VIBRASI - SE 3 (Level2) [PDF]

  • Author / Uploaded
  • yerin
  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Vibration Analysis – Level 2 for assessing machine potential failure modes



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



1



ANALYSIS TECHNIQUES • • • • • • • • • • • • • •



Broad Band Vibration Analysis Bearing Condition Analysis Frequency Analysis (FFT) Time Synchronous Averaging Analysis Time Waveform Analysis Multispectrum Envelope Analysis Constant Percentage Bandwidth Analysis Cepstrum Shaft Orbit Tracking Analysis Vector Analysis (Amp. & Phase) Startup / Coastdown Analysis Impact Test



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



2



Broad Band Vibration Analysis Also know as Overall vibration measurement Typically...



Velocity measurement mm/s, RMS from 2 Hz to 1000 Hz



ISO 10816-3



Displacement measurement um, RMS from 2 Hz to 1000 Hz Can be overall acceleration measurement eg. Gear box monitoring



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



3



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



4



Vibration Monitoring v mm/s 0.45 0.40



Effect of Machine speed variation on Vibration measurement



0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10



v m m /s



0.15



4 .0



0.20



3 .8



0.25



3 .6



0.30



3 .4



0.35



3 .2 0.40



3 .0 0.45



2 .8 1500



2000



2500



3000



3500



Time Signal



4000



4500



5000



2 .6



5500



6000



6500



7000 t ms



2 .4 2 .2 2 .0 1 .8 1 .6 1 .4 1 .2



rms



1 .0 0 .8 0 .6 0 .4 0 .2



0 7 /0 2 /2 0 0 1 4 :5 9 :0 0 PM



0 7 /0 2 /2 0 0 1 4 : 5 9 : 1 0 PM



0 7 /0 2 /2 0 0 1 4 : 5 9 :2 0 PM



0 7 /0 2 /2 0 0 1 4 :5 9 :3 0 PM



0 7 / 0 2 /2 0 0 1 4 :5 9 :4 0 PM d a te



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



Overall Vibration Level



5



Bandpass Measurement



Peak RMS (0.707xPeak) Avg (0.637xPeak) Peak to Peak



Freq. = 1/Time



Freq. = Hz = rev. per second



Always ask.... Are you measuring RMS or Peak , etc ?? What is the frequency range ?? How much averaging?



Machine Freq are function of RPM ie. rev. per minute



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



6



Frequency Analysis



Machine Vibrations



Time Signal



Time, s = Frequency, Hz Time = 1 / Frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



7



Frequency Analysis How to make a frequency analysis? FFT - Fast Fourier Transform is merely an efficient means of calculating a DFT (Discrete Fourier Transform). Basically, it transform a time signal into a frequency spectrum.



Time



F



F (Hz)



T Time = 1 / Frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



8



Frequency Analysis



How to make a frequency analysis? Frequency analysis can be made using frequency selective devices called filters



dB



dB



B



0



B = Bandwidth



f1



fc



f2



f



An ideal filter will only signals to pass within its bandwidth



-3



f1



fc



f2



f



Practical filter have roll-off, express as half-power (-3dB) For good filters the two will be very similar.



In FFT analysis, the bandwidth = Frequency span / no. lines Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



9



Types of Bandwidth Constant Percentage Bandwidth (CPB)



Vibration Amplitude



0.1 1



2



3



4



Constant Bandwidth (FFT)



5



7



8



y



frequency



9



b



a x



6



a=b=c



10 kHz



c z



x, y, z are constant % of their center frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



10



Frequency Analysis



Types of filters: f



High-Pass filters



- As the name imply, a high pass filter allows high frequencies to pass. (lower frequency limit)



Low-Pass filters



- Allow low frequencies to pass through (upper limit)



Bandpass filters



- Allows only frequencies within the band f



Anti-aliasing filters



- Low pass filter at half the sampling frequencies



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



11



FFT (DFT) - Pitfalls Discrete Fourier Transform (DFT) - Pitfalls FFT - Fast Fourier Transform is an efficient means of calculating a DFT (Discrete Fourier Transform). Basically, it transform a time signal into a frequency spectrum.



