Kelompok 4 - Tugas 2 - Ringkasan Sejarah Kimia [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

TUGAS 2 Dasar-dasar Pendidikan Sains Ringkasan Sejarah Kimia Disusun untuk memenuhi



Mata Kuliah : Dasar-dasar Pendidikan Sains Dosen Pengampu : Prof. Dr. Suandi Sidauruk, M.Pd



Oleh :



Adim Al Ardy Ayu Kristen Putri Anjeli Mulyanti Sonia Sari Kavita Br Tariga



(203010208002) (203010208003) (203020208017) (203010208006)



PROGRAM STUDI PENDIDIKAN KIMIA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PALANGKA RAYA 2021



Ringkasan Sejarah Kimia A. Pendahuluan Sekarang kimia memiliki akar yang kembali ke masa prasejarah. Ini pada dasarnya menyangkut metalurgi dan herbal, yang pertama untuk kerja praktis, yang kedua untuk kesehatan. Mengenai yang pertama pasti ada, jika lambat, kemajuan, karena yang terakhir sebagian besar tersandung dalam kegelapan. Lalu ada periode alkimia yang lama. Itu tidak dianggap sebagai sains oleh kami dalam retrospeksi, karena tidak menghasilkan hasil apa pun, atau perkembangan apa pun, tetapi alasan sebenarnya untuk yang terakhir adalah bahwa ia tidak disertai dengan pembangunan teori apa pun, hanya parodi angan-angan yang sama, dan dengan demikian tidak tunduk pada penyelidikan dan modifikasi selanjutnya. Dengan demikian, kegagalan alkimia memberikan kebohongan pada keyakinan optimis bahwa pengamatan tanpa prasangka dapat memberi kita pengetahuan. Tetapi alkimia tetap meninggalkan jejak dan memiliki pengaruh pada perkembangan selanjutnya seperti yang telah ditunjukkan, setelah semua laboratorium modern bersama dengan peralatannya adalah hasil yang kurang lebih langsung, serta rutinitas pencampuran dan pemanasan dan pengumpulan hasil yang biasa. dalam bejana dan retort dengan bentuk yang lucu. Sementara alkemis didorong oleh obsesi sempit, penerus mereka lebih karena keingintahuan umum. Jadi ada pencampuran tanpa henti dari entitas yang berbeda, itu akan menjadi prematur untuk menyebut mereka sebagai senyawa kimia, dan pemanasan selanjutnya untuk mengamati hasil reaksi, beberapa yang agak kasar (daya pikat banyak anak sekolah). Ada beberapa asumsi implisit yang memandu pekerjaan, dan yang tidak diragukan lagi memiliki silsilah yang panjang. Pertama, tampaknya telah muncul aljabar primitif tertentu di mana konstituensi aslinya ada di sebelah kiri, dan hasilnya di sebelah kanan (mungkin di dunia Arab itu akan dibalik). Jadi jika (A + D) + B = C + D dan A + B = F maka C = F. Salah satu kesimpulan dari aljabar primitif ini adalah gagasan bahwa materi dapat terurai menjadi konstituen, jantung kimia. Ide seperti itu tentu saja sudah tua, orang Yunani sudah berbicara tentang primitif Bumi, Air, Api dan Udara (dengan Eter dilemparkan sebagai 'pelawak'), tetapi ini hanya pada tingkat metafisik, mereka tidak tahu bagaimana caranya untuk membuat sintesis secara umum, bahkan tidak bagaimana memulainya. Tapi seperti yang dicatat Popper, metafisika sangat diperlukan untuk sains. Langkah selanjutnya adalah kuantifikasi, bahwa massa sebelum reaksi harus sama dengan massa sesudahnya. Kedua asumsi tersebut mengacu pada sistem tertutup, gagasan penting dalam pengaturan eksperimental sistematis. Sekarang sistem tertutup mudah dibayangkan, tetapi lebih sulit untuk diwujudkan dalam kehidupan nyata, dan bagian dari keterampilan seorang eksperimen yang sukses adalah merealisasikannya, yang berarti menjaga bahan bebas dari kotoran yang tidak disengaja dan melacak serta menampung segala sesuatu yang terjadi kemudian.



