OH



1. (XS) CH3I



3. OsO4



2. Ag2O, H2O, '



4. NaHSO3



OH



O O



5. (XS) COCl2



O O



NH2 6. NH3



O



-2 HCl



NH2



Me 3.



1. (XS) MeI



OH



2. Ag2O, H2O



O



2. Ag2O, H2O



N



HO



'



O



-H2O



HO



H



Ph2N Me Et



HO OH



1. (XS) CH3I N



H



N



HO



O



Me



Me H)



H



Me 2. ' Cope



Et



Me



N HO



NPh2



O 1. H2O2



H2C CH2



+



3. ' -H2O



N



HO



5.



3. ' -H2O



1. (XS) MeI N H



6.



OH



2. Ag2O, H2O



4.



Me N Me



Me N



Cl O



-2 HCl O



N H



O



(cis-elimination)



H +



Et



Ph2NO



Me



20.1 Reactions



428 • Chapter 20 Amines



O CO2H



7.



O



1. SOCl2



3. ', -N2



N N N



2. NaN3



N N N



OH



O



-CO2



NH2



N H



H2O OH



OH OH



OH OH



1. (XS) MeI



N C O



Curtius



OH



taut



8. 2. Ag2O, H2O, ' NHMe



HO



HO



O D



D



H



H



9. H



H



anti-periplanar



Hofmann elimination



NMe2



NMe3 D Cope elimination



D



syn-



(H N O O 10.



Me2NH



+ H



O



H



+H



H



-H2O



H



O



HONO



Cl



1. Li 2. CO2



Ph



3. H



13.



Me



N H



4. SOCl2 CO2H



O



20.1 Reactions



5. NH3



O



O taut



HN



N H



Ph



O



NH2



6. Br2, OH



Me



NH2



a carbinolamine



N H



Ph



NH2



H2O



O



OH



Br2, OH H2O



N



-N2



OH NH2



O



OH H2O



N O



N H



12. Ph



OH



N N



N



N



OH



taut



NH2 11.



-H



N



N



O NH3



+



Me



H



Solutions • 429



1. NaNH2 14. Ph2CHOH



2.



Ph2CH



O



3. PBr3



O



O



Ph2CH



Br 4. Me2NH



O



Ph2CH



NMe2



O



O N 1. HBr



15.



2. Br



ROOR



O



O



3. H2NNH2



NH NH



+



NH2



O H



Me2N



O



(H O



OH



3. H



1. MeI



16.



2. Ag2O, H2O, '



MeO



pinacol-like rearrangement



MeO



Ph



Ph OH



17. OH



MeO



O



NH2



1. SOCl2 2. NH3



3. Br2, OH



O



OH



H2O



Ph



Ph 4.



N



I



2



NH2



OH



18.



CO2H



OH



CO2



1. a. Br2, PBr3 b. H2O (H-V-Z)



N 3. HCN, CN



4. H2 / Pt



Br 19.



Br NH2



1. Br2



Br



CN 20.



CN



1. Cl2 FeCl3 Cl



2. NaNO2 HCl



CN



2. NaNH2 (NAS via benzyne)



Br N2



3. KI



I



Br



-N2



Br



CN



3. KNO2, H



CN



CO2H



CO2H



CO2H 3. Fe, HCl



21. NO2



CO2H



5. H3O



4. CuCN NH2



CO2H 1. KMnO4, H 2. fuming nitric acid



H2N



conj. add'n



2. KO-t-Bu (E2)



NH2



CO2H



CO2H C



4. NaNO2, HCl



5. HBF4 N2



F



20.1 Reactions



430 • Chapter 20 Amines



NHAc 22.



Cl



1. Br2, Fe 2. Cl2, Fe 3. H2O, OH



N2



4. ICl, Fe 5. HONO



Br



Br



1. NaH O



N Me



-H2



N



O



N Me



2. H3O -OMe



O



N Br



OH



-HBr



N



H)N Me



NHMe



4. HBr



H



H



reductive amination



NaBH3CN HO



HO



-CO2 O



N



HO



N C NH



N Me



3. NaBH4



5. '



1.