1. 1. Aliasing Aliasing-- high highfrequencies frequenciesappearing appearingas aslow lowfrequencies frequencies 2. 2. Leakage Leakage-- Memory Memorycontents contentsforced forcedto tobe beperiodic. periodic. Can Cangive givediscontinuities discontinuitieswhen whenends endsjoined joined



3. 3. Picket Picketfence fenceeffect effect––Actual Actualspectrum spectrumsampled sampledat atdiscrete discrete frequencies. frequencies.Peaks Peaksmay maybe bemissing missing



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



12



FFT pitfalls - Aliasing Effect



Sampling rate too slow High frequency analysis results in false low frequency signal Solution: Use Anti-aliasing filter Typically a 1K (1024 point) transform, 512 frequency components are calculated and 400 lines displayed. Similarly a 2K transform 800 lines are displayed.



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



13



FFT pitfalls - Leakage +ve 1st Sample



-ve



2nd Sample



…..give discontinuities when ends joined



+ve



-ve Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



14



FFT pitfalls - Picket Fence Effect



Actual Spectrum



Measured Spectrum



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



15



Frequency Analysis



Basic law of frequency analysis



BT > 1 Bandwidth



Analysis Time



T Time



min. analysis time must allow the measured freq. to complete it’s cycle / period



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



T



16



Fungsi window



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



17



FFT Spectrum 400 lines FFT



1X



2x



3X



1 kHz



IF Freq. Span is 1 KHz then resolution = 1000 / 400 lines = 2.5 Hz 2.5 Hz 5 Hz 7.5Hz



(eg. 2 - IF Span is 40Khz then resolution= 100Hz)



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



18



Measurement time



• Harmonic signals can be measured in short time • Random and Pulsed signals need longer time • For FFT spectra C Theoretical Theoretical CC==33for Signals forHarmonic Harmonic Signals = 1 pr. average. C = 30 For Random Signals C = 30 For Random Signals



B B ** TT == C C



BB==Highest Highestresolution resolutionofofAnalysis Analysis TT==The Shortest measurement The Shortest measurementtime time CC==Constant. Constant.



In InPractice Practice



CC==55for forHarmonic HarmonicSignals Signals CC==100 For Random 100 For RandomSignals Signals



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



19



FFT - Fast Fourier Transformation



Sample 1



Sample 2



Filtering



Filtering



Window Function



Window Function



Detectors



Detectors



FFT



+



FFT



Raw Machine Time Signal



/n = Avg



FFT Spectrum 1



FFT Spectrum



FFT Spectrum 2



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



20



Time Synchronous Averaging Analysis Tacho



Sample 1



Sample 2



Raw Machine Time Signal Sample triggered by tacho (measured wrt speed)



Filtering



Filtering



+ Window Function Detectors



FFT Averaged Time Signal



Spectrum



Non synchronous signal will be averaged out. Reduced vibration effect– sole from nearby machine Copyright 2005PT. Putranata Adi Mandiri agent Prüftechnik AG, Germany



21



FFT - How to select Freq. Ranges, lines, Averages



Shaft Rotating Speed Journal Bearings instability



Blades 2x



Rolling Element Bearings



Gear 3x



1 KHz



3KHz



40KHz



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



22



Monitoring Techniques Types of Bearings



Journal JournalBearings Bearings



••Stationary StationarySignals Signals ••Relative RelativeLow LowFrequency Frequency ••Displacement Displacementtransducer transducer



Use Proximity probes Rolling RollingElement ElementBearings Bearings ••Modulated ModulatedRandom RandomNoise Noise ••Pulsating Pulsatingsignals signals ••High HighFrequency Frequency ••Accelerometers Accelerometers



Use Accelerometers Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



23



Informasi penting tentang mesin



Amplitudo vibrasi



frekuensi



Apa saja yang mungkin menyebabkan vibrasi ? Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



24



Analisa Amplitudo, Frekuensi dan Fase - 1 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



1. Unbalance



Sebanding dgn ketidak balance, dominan pd radial (2x aksial)