B. Sejarah Kimia dari Zaman ke Zaman Sejarah kimia merepresentasikan rentang waktu dari sejarah kuno sampai sekarang. Pada 1000 SM, peradaban menggunakan teknologi yang pada akhirnya akan membentuk basis berbagai cabang ilmu kimia. Contohnya termasuk mengekstraksi logam dari bijihnya, membuat tembikar dan glasir, memfermentasi bir dan anggur, mengeluarkan bahan kimia dari tumbuhtumbuhan untuk obat-obatan dan parfum, mengubah lemak menjadi sabun, membuat kaca, dan membuat paduan seperti perunggu. Kimia dianggap telah menjadi sains yang mapan melalui karya Antoine Lavoisier, yang mengembangkan hukum kekekalan massa yang menuntut pengukuran yang cermat dan pengamatan kuantitatif terhadap fenomena kimia. 1) Zaman Prasejarah (Sebelum Masehi) Logam yang tercatat paling awal yang digunakan oleh manusia tampaknya adalah emas yang bisa ditemukan bebas atau "asli". Sejumlah kecil emas alami telah ditemukan di gua-gua Spanyol yang digunakan selama periode Paleolitik akhir, c. 40.000 SM. Perak, tembaga, timah dan besi asli dapat juga ditemukan, yang memungkinkan pengolahan logam secara terbatas dalam budaya kuno. Senjata Mesir yang terbuat dari besi meteor pada sekitar 3000 SM sangat berharga bak "Belati dari Surga". Reaksi kimia pertama yang digunakan secara terkendali adalah api. Namun, selama ribuan tahun api hanya dipandang sebagai kekuatan mistis yang bisa mengubah satu zat menjadi zat lain (membakar kayu atau mendidihkan air) saat menghasilkan panas dan cahaya. Api mempengaruhi banyak aspek masyarakat awal. Ini berkisar dari aspek kehidupan sehari-hari yang paling sederhana, seperti memasak dan pencahayaan lingkungan, hingga teknologi yang lebih maju, seperti tembikar, batu bata, dan pencairan logam untuk dijadikan alat. Apilah yang mendorong penemuan kaca dan pemurnian logam yang pada gilirannya memberi jalan kepada kebangkitan metalurgi. Selama tahap awal metalurgi, metode pemurnian logam dicari, dan emas, yang dikenal di era Mesir kuno pada awal 2900 SM, menjadi logam berharga. Percobaan filosofis untuk merasionalisasi mengapa zat yang berbeda memiliki sifat yang berbeda (warna, densitas, bau), ada dalam beragam keadaan (gas, cair, dan padat), dan bereaksi dengan cara yang berbeda saat terpapar lingkungan, misalnya terkena air atau api atau perubahan suhu, memicu filsuf kuno mendalilkan teori pertama tentang alam dan kimia. Aspek umum dalam semua teori ini adalah usaha untuk mengidentifikasi sejumlah kecil unsur klasik utama yang membentuk semua ragam zat di alam. Zat seperti udara, air, dan tanah,