I



O



O



O



Br



N N Me



HO



24.



5. H3PO2



I



CO2Me 23.



Cl



Cl NH2



OH



O



N HO



OH



O



2. HCl N H



Cl



HO



20.2 Syntheses 1. Br2, hv 2. Mg



1.



3. CO2 4. H



2.



3.



1. Cl2, '



1. Br2, hv 2. KOH (E2)



20.2 Syntheses



5. SOCl2 CO2H



Cl



6. NH3



NH2



7. Br2, OH



O



2. KCN



CN 3. LiAlH 4



SN2



4. H



4. potassium phthalimide



3. HBr R2O2



Br



5. H2O, OH



NH2



H2O



NH2



6. (XS) MeI NH2 7. Ag2O, H2O, '



Solutions • 431



1. KMnO4



4.



H



OMe MeO



2. SOCl2



OH



3. NH3



O



1. (XS) MeI OMe 2. Ag O, H O, ' 2 2



4. Br2, OH



NH2



OMe MeO



OMe OMe 5. H2NPh



5. 3. O3 NH2 4. Zn, H



NH2



H2O



O



MeO



OMe OMe



MeO



OMe



NaBH3CN H



O



H



NPh



NHPh



O N K 1. NBS, ROOR



6. O2N



2.



Br



O



NH2



3. H2O, OH



O2N



O2N



O CO2H



1. KMnO4, H



7. O2N



1. (XS) CH3I NH2



9. HO3S



NO2



H2O



3. O3



2. Ag2O, H2O



O



HO3S



N2



CO2Me



OH



2. CrO3, H O



3. PhNEt2



HO3S



3. '



N



O



N N



NEt2



4. MeI 5. Ag2O, H2O, '



-CO2



Ph



O



OH



O



N 1. H3O



10.



O2N



H



2. NaNO2, HCl



N



5. HO



4. Zn, H



1. SnCl2, H



NH2



NH2 4. Br2, OH



3. NH3 O N 2



O2N



8.



2. PCl3



O



6. repeat 4. and 5.



O



O



(double Hofmann)



O



11.



1. HONO2, H2SO4



Cl



Cl



3. SnCl2, HCl



Cl



Cl



5. H3PO2



Cl



Cl



4. NaNO2, HCl



2. Cl2, Fe NO2



N N



20.2 Syntheses



432 • Chapter 20 Amines



NH2 O2N



13.



NHAc



1. Ac2O



12.



2. SnCl2, HCl



NHEt2 O



4. H2O



H2N



1. CrO3, H



OH



Et2N



NHAc



3. KNO2, H HO



Cl



Et2N



2. SOCl2



NEt2 O



O



-HCl



NH



Fe, H NO2



NH2



1. HONO2, H2SO4



14.



NH2



2. Fe, HCl NO2



OMe



OH 3. NaNO2, H



5. KOH



4. H2O



6. MeI



N2 1. SnCl2, HCl



3. PhNH2



2. KNO2, HCl



-H



15.



N N



H2NMe (-H2O)



16. O



NH2



EAS



[H] N



NaBH3CN, H



NHMe



Me



(alternatively, 1. H2NMe, 2. H2 / Pd) H



H



N



N



N



O 1. mCPBA



17.



2. (XS) MeBr



S



S S



O O



O



1. HONO2, H2SO4 2. SnCl2, HCl 3. Ac2O



5. NO2



S



O



OH



O



OH, H2O



OH



NH2 O2N



OH 7.



N2



OH O2N



20.2 Syntheses



S



NHAc 4. HONO , H SO 2 2 4



18.



N



SN2 S



O



OH



N



Br



O



6. NaNO2, HCl



Solutions • 433



NO2



NO2



1. HONO2, 19. H2SO4



EAS



OH



D



5. H3PO2



D



D



F-C alkylation



OH 3. KNO2, HCl



2. H3O -HOAc



NHAc



D



OH



OH 1. propylene, H



20.