1 x rpm



Single reference mark



Kondisi sering ditemui



A



f 1x



Ve = 15



Vf = 15



Pengukuran getaran : Ae = 8



Af = 8



Va = 4 Vb = 3



Vc = 4 He = 15



Aa = 3



Ab = 4



Hf = 15



Ac = 5 Ad = 5



Ha = 4



Hb = 5 Hc = 3 Hd = 2



Vd = 4



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



25



Analisa Amplitudo, Frekuensi dan Fase - 2 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



2. Misalignment kopling atau poros bengkok



Dominan pd aksial, 50% atau lebih dari arah radial



Sering 1 x & 2 x Single rpm. Kadang 3 x double rpm triple



KETERANGAN



GAMBAR SPECTRUM



Ditandai timbulnya vibrasi A aksial. Gunakan alat laseralignment. Apabila mesin baru dipasang terjadi vibrasi, maka kemungkinan besar karena misalignment.



Ve = 3



f 1x



2x



Vf = 4



Pengukuran getaran : Ae = 4



Af = 5



Va = 4 Vb = 10



Vc = 10 He = 4



Aa = 7



Ab = 15



Hf = 3



Ac = 15 Ad = 7



Ha = 5



Hb = 10 Hc = 10 Hd = 5



Vd = 4



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



26



Analisa Amplitudo, Frekuensi dan Fase - 3 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



3. Anti friction bearing buruk



Tidak stabil, ukur percepatan, gunakan acceleration probe



Sangat tinggi, beberapa kali Rpm, 1x, 2x, 3x, 4x … 10x



Tdk tentu, Berubahrubah



A Vibrasi akan timbul apabila bearing sdh parah. Gunakan vibrotip / shockpulse u deteksi awal



Ve = 5



GAMBAR SPECTRUM



f 1x



2x



3x



Vf = 3



Pengukuran getaran : Ae = 4



Af = 2



Va = 2 Vb = 4



Vc = 5-10 He = 4



Aa = 4



Ab = 3



Hf = 4



Ac = 10-15 Ad = 5



Ha = 3



Hb = 3 Hc = 5-10 Hd = 4



Vd = 3



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



27



4x



Frekuensi bearing karakteristik



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



28



Dimensi bearing



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



29



Kalkulasi frekuensi dari elemen bearing



n ⎛ Kerusakan di outer race = ⋅ fr ⋅ ⎜1 − 2 ⎝ n ⎛ Kerusakan di inner race = ⋅ fr ⋅ ⎜1 + 2 ⎝



BD ⎞ ⋅ cos β ⎟ ( Hz ) PD ⎠ BD ⎞ ⋅ cos β ⎟ ( Hz ) PD ⎠



2 ⎛ ⎛ BD ⎞ PD ⎞ Kerusakan pada elemen berputar = ⋅ fr ⋅ ⎜1 − ⎜ ⋅ cos β ⎟ ⎟ ( Hz ) ⎜ ⎟ BD PD ⎠ ⎝ ⎝ ⎠ fr ⎛ BD ⎞ Kerusakan pada cage = ⋅ ⎜1 − ⋅ cos β ⎟ ( Hz ) 2 ⎝ PD ⎠ dimana: BD &PD : lihat gambar



fr : Frekuensi rotasi dari inner race n : jumlah elemen berputar β : sudut kontak Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



30



Why shock pulses for rolling bearing noise ? c m



fnat = x



(



Machine vibration



1 m







1 l



,



1 d



,



1 a



c = stiffness



) m = Mass



Material crack plastical / elastical deformation



Shock pulse range rolling bearing



Natural frequencies rolling bearing pieces fnat,O



fnat,B



fnat, Ι 2 1



Example



l 1



d



l = n ⋅m f ≈ x ⋅ 1/1m fnat ≈ x ⋅ 30 Hz



2



d = n ⋅ 1 mm f ≈ x ⋅ 1/1 000 m fnat ≈ x ⋅ 30 000 Hz



a



a f fnat



1 000



10 000



36 000



100 000



= n ⋅ μm ≈ x ⋅ 1 / 1 00 000 m ≈ x ⋅ 3 00 000 Hz



flog / Hz



ultra sound emission Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany 31 velocity acceleration shock pulses