bentuk energi, seperti api dan cahaya, dan konsep yang lebih abstrak seperti gagasan, aether, dan surga, biasa terjadi pada peradaban kuno meskipun tidak ada silang budaya. Sekitar 420 SM, Empedokles menyatakan bahwa semua materi terdiri dari empat unsur elementer—tanah, api, udara dan air. Teori awal atomisme dapat ditelusuri kembali ke zaman Yunani kuno dan India kuno. Atomisme Yunani berasal dari filsuf Yunani Demokritos, yang menyatakan bahwa materi terdiri dari atom yang tak dapat dipisahkan dan tidak dapat dihancurkan, pada sekitar tahun 380 SM. Leukippos juga menyatakan bahwa atom adalah bagian materi yang paling tak dapat dipisahkan. Ini bertepatan dengan deklarasi serupa oleh filsuf India bernama Kanada dalam sutra Vaisheshikanya sekitar periode waktu yang sama. Dengan cara yang sama ia membahas keberadaan gas. Apa yang dinyatakan Kanada melalui kitab sutranya, Demokritos menyatakan melalui renungan filosofisnya. Keduanya mengalami kekurangan data empiris. Tanpa bukti ilmiah, keberadaan atom mudah ditolak. Aristoteles menentang keberadaan atom pada tahun 330 SM. Sebelumnya, pada tahun 380 SM, sebuah teks Yunani yang dikaitkan dengan Polibos berpendapat bahwa tubuh manusia terdiri dari empat segi. Sekitar 300 SM, Epikuros mendalilkan alam semesta atom yang tak terhancurkan di mana manusia sendiri bertanggung jawab untuk mencapai kehidupan yang seimbang. Dengan tujuan untuk menjelaskan filosofi Epicurean kepada khalayak Romawi, penyair dan filsuf Romawi Lucretius menulis De Rerum Natura (The Nature of Things, bahasa Indonesia: Sifat Benda) pada tahun 50 SM. Dalam karya tersebut, Lucretius menyajikan prinsipprinsip atomisme; sifat pikiran dan jiwa; penjelasan sensasi dan pemikiran; perkembangan dunia dan fenomena; serta menjelaskan berbagai fenomena selestial dan terestrial. Sebagian besar pengembangan awal metode pemurnian dijelaskan oleh Pliny the Elder dalam Naturalis Historia-nya. Dia berusaha menjelaskan metode tersebut, sekaligus melakukan observasi cepat terhadap keadaan banyak mineral. 2) Zaman Masehi (Abad Pertengahan) Sejarah kimia dapat dianggap dimulai dengan pembedaan kimia dengan alkimia oleh Robert Boyle (1627–1691) melalui karyanya The Sceptical Chymist (1661). Baik alkimia maupun kimia mempelajari sifat materi dan perubahan-perubahannya tapi, kebalikan dengan alkimiawan, kimiawan menerapkan metode ilmiah. Alkimia dipraktikkan oleh banyak kebudayaan sepanjang sejarah dan sering mengandung campuran filsafat, mistisisme, dan protosains. Alkimiawan menemukan banyak proses kimia yang menuntun pada pengembangan kimia modern. Seiring berjalannya sejarah, alkimiawan- alkimiawan terkemuka (terutama Abu Musa Jabir bin Hayyan dan Paracelsus) mengembangkan alkimia menjauh dari filsafat dan mistisisme dan mengembangkan pendekatan yang lebih sistematik dan ilmiah. Alkimiawan pertama yang dianggap menerapkan metode ilmiah terhadap alkimia dan membedakan kimia dan alkimia