3. Fe, HCl 4. KNO2, HCl



2. DCl



4. H3PO2 NH3



NHAc



20.3 Mechanisms O 1.



N



O



OH



H



O



Br Br



-HBr



H



(H



O N C H OPh



-Br



~H N C



taut



O NH



O N C O



O H)



2.



Br N



N



O 1. Cl2



Ph



HO Ph



OH



CO2 -H



NCl OH, H2O



O



N O



CO2H NH2



CO2



-CO2 2. H



N CO2 H



Cl



-Cl



O CO2



OH taut



N C O



O CO2H 3. NH2



1. HONO



CO2H N N



2. pH 8



O



-H



N N



-CO2 -N2



3. D-A



20.3 Mechanisms



434 • Chapter 20 Amines



O



HO



HO



CN



1. HCN



2. H2



4.



3. NaNO2



Pt



CN H)



O



HCl



O



HO



HO



OH2



OH 5.



N



1. NH2OH



N



2. H



N O



OH taut



NH



OH2



1. PhMgX



O



N



N



MeO



XMg O



XMg O NMe



NMe



NMe



MeO



MeO



MeO



MeO



MeO



MeO Ph



Ph HO



NMe



+H2O



-H



MeO



MeO



6.



OH2 -H2O



-H2O



XMg



N2



-N2



-H



O



NH2



1.



NMe



XMg O



XMg O NMe



2. H MeO



MeO



MeO



MeO



MeO



Ph



Ph Hofmann :



HO



1. (XS) MeI NMe



HO



NMe2



2. Ag2O, H2O, ' MeO



Cl 7.



SN2, -Cl



N N N



20.3 Mechanisms



MeO



N N N



N N N



' -N2



N



Solutions • 435



H) N3 O



HO



N N N



N N N



8.



O



OH



H O



N N N



-N2



NH



~H



N



'



+H



9. N



H



Ph



N



Ph



(H



H



~H Ph



N



Ph



NH2



N



H



H



N NH2 H H



N



H



H



~H



H



H) Ph



-NH4



Ph N H



+H



10.



~H NH2 -H2O



NH2 H



N NH3 H -H



EAS NH



NH



H2C



H



H



NH



H



OH



O



O 11.



Ph



CH3



H taut



CH2O + NH3



(H



O Ph



Ph



O



CH2O, H



Ph



NH2



CH2 N H H)O



Ph



H2C NH2 H)O



O



O



-H Mannich



O Ph , -H



N 3



(again)



O



Ph



N CH2



CHO N (H H



12. CHO H2NMe O



N



Ph



~H



N



-2 CO2



N H



taut



Ph Ph



CO2 N



-H



CO2



O



OH



CO2



O2C



N CO2



-H



O(H



O2C O



-H



H)O



- OH



OH N CO2



O



O



Ph



(again)



acetone dicarboxylate OH



OH ~H



O CH2O, H



CO2



- OH taut



N OH



20.3 Mechanisms



436 • Chapter 20 Amines



OH2 +H



13. a.



N CMe



N



N CMe



O b.



OH2



-H



Me



taut



NHAc



O



+H



-HOAc



O



N C



O H O t-Bu



+H2O, -H



OMe



N C



taut



N H



OMe



OMe OH2



O 14. Ph S Cl O



O H Ph S N Ph O



Ph NH2 -HCl



PhSO3



O 15. a. R



(H



1. OH



+



O 2. CH3I Ph S N Ph SN2 O CH3 O 3. H2O, OH CH3 N Ph S N H Ph O



:B O



2. -HCl



CCl2 Cl



R



Cl



N3



Cl



N N N



b.



O



1.



Cl



:CCl3 -Cl



16. N H



O



NH



H



H N



H Ph H



C



O NH



N



H) N



O H



OH



R N



O



R



NAS



N3



C N H



-HCl



O



R N



-H +H



N H C



O



H N



O C H H C N



Ph Ph



20.3 Mechanisms



OMe



H N



Cl



O C



O



Me



2. -HCl



O



H C C



O



3. -HCl



H N



O



Cl



H N



Cl H)



NH H) R N



O



R



3. -Cl



O NH