Overall values for Bearing condition Acceleration - Crest Factor Spike Energy Value BCU - Value Kurtosis Factor gSE - Value SEE - Value



Shock Pulse Measurement Normalising with… • Shaft speed (rpm) • Shaft Diameter (Bearing Size)



? ? ? Time



Time Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



32



Normalising of shock pulse signals dBsv



dBsv 90



35



90 ideal measurement



dBn



measurement location with signal damping



P dBn



25 15



dBm



C



dBm



10 dBc dBc



dBi



dBia 0



0



-9



-9 dB sv = absolute shock pulse value



dBn = normalised shock pulse value



dBi = initial value →



dBia = adjusted inital value



→ signal damping of real measurement location → influencing factors like load condition Copyright 2005PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany 33 → determined through RPM and lubrication and bearing type Basic value of the normalised shock pulse values diameter of the bearing



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



34



Fungsi envelope



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



35



Signature Rolling Bearing Defects No rolling track defect:



Rolling track defect:



Time signal:



Time signal: a in m/s2



a in m/s2



Envelope



Enveiope



t in s



t in s



Ta



Envelope spectrum:



Envelope spectrum:



a in m/s2



a in m/s2



f in Hz



fRPOF



2•fRPOF 3 •fRPO F 4 •fRPOF



f in



Hz



• fRPOF=



1 TRPOF



Defect frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



36



Envelope Spectrum bearing Location :PT. Caltex\Water Plant\Fresh Water Pump\Centrifugal Pump\Coupling Side\rolling bearing >120



am /s² 2.0



#



X



Y



1.8



0



0.63



0.96



1.6



1



25.00



0.21



2



50.00



0.14



Alarm



3



176.88



0.10



W arn



4



151.88



0.10



0.6



5



126.88



0.08



0.4



6



4.38



0.08



7



20.63



0.07



8



29.38



0.07



1000 fHz 9



15.00



0.06



1.4 1.2 1.0 0.8



0.2 0.0 0



100



200



300



400



500



600



700



800



900



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



37



Analisa Amplitudo, Frekuensi dan Fase - 4 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



4. Sleeve, metal, Jurnal bearing (friction bearing) / eksentrik



Tidak besar, aksial lebih tinggi



1 x rpm, seolaholah seperti unbalance



Single



pd rodagigi vibrasi segaris dengan pusat kontak. pd motor/gen vibrasi hilang bila mesin dimatikan. pd pompa/blower kemungkinan unbalance



A



Ve = 4



f 1x



Vf = 4



Pengukuran getaran : Ae = 4



Af = 5



Va = 4 Vb = 7



Vc = 3 He = 4



Aa = 7



Ab = 15



Hf = 3



Ac = 4 Ad = 4



Ha = 3



Hb = 8 Hc = 5 Hd = 3



Vd = 5



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



38



Analisa Amplitudo, Frekuensi dan Fase - 5 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



5. Rodagigi buruk atau bersuara



Rendah, ukur kecepatan & percepatan, gunakan acceleration



Sangat tinggi Jumlah gigi x rpm



Tdk tentu



Awal rusak bersuara, semakin lama keras. Vibrasi biasanya dalam toleransi.



A



Ve = 7



f 2x



1x



3x



tooth



Vf = 3



Pengukuran getaran : Ae = 8



Af = 5



Va = 4 Vb = 3



Vc = 7 He = 6



Aa = 3



Ab = 4



Hf = 4



Ac = 8 Ad = 9



Ha = 3



Hb = 2 Hc = 7 Hd = 7



Vd = 7



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



39



4x



Analisa Amplitudo, Frekuensi dan Fase - 6 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



6. Gear mesh buruk atau bersuara (pada saat start / stop)



Rendah, ukur kecepatan & percepatan, gunakan accel.