adalah Robert Boyle (1627–1691). Walaupun demikian, kimia seperti yang kita ketahui sekarang diciptakan oleh Antoine Lavoisier dengan hukum kekekalan massanya pada tahun 1783. Atom memiliki partikel dasar, yaitu proton neutron dan electron. Proton ditemukan oleh Goldstein pada tahun 1886. Neutron ditemukan oleh James Chadwick pada tahun 1932. Elektron ditemukan oleh J.J. Thompson pada tahun 1897. Bertolak dari karya dan pemikiran Aristoteles, maka banyak para alkimia yang berlombalomba untuk membuat emas dari logam yang murah. Namun mereka telah gagal untuk menyulap logam lain menjadi emas. Waktu itu mereka mempercayai sepenuhnya pada pemikiranpemikiran Aristoteles sehingga pandangan mereka menjadi kabur. Pada umunya para ahli kimia di Eropa hingga abad ke-13 percaya bahwa logam itu terbentuk dari unsur raksa dan belarang. Mereka juga berpendapat bahwa logam-logam biasa dapat diubah menjadi logam yang lebih mulia yakni emas. Pendapat ini didasari oleh kepercayaan bahwa semua benda dibentuk oleh ―badan dan roh‖, seperti halnya manusia. Mereka telah melakukan penyulingan atau destilasi, yaitu memanaskan suatu zat cair hingga mendidih dan uap yang terbentuk didinginkan hingga mengembun kembali. Dari hasil penyulingan tersebut mereka berharap dapat memperoleh roh yang merupakan unsur utama dari suatu zat, yang dapat mereka gunakan untuk meningkatkan kemurnian suatu bendalain. Dengan pandangan ini mereka percaya bahwa mereka akan dapat melakukan transmutasi terhadap logam biasa hingga menjadi emas yang mereka anggap sebagai logam yang paling mulia. Di antara logam-logam yang mereka kenal, hanyalah raksa yang dapat disuling, karena itu raksalah yang menjadi pusat perhatian dari ahli kimia pada masa itu. Pada tahun 1317 Paus John XXII mengeluakan maklumat yang melarang dilakukan praktek alkimia. Dunia Islam telah mengalami perkembangan yang cukup pesat dalam ilmu pengetahuan tak terkecuali dengan Ilmu Kimia. Ilmu kimia di kemudian hari berkembang sangat pesat dan dikenal banyak orang. Tapi, hanya sedikit yang tahu siapa sejatinya orang pertama yang menemukan ilmu eksakta tersebut. Kimiawan Barat paling awal, yang hidup di abad pertama setelah masehi, menemukan peralatan kimia. Bain-marie, atau penangas air (bahasa Inggris: water bath) dinamai untuk Mary the Jewess. Karyanya juga memberikan deskripsi pertama tentang tribikos dan kerotakis Cleopatra the Alchemist menggambarkan tungku dan telah dikreditkan dengan penemuan alembik. Kemudian, kerangka eksperimental yang dibuat oleh Jabir ibn Hayyan mempengaruhi para alkimiawan karena disiplin tersebut bermigrasi melalui dunia Islam, kemudian ke Eropa pada abad kedua belas. Selama Renaisans, alkimia eksoteris tetap populer dalam bentuk iatrokimia Paracelsianisme , sementara alkimia spiritual berkembang, disesuaikan dengan akar Platonis, Hermetik, dan Gnostiknya. Akibatnya, pencarian simbolis untuk batu filsuf tidak digantikan oleh kemajuan ilmiah, dan masih merupakan domain ilmuwan dan dokter yang dihormati sampai awal abad kedelapan belas. Alkimiawan modern awal yang terkenal karena kontribusi saintifik mereka termasuk Jan Baptist van Helmont, Robert Boyle, dan Isaac Newton.



Kisah Chaucer lebih mengekspos sisi kecurangan alkimia, terutama pembuatan emas palsu dari zat murah. Kurang dari seabad sebelumnya, Dante Alighieri juga menunjukkan kesadaran akan kecurangan ini, sehingga dia menulis menyerahkan semua alkimiawan ke Inferno. Tidak lama kemudian, pada tahun 1317, Paus Yohanes XXII Avignon memerintahkan semua alkimiawan meninggalkan Prancis karena telah membuat uang palsu. Sebuah undang-undang diloloskan di Inggris pada tahun 1403 yang membuat "penggandaan logam" dapat dihukum mati. Meskipun ada tindakan ini dan lainnnya yang tampaknya ekstrem, alkimia tidak mati. Kelas bangsawan dan istimewa masih berusaha menemukan batu filsuf dan obat mujarab kehidupan untuk diri mereka sendiri. Juga tidak ada metode ilmiah yang disepakati agar eksperimen dapat diulangi. Memang, banyak alkimiawan memasukkan informasi yang tidak relevan ke dalam metode mereka seperti waktu pasang surut atau fase bulan. Sifat esoterik alkimia serta kosakatanya yang dikodifikasi tampaknya lebih berguna dalam menyembunyikan fakta bahwa mereka sebetulnya sama sekali tidak yakin. Pada awal abad ke-14, keretakan tampak tumbuh menggoyang kekokohan alkimia; dan orang menjadi skeptis. Jelas, perlu ada metode ilmiah agar eksperimen dapat diulang oleh orang lain, dan hasilnya perlu dilaporkan dalam bahasa yang jelas yang menjelaskan apa yang diketahui dan tidak diketahui. 3) Zaman Akhir Abad Ke-17 dan Ke-18 (Kimia Awal) Pada Zaman ini banyak tokoh Kimiawan yang lahir dan mencetuskan penemuanpenemuannya. Meskipun arsip penelitian kimia berasal dari karya Babilonia kuno, Mesir, dan terutama bangsa Arab dan Persia setelah Islam, kimia modern berkembang dari zaman AntoineLaurent de Lavoisier, seorang kimiawan Prancis yang dianggap sebagai "bapak kimia modern". Lavoisier menunjukkan dengan cermat bahwa transmutasi air menjadi tanah tidak memungkinkan, namun sedimen yang diamati dari air mendidih berasal dari wadah. Dia membakar fosfor dan belerang di udara, dan membuktikan bahwa produk tersebut memiliki bobot lebih dari aslinya. Meski begitu, berat yang didapat pun hilang dari udara. Jadi, pada tahun 1789, dia menetapkan Hukum Kekekalan Massa, yang juga disebut "Hukum Lavoisier." Dengan mengulang eksperimen Priestley, Lavoisier menunjukkan bahwa udara terdiri dari dua bagian, satu di antaranya digabungkan dengan logam untuk membentuk calx (kalsium oksida). Dalam Considérations Générales sur la Nature des Acides (1778), dia menunjukkan bahwa "udara" yang bertanggung jawab atas pembakaran juga merupakan sumber keasaman. Tahun berikutnya, dia menamakan bagian ini sebagai oksigen (bahasa Yunani untuk "bekas asam"), dan lainnya dinamakannya azote (bahasa Yunani untuk "tanpa kehidupan"). Oleh karena itu, Lavoisier mengklaim penemuan oksigen bersamaan dengan Priestley dan Scheele. Dia juga menemukan bahwa "udara yang mudah terbakar" yang ditemukan oleh Cavendish - yang ia sebut hidrogen (bahasa Yunani untuk "bekas air") - digabungkan dengan oksigen untuk menghasilkan embun, seperti yang dilaporkan oleh Priestley, tampaknya merupakan air. Dalam Reflexions sur