Sangat tinggi Jumlah gigi x rpm



Tdk tentu



Sering terjadi pada saat pemasangan



A



f 2x



1x



3x



tooth



Ve = 7



Vf = 3



Pengukuran getaran : Ae = 8



Af = 5



Va = 4 Vb = 3



Vc = 7 He = 6



Aa = 3



Ab = 4



Hf = 4



Ac = 8 Ad = 9



Ha = 3



Hb = 2 Hc = 7 Hd = 7



Vd = 7



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



40



4x



Gear frequencies for Parallel Offset Gear



• Pinion speed, rpm.......................................(Rp) • Number of teeth on gear.............................(Ng)



Data needed from the gear



• Number of teeth on the pinion...................(Np)



• Gear speed, rpm.........................................(Rg) • Gear rotational frequency, Hz...................(frg)



• Mesh frequency, H................................(fm) • Tooth repeat frequency, Hz......................(ftr)



Info calculated from the data



• Pinion rotational frequency, Hz.................(frp)



• Assembly phase passage frequency, Hz.....(fa) Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



41



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



42



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



43



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



44



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



45



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



46



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



47



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



48



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



49



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



50



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



51



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



52



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



53



• Pumps are found in nearly every industry in a wide array of sizes and capacities. Larger pumps, such as boiler feed pumps and reactor recirculation/coolant pumps, are often permanently monitored, though many smaller units are not. Regardless, the following parameters are necessary to effectively evaluate process-related phenomena: • Speed • Suction pressure and temperature • Discharge pressure and temperature • Flow • Bearing metal and oil drain temperatures • Driver power Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



54



Air Compressor



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



55



Air Compressor



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



56



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



57



Centrifugal Compressor



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



58



Centrifugal Compressor







• • • • • • •



The compressor is one of the petrochemical industry's most durable and dependable machines. In general, there is a more limited set of variables to be monitored in compressors than in gas and steam turbines, which helps when you are analyzing and troubleshooting. However, rotational speeds tend to be much higher. The following process parameters are considered key items: Suction pressure and temperature Discharge pressure and temperature Product (gas) flow rate Gas analysis (mole weight) Compressor speed Driver power Bearing metal and oil drain temperatures



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



59



Generator



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



60



Generators



• Generators are generally well-behaved dynamically, due to their less complicated construction, compared to gas and steam turbines. Unbalance, thermal bows, and seal rubs comprise the majority of problems seen. The process variable list reflects this: • Output (kW or MW) • Reactive loading (vars) • Power factor • Coolant gas temperature and pressure • Winding temperatures • Field current • Bearing metal and oil drain temperatures Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



61



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



62



Gas Turbine



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



63



gas turbines







It is easy to see the interaction of process and vibration characteristics by studying industrial and aeroderivative gas turbines, because they are really three machines in one. They are a compressor that pressurizes ambient air, a combustor that introduces fuel and burns the air/fuel mixture, and an expansion (or power) turbine through which the hot, high pressure combustion gases expand, driving the compressor and any other connected machinery. Gas turbines are subject to wide performance and vibration variations when ambient air, fuel, or load values change. For example, high inlet air temperature reduces gas turbine performance, requiring higher fuel consumption for a specific power level. Conversely, low air temperature causes the power to increase. If humidity is high, ice can form on the inlet filters, inlet ducting, and inlet casing of the compressor. Large accumulations of ice reduce and distort the airflow, which may cause compressor stall and surge.



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



64



Steam turbines







• • • • • • •



Steam turbines are used in almost every industry for driving compressors, generators, pumps, and other equipment. Sizes vary from small, single stage units of less than 100 hp to large power generation units capable of over 1,000 MW in a single machine train. However, despite these size variations, steam conditions generally provide significant insight into any rotor response changes, such as rubs and shaft bow. Process variables that should be monitored on each driver include: Steam supply and exhaust conditions - temperature, pressure, flow, quality Extraction conditions (if applicable) Condenser vacuum Bearing metal and oil drain temperatures Gross generation (kW) or shaft speed and torque Reheat steam conditions (if applicable) Kvars (generator drive applications)



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



65



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



66



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



67



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



68



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



69



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



70



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



71



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



72



Phase Analysis



• • • • • • •



Trending for Acceptance Regions Shaft crack detection Rub detection Shaft balancing Shaft/structural resonance detection Shaft mode shape Location of a fluid-induced instability Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