le Phlogistique (1783), Lavoisier menunjukkan teori flogiston terkait pembakaran menjadi tidak konsisten. Mikhail Lomonosov secara mandiri membentuk tradisi kimia di Rusia pada abad ke18. Lomonosov juga menolak teori flogiston, dan mengantisipasi teori kinetika gas. Lomonosov menganggap panas sebagai bentuk gerak, dan menyatakan gagasan kekekalan materi. Lavoisier bekerja dengan Claude Louis Berthollet dan lainnya untuk merancang sebuah sistem tatanama kimia yang berfungsi sebagai dasar sistem penamaan senyawa kimia modern. Dalam Methods of Chemical Nomenclature (1787), Lavoisier menemukan sistem penamaan dan klasifikasi yang sebagian besar masih digunakan sampai sekarang, termasuk nama-nama seperti asam sulfat, sulfat, dan sulfit. Pada 1785, Berthollet adalah orang pertama yang mengenalkan penggunaan gas klorin sebagai pemutih komersial. Pada tahun yang sama ia pertama kali menentukan komposisi unsur gas amonia. Berthollet pertama kali menghasilkan cairan pemutihan modern pada tahun 1789 dengan melewatkan gas klorin melalui larutan natrium karbonat - hasilnya adalah larutan lemah natrium hipoklorit. Oksidator dan pemutih klorin kuat lainnya yang dia teliti dan yang pertama kali dihasilkan, kalium klorat (KClO3), dikenal sebagai Garam Berthollet. Berthollet juga dikenal karena kontribusi ilmiahnya terhadap teori kesetimbangan kimia melalui mekanisme reaksi kimia balik. Kimiawan Inggris Humphry Davy adalah pelopor Hukum-hukum baru unsur dan gas dalam bidang elektrolisis, menggunakan tumpukan volta karya Alessandro Volta untuk memecah senyawa umum dan dengan demikian mengisolasi serangkaian unsur baru. Dia melanjutkan elektrolisis lelehan garam dan menemukan beberapa logam baru, terutama natrium dan kalium, unsur yang sangat reaktif yang dikenal sebagai logam alkali. Kalium, logam pertama yang diisolasi dengan elektrolisis, ditemukan pada tahun 1807 oleh Davy, yang mengambilnya dari bahan baku kaustik potas (KOH). Sebelum abad ke-19, tidak ada perbedaan antara kalium dan natrium. Natrium pertama kali diisolasi oleh Davy pada tahun yang sama dengan melewatkan arus listrik melalui natrium hidroksida (NaOH) cair. Ketika Davy mendengar bahwa Berzelius dan Pontin menyiapkan amalgam kalsium melalui elektrolisis kapur dalam merkuri, dia mencobanya sendiri. Davy berhasil, dan menemukan kalsium pada tahun 1808 dengan mengelektrolisis campuran kapur dan merkuri oksida. Dia bekerja dengan elektrolisis sepanjang hidupnya dan, pada 1808, dia berhasil mengisolasi magnesium, strontium dan barium. Davy juga bereksperimen dengan gas dengan menghirupnya. Prosedur percobaan ini hampir terbukti fatal pada beberapa kesempatan, namun mendorong penemuan efek dinitrogen monoksida yang tidak biasa, yang kemudian dikenal sebagai gas gelak. Klor ditemukan pada tahun 1774 oleh kimiawan Swedia Carl Wilhelm Scheele, yang menyebutnya "dephlogisticated marine acid" (lihat teori flogiston) dan secara keliru dianggap mengandung oksigen. Scheele mengamati beberapa sifat gas klorin, seperti efek memutihkan lakmus, efek mematikan serangga, berwarna kuning-hijau, dan baunya yang mirip dengan air raja. Namun, Scheele tidak bisa mempublikasikan temuannya saat itu. Pada tahun 1810, klorin diberi nama saat ini oleh Humphry Davy (berasal dari kata Yunani untuk hijau), yang menegaskan bahwa klorin



sebenarnya adalah unsur. Ia juga menunjukkan bahwa oksigen tidak dapat diperoleh dari zat yang dikenal sebagai asam oksimuriat (larutan HCl). Penemuan ini membalikkan definisi Lavoisier tentang asam sebagai senyawa oksigen. Davy adalah dosen yang populer dan mampu bereksperimen. Pada tahun 1815, Humphry Davy menemukan lampu Davy, yang memungkinkan penambang di dalam tambang batu bara aman bekerja dengan adanya gas yang mudah terbakar. Terdapat banyak ledakan tambang yang disebabkan oleh lembap api (bahasa Inggris: firedamp) atau metana yang sering tersulut oleh api terbuka dari lampu yang digunakan oleh para penambang. Davy membayangkan penggunaan kasa besi untuk menutupi nyala api lampu, sehingga mencegah pembakaran metana di dalam lampu agar tidak menyebar ke atmosfir luar. Meskipun gagasan tentang lampu keselamatan (bahasa Inggris: safety lamp) telah ditunjukkan oleh William Reid Clanny dan oleh insinyur tak dikenal (tapi belakangan sangat terkenal) George Stephenson, penggunaan kawat kasa Davy untuk mencegah penyebaran api digunakan oleh banyak penemu lainnya pada desain mereka selanjutnya. Ada beberapa diskusi mengenai apakah Davy telah menemukan prinsip-prinsip di balik lampunya tanpa bantuan karya Smithson Tennant, namun pada umumnya disepakati bahwa kedua pria tersebut masing-masing bekerja secara terpisah. Davy menolak untuk mematenkan lampu tersebut, dan penemuannya menyebabkan dia dianugerahi medali Rumford pada tahun 1816. Fisikawan Italia Alessandro Volta membuat sebuah alat untuk mengakumulasi muatan besar dengan serangkaian induksi dan pembumian (grounding). Dia meneliti penemuan "listrik hewan" tahun 1780 oleh Luigi Galvani, dan menemukan bahwa arus listrik dihasilkan dari kontak logam berbeda, dan kaki katak hanya bertindak sebagai detektor. Volta mendemonstrasikan pada tahun 1794 bahwa ketika dua logam dan kain atau kardus yang direndam air garam disusun dalam rangkaian, akan menghasilkan arus listrik. Pada tahun 1800, Volta menumpuk beberapa pasang cakram tembaga (atau perak) dan seng (elektroda) secara berselang-seling yang dipisahkan oleh kain atau kardus yang direndam dalam air garam (elektrolit) untuk meningkatkan konduktivitas elektrolit. Bila kontak bagian atas dan bawah dihubungkan oleh kawat, arus listrik mengalir melalui tumpukan volta dan kabel penghubung. Sehingga, Volta diakui sebagai penemu baterai listrik pertama untuk menghasilkan listrik. Metode Volta yang menumpuk pelat bundar tembaga dan seng yang dipisahkan oleh cakram karton yang dilembabkan dengan larutan garam disebut tumpukan volta. Dengan demikian, Volta dianggap sebagai pendiri disiplin ilmu elektrokimia. Sebuah sel galvani (atau sel volta) adalah sel elektrokimia yang menghasilkan energi listrik dari reaksi redoks spontan yang terjadi di dalam sel. Sel ini biasanya terdiri dari dua logam berbeda yang dihubungkan oleh jembatan garam, atau setengah sel yang dipisahkan oleh membran berpori.



Pendefinisian ilmu kimia pada masa ini dimulai dengan adanya teori flogiston. Teori ini dikemukakan oleh Georg Ernst Stahl. Kata flogiston berasal dari kata Yunani ―phlox‖ yang berarti nyala api. Apabila suatu benda terbakar atau suatu logam dikapurkan, maka flogiston akan keluar dari benda tersebut dan diberikan kepada udara di sekitarnya. Menurut Stahl pada hakekatnya semua benda mengandung flogiston. Suatu benda mempunyai sifat mudah terbakar apabila di dalamnya terdapat banyak flogiston dan benda yang banyak flogiston dapat menumbangkan flogistonnya kepada benda lain yang kekurangan flogiston. Jadi menurut Stahl ilmu kimia didasarkan pada teori flogiston ini. Seorang ahli kimia yang masih menggunakan teori flogiston dan dikenal sebagai penemu oksigen adalah Joseph Priestley yang lahir di Inggris Raya pada 1733. Priestley berpendapat bahwa apabila lilin yang menyala dalam penyungkup itu kemudian padam, berarti udara dalam penyunkup tersebut telah jenuh dengan flogiston dan tidak dapat menyerapnya lagi. Oleh karena dalam gas yang baru ia temukan lilin dapat menyala dengan hebat, maka Priestley menarik kesimpulan bahwa gas tersebut tentulah tak mengandung flogiston sama sekali. Karenanya gas itu disebut ―dephlogisticated air‖, sedangkan gas yang ketinggalan dalam pembakaran suatu benda dalam udara biasa (gas sisa) disebut ―phlogisticated air‖. Teori flogiston akhirnya ditumbangkan oleh Antoine Laurent Lavoisier. Dalam experimentnya ia berpendapat bahwa benda hanya dapat terbakar dalam ―air eminemment pur‖, zat yang bukan logam pada pembakaran menghasilkan asam karenanya ―udara murni‖ itu dinamakan oksigen (oxus = asam; gen = membuat), logam berubah menjadi kapur logam dengan jalan mengikat oksigen, proses pembakaran ialah penggabungan kimia antara benda dengan oksigen, jadi bukanlah keluarnya flogiston dari dalam benda. Pada tahun 1803, John Dalton menyatakan bahwa semua materi terdiri dari atom, yang kecil dan tak terpisahkan Upaya praktis untuk memperbaiki pemurnian bijih dan ekstraksinya untuk melebur logam merupakan sumber informasi penting bagi kimiawan awal pafa abad ke-16, di antaranya Georgius Agricola (1494-1555), yang menerbitkan karya hebatnya De re metallica pada tahun 1556. Karyanya menjelaskan proses penambangan bijih logam yang sangat maju dan kompleks, ekstraksi logam dan metalurgi saat itu. Pendekatannya menyingkirkan mistisisme yang terkait dengan subjek, menciptakan basis praktis yang dapat dikembangkan oleh orang lain. Karya tersebut menggambarkan berbagai jenis tungku yang digunakan untuk melebur bijih, dan merangsang minat terhadap mineral dan komposisinya. Bukan suatu kebetulan bahwa ia memberikan banyak referensi kepada penulis sebelumnya, Pliny the Elder dan Naturalis Historia-nya. Agricola telah digambarkan sebagai "bapak metalurgi". Pada tahun 1605, Sir Francis Bacon menerbitkan The Proficience and Advancement of Learning, yang berisi deskripsi tentang apa yang kemudian dikenal sebagai metode ilmiah.[35] Pada tahun 1605, Michal Sedziwój menerbitkan risalah alkimia A New Light of Alchemy yang mengusulkan adanya "makanan kehidupan" di dalam udara, yang kemudian dikenal sebagai