73



Trending



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



74



Shaft Crack



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



75



Rubs



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



76



Shaft Structure



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



77



Shaft balancingShaft mode shape



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



78



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



79



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



80



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



81



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



82



Location of fluid-induced instability



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



83



Rotational & Mesh Gear Frequencies



Gear & Pinion rotational frequencies : f rg =



Rg 60



( Hz ),



f rp =



Rp 60



( Hz )



Mesh frequency : f m = f rp × N p = f rg × N g ( Hz )



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



84



Assembly phase passage gear frequency (1)



Ng = 15 Gear tooth 1-10-4-13-7 2-11-5-14-8 3-12-6-15-9



Q



Np = 9 Pinion Tooth 1-7-4 2-8-5 3-9-6



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



85



Assembly phase passage gear frequency (2)



Ng = 15 Gear tooth 1-10-4-13-7 2-11-5-14-8 3-12-6-15-9



Q



Np = 9 Pinion Tooth 1-7-4 2-8-5 3-9-6



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



86



Assembly phase passage gear frequency (3)



Assembly phase passage frequency : fm ( Hz ) fa = Na N a = Product of common prime factors example : Fg = 1,3,5,15 Fp = 1,3,3,9 N a = 1× 3 = 3



Ng = 15 Gear tooth 1-10-4-13-7 2-11-5-14-8 3-12-6-15-9



Q



Np = 9 Pinion Tooth 1-7-4 2-8-5 3-9-6



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



87



Tooth repeat gear frequencies



Tooth repeat frequency : fm × Na ( Hz ) f tr = Ng × N p or for a true hunting tooth combination ( when N a = 1) : f tr =



f rg Np



( Hz )



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



88



Summary gear frequencies for parallel offset gear To obtain



f tr



f rg



f rp



N a /N g



1/M g



1



N p /N a N p



N a /N p



1



Mg



N g /N a N g



fa



fm



multiply



f rp f rg



fm



by



N a /(N g × 1/N g 1/N p Np )



1/N a



1



N a = Number of assembly phases, N p = Number of teeth on pinion N g = Number of teeth on gear, M g = Ratio gear, f tr = Tooth repeat freq (Hz) f rg = Gear rotational freq (Hz), f rp = Pinion rotational freq (Hz) f a = Assembly phase passage freq (Hz), f m = Mesh frequency (Hz) Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



89



Gear frequencies for Planetary Gear



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



90



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



91



Application mill drive - cement industry



[bar] [m/s²] [bar]



4x [°C]



Machine speed Alarm status



[m/s²]



[m/s²]



[m/s²] [m/s²]



PCS



External expert



Data backup LAN / WAN



Internal expert



Interne t Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



92



Gear frequencies for Planetary Gear Planetary Gear : ⎛ Ts x Tr ⎞ Tooth Mesh Freq = ⎜ ⎟ x Ns = Tr x Nc (Hz) ⎝ Ts + Tr ⎠ Tr ⎛ np x Tr ⎞ x Nc (Hz) x Ns np x Defect on Sun = ⎜ = ⎟ Ts ⎝ Ts + Tr ⎠ Tr Defect on Planet = 2 x Nc x (Hz) Tp Defect on Ring = np x Nc (Hz) where : Ns = speed of sun gear (output), Nc = speed of carrier (input) Ts = number of teeth on sun, Tr = number of teeth on ring np = number of planets Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



93



Comparison of Sinusoidal and Impact Gear Tooth Contact



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



94



Analisa Amplitudo, Frekuensi dan Fase - 7 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



7. Mechanical looseness (Housing bearing aus)



Tinggi pada aksial



2 x rpm



2 referensi Sering agak kacau bersamaan dgn unbalance / misalignment



Ve = 3



GAMBAR SPECTRUM A



f 2x



Vf = 3



Pengukuran getaran : Ae = 4



Af = 4



Va = 4 Vb = 12



Vc = 5 He = 4



Aa = 3



Ab = 15



Hf = 2



Ac = 5 Ad = 3



Ha = 3



Hb = 12 Hc = 5 Hd = 4



Vd = 5



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



95



Analisa Amplitudo, Frekuensi dan Fase - 8 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