oksigen. Pada tahun 1615 Jean Beguin menerbitkan the Tyrocinium Chymicum, sebuah buku teks kimia awal, dan di dalamnya tergambar persamaan kimia untuk pertama kalinya.[36] Pada tahun 1637 René Descartes menerbitkan Discours de la méthode, yang berisi garis besar metode ilmiah. Karya kimiawan Belanda Jan Baptist van Helmont, Ortus medicinae diterbitkan pada tahun 1648; buku ini dikutip oleh beberapa orang sebagai karya transisi besar antara alkimia dan kimia, dan berpengaruh penting pada Robert Boyle. Buku ini berisi hasil berbagai eksperimen dan menetapkan versi awal hukum kekekalan massa. Tidak lama berselang setelah Paracelsus dan iatrokimia, Jan Baptist van Helmont menyarankan bahwa ada zat substansial selain udara dan menamainya - "gas", dari kata Yunani chaos. Selain mengenalkan kata "gas" ke dalam kosakata ilmiah, van Helmont melakukan beberapa percobaan yang melibatkan gas. Jan Baptist van Helmont juga dikenang saat ini atas sebagian besar gagasannya tentang pembentukan spontan dan eksperimen pohon 5 tahunnya, dan juga dianggap sebagai penemu kimia pneumatik. 4) Zaman Modern Abad ke-19 (Kimia Modern) Sepanjang abad ke-19, kimia dibagi antara mereka yang mengikuti teori atom John Dalton dan mereka yang tidak, seperti Wilhelm Ostwald dan Ernst Mach. Meskipun pendukung teori atom seperti Amedeo Avogadro dan Ludwig Boltzmann membuat kemajuan besar dalam menjelaskan perilaku gas, perselisihan ini akhirnya tidak terselesaikan sampai penelitian eksperimental Jean Perrin tentang penjelasan atom Einstein tentang gerak Brown pada dekade pertama abad ke-20. Sebelum perselisihan diselesaikan, banyak yang telah menerapkan konsep atomisme pada kimia. Contoh utama adalah teori ion Svante Arrhenius yang mengantisipasi gagasan tentang substruktur atom yang tidak sepenuhnya berkembang sampai abad ke-20. Michael Faraday adalah kimiawan awal lainnya, yang kontribusi utamanya pada kimia adalah elektrokimia, di mana (antara lain) sejumlah listrik selama elektrolisis atau elektrodeposisi logam menunjukkan keterkaitan dengan sejumlah unsur kimia tertentu, dan kuantitas yang tetap dari unsur-unsur itu satu sama lain, dalam rasio tertentu. Temuan ini, seperti rasio gabungan Dalton, adalah petunjuk awal sifat atom materi.