8. Mechanical Looseness (Pondasi kendor – dudukan lemah/karatan – baut kendor)



Tinggi pada vertikal



Kurang dari 1 x rpm



Tdk tentu



Kencangkan baut Untuk memastikan



A



f # poles = (2 x 3000) / 1480 = 4 -> Ns = 120 x 50 / 4 = 1500 RPM -> SF = 1500 – 1480 = 20 RPM = 0.33 Hz -> Fp = 4 x 20 RPM = 80 RPM = 1.33 Hz -> RBPF = 40 x 1480 RPM = 59200 RPM = 986.67 Hz Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



103



Analisa vibrasi pada motor listrik – 1 / 4



- Stator eccentricity, loose iron, shorted laminations : Amplitude



1x



2FL



FL = Line Frequency (3000 CPM, for 50 Hz Line Freq.)



2x Frequency



Amplitude



- Uneven air gap (variable air gap) / Eccentric rotor : 1x



2FL



FL = Line Frequency (3000 CPM, for 50 Hz Line Freq.) Fp Sidebands around FL



Fp Frequency • Pole pass frequency (Fp) = SF x (# poles) • Slip frequency (SF) = Ns – actual speed • Magnetic field speed, RPM (Ns) = 120 x FL / (# poles)



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



104



Analisa vibrasi pada motor listrik – 2 / 4



- Rotor problems 1 (broken/cracked rotor bars / shorting rings, shorted rotor laminations) : Amplitude



1x



3x 2x



* Fp Sidebands around 1x for broken rotor bars * Fp Sidebands around 1x, 2x, 3x, …. for cracked rotor bars



Frequency



- Rotor problems 2 (loose/broken rotor bars) : Amplitude



RBPF 1x



2FL Sidebands around RBPF or its harmonic freq. 2x



RBPF = Rotor Bar Pass Frequency = # Bars x RPM



Frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



105



Analisa vibrasi pada motor listrik – 3 / 4



- Phasing problems (motor beroperasi hanya 2 dari 3 phasa, disebabkan oleh loose / broken connectors) : 2FL Amplitude



1/3 FL Sidebands around 2FL



Frequency



Loose stator coils pada synchronous motors : Amplitude



CPF 1x RPM Sidebands around CPF = Coil Pass Freq. 1x 2x CPF = # stator coils x RPM



Frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



106



Analisa vibrasi pada motor listrik – 4 / 4



- DC motor problems 1 (broken field winding, bad SCR and loose connection) : Amplitude



6FL = SCR Firing Freq. or its harmonic freq.



1x 2x



Frequency



- DC motor problems 2 (loose/blown fuses, shorted control card) : Amplitude



FL



Amplitude tinggi pada 1x hingga 5x Line Freq. 2FL 3FL



4FL



5FL



Frequency



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



107



Rekommendasi untuk analisa vibrasi motor listrik



Untuk mendeteksi uneven airgap, eccentric rotor : -> 3 titik “resolusi tinggi” (diambil 1x setahun) * HOH : high resolution, motor outboard horizontal * HIH : high resolution, motor inboard horizontal * HOA (or HIA) : high resolution, motor outboard (or inboard) axial -> Fmax = 200 Hz, 1600 lines -> Resolusi = 0.125 Hz



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



108



Rekommendasi untuk analisa vibrasi motor listrik



Untuk mendeteksi munculnya rotor bar pass frequency atau stator slot pass frequency : -> 2 titik “extended range” (diambil 1x setahun) * EOH : extended range, motor outboard horizontal * EIH : extended range, motor inboard horizontal -> Fmax = 5000 Hz, 3200 lines, jika tidak diketahui jumlah rotor atau stator slot, sebenarnya cukup s/d frekuensi : (2x rotor / stator slot pass freq. + 400 Hz) -> Jika ingin mengambil data ini 1x sebulan, cukup dengan 400 – 800 lines untuk menghemat memori Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



109



Analisa Amplitudo, Frekuensi dan Fase - 12 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



12. Gaya aerodinamik / hidrolik



Tinggi pada vertikal atau horizontal



1 x rpm atau jumlah sudu atau fan atau impeler x rpm



Tdk tentu



Lebih terasa bila beban tidak stabil.



A



f 1x



Ve = 14



Jml x



Vf = 13



Pengukuran getaran : Ae = 7



Af = 7



Va = 1 Vb = 2



Vc = 4 He = 13



Aa = 1



Ab = 3



Hf = 14



Ac = 5 Ad = 3



Ha = 2



Hb = 2 Hc = 3 Hd = 4



Vd = 4



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



110



Analisa Amplitudo, Frekuensi dan Fase - 13 PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



13. Gaya reciprocating



Dominan aksial



1 x,2 x rpm atau lebih



Single, double, triple



Pada mesin reciprocating bisa ganti desain/isolasi



A



Ve = 2



f 1x



2x



Vf = 2



Pengukuran getaran : Ae = 3



Af = 3



Va = 7 Vb = 8



Vc = 3 He = 4



Aa = 6



Ab = 7



Hf = 2



Ac = 4 Ad = 4



Ha = 8



Hb = 7 Hc = 2 Hd = 4



Vd = 3



Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



111



Ringkasan Analisa Amplitudo, Frekuensi dan Fase PENYEBAB



AMPLITUDO



FREKUENSI



FASE



KETERANGAN



GAMBAR SPECTRUM



1. Unbalance



Sebanding dgn ketidak balance, dominan pd radial (2x aksial)



1 x rpm



Single reference mark



Kondisi sering ditemui



A



Dominan pd aksial, 50% atau lebih dari arah radial



Sering 1 x & 2 x Single rpm. Kadang 3 x double rpm triple



Ditandai timbulnya vibrasi A aksial. Gunakan alat laseralignment. Apabila mesin baru dipasang terjadi vibrasi, maka kemungkinan besar karena misalignment.



Tidak stabil, ukur acceleration untuk freq. tinggi



Sangat tinggi, beberapa kali Rpm, 1x, 2x, 3x, 4x … 10x



Tdk tentu, Berubahrubah



Vibrasi akan timbul apabila bearing sdh parah. Gunakan enveloping & shockpulse



A



4. Sleeve, metal, Jurnal bearing (friction bearing)



Tidak besar, aksial lebih tinggi



1 x rpm, seolaholah seperti unbalance



Single



pd rodagigi vibrasi segaris dengan pusat kontak. pd motor/gen vibrasi hilang bila mesin dimatikan. pd pompa/blower kemungkinan unbalance



A



5. Rodagigi buruk atau bersuara



Rendah, ukur kecepatan & percepatan, gunakan accel.



Awal rusak bersuara, semakin lama keras. Vibrasi biasanya dalam toleransi.



A



2. Misalignment kopling atau poros bengkok



3. Anti friction bearing buruk



f 1x



Sangat tinggi Jumlah gigi x rpm



Tdk tentu



f 1x



2x



1x



2x



f 3x



4x



f 1x



f 1x



2x



3x



tooth Copyright 2005- PT. Putranata Adi Mandiri – sole agent Prüftechnik AG, Germany



112



4x



Analisa Amplitudo, Frekuensi dan Fase - 2 PENYEBAB



AMPLITUDO



FREKUENSI



6. Gear mesh buruk atau bersuara pada saat start/stop



Rendah, ukur kecepatan & percepatan, gunakan accel.



Sangat tinggi Jumlah gigi x rpm



7. Mechanical looseness (Housing bearing aus)



Tinggi pada aksial



2 x rpm



8. Mechanical Looseness (Pondasi kendor – dudukan lemah/karatan – baut kendor)



Tinggi pada vertikal



9. Mechanical looseness (Pondasi melengkung)



Tinggi pada vertikal, horizontal & aksial



2 x rpm



10. Drive belt buruk



Tdk tentu/berpulsa



1,2,3 atau 4 x rpm belt



Kurang dari 1 x rpm



FASE



Tdk tentu



KETERANGAN



Sering terjadi pada saat pemasangan



GAMBAR SPECTRUM A



f 1x



2 referensi Sering agak kacau bersamaan dgn unbalance / misalignment



A



Tdk tentu



A



Kencangkan baut Untuk memastikan



2x



3x



4x



f 2x



f