Laporan Jembatan Poboya [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Perencanaan Jembatan Poboya



REPUBLIK INDONESIA KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT DIREKTORAT JENDERAL BINAMARGA



SATUAN KERJA PERENCANAAN DAN PENGAWASAN JALAN NASIONAL PROVINSI SULAWESI TENGAH



PEKERJAAN BASIC DESIGN PERENCANAAN JALAN DAN JEMBATAN PASCA BENCANA ALAM GEMPA BUMI DAN TSUNAMI DI PROVINSI SULAWESI TENGAH SUMBER DANA APBN TA .2018



NAMA PAKET : PEMBANGUNAN JEMBATAN LINGKAR DALAM KOTA PALU (JEMBATAN POBOYA)



LAPORAN PERENCANAAN PT. Perentjana Djaja - 2018



i



Perencanaan Jembatan Poboya



Kata Pengantar Sehubungan dengan pekerjaan perencanaan ring road kota Palu dimana terdapat dua buah jembatan yaitu jembatan poboya dan poebongo, PT Perentjana Djaja berkewajiban menyusun dan menyampaikan Laporan Perhitungan Struktur sebagai bentuk capaian kinerja yang telah disepakati bersama. Garis besar dari Laporan Perhitungan Struktur ini merupakan laporan yang melingkupi analisis struktur dan analisis pondasi jembatan sebagai acuan dalam perencanaan basic design. PT Perentjana Djaja mengucapkan terima kasih kepada berbagai pihak yang telah membantu memberikan data dan informasi dari awal hingga Laporan Perhitungan Struktur tersusun sesuai dengan yang direncanakan. Demikian Laporan Perhitungan Struktur ini dibuat dengan harapan dapat menjadi bahan untuk kemajuan program-program di Dinas Bina Marga untuk masa yang akan datang.



Palu, Desember 2018 PT Perentjana Djaja



Team Leader



PT. Perentjana Djaja - 2018



ii



Perencanaan Jembatan Poboya



Daftar Isi KATA PENGANTAR ..................................................................................................................... II DAFTAR ISI ................................................................................................................................. III DAFTAR GAMBAR ......................................................................................................................IV DAFTAR TABEL .......................................................................................................................... V BAB 1 PENDAHULUAN .............................................................................................................. 1 1.1



UMUM ........................................................................................................................ 1



1.2



PERATURAN ................................................................................................................ 1



1.3



MATERIAL ................................................................................................................... 2



1.4



KONSEP DESAIN.......................................................................................................... 2



BAB 2 TINJAUAN TEORITIS ...................................................................................................... 3 2.1



2.2



STRUKTUR JEMBATAN.................................................................................................. 3 2.1.1



Definisi Jembatan ........................................................................................ 3



2.1.2



Klasifikasi Jembatan .................................................................................... 3



PERENCANAAN STRUKTUR JEMBATAN ........................................................................... 4 2.2.1



Faktor-faktor Diperhatikan ........................................................................... 4



2.2.2



Bentang Optimal .......................................................................................... 5



2.2.3



Kajian Penentuan Tipe Jembatan ................................................................ 6



2.3



SISTEM STRUKTUR ...................................................................................................... 6



2.4



ANALISA PONDASI ....................................................................................................... 7 2.4.1



Klasifikasi Tanah Dan Penentuan Kuat Geser Tanah .................................. 7



2.4.2



Kohesi (C) .................................................................................................... 8



2.4.3



Sudut Geser Dalam ()................................................................................ 8



2.4.4



Metodologi Analisis ...................................................................................... 9



2.4.5



Daya Dukung Selimut ................................................................................ 10



2.4.6



Daya Dukung Ujung ................................................................................... 10



BAB 3 PERHITUNGAN STRUKTUR JEMBATAN .................................................................... 11 3.1



STRUKTUR JEMBATAN POBOYA .................................................................................. 11 3.1.1



Pemodelan Struktur Jembatan Poboya ..................................................... 12



3.1.2



Desain Struktur .......................................................................................... 22



3.1.3



Perencanaan Daya Dukung Pondasi ......................................................... 40



PT. Perentjana Djaja - 2018



iii



Perencanaan Jembatan Poboya



Daftar Gambar



Gambar 2.1



Acuan Panjang Bentang Optimal Berdasarkan Jenis Jembatan .......................... 6



Gambar 2.2



Sistem Struktur Prestress .................................................................................... 6



Gambar 2.3



Grafik Klasifikasi Tanah untuk Cone Elektrik Standard (Robertson dan Campanella, 1983) .............................................................................................. 7



Gambar 2.4



Korelasi antara N-SPT dengan Undrained Shear Strength Tanah Lempung (Terzaghi & Peck, 1967) ...................................................................................... 8



Gambar 2.5



Korelasi Antara Sudut Geser Dalam ’ dan qc untuk Pasir (Robertson dan Campanella, 1983 dan beberapa peneliti lainnya) ............................................... 9



Gambar 2.6



Daya Dukung Aksial Pondasi Tiang ..................................................................... 9



Gambar 2.7



Faktor Adhesi vs. Kuat Geser Undrained untuk Tiang Pancang (API RP2A, 1986) ................................................................................................................. 10



Gambar 3.1



Denah Jembatan ............................................................................................... 11



Gambar 3.2



Potongan memanjang jembatan ........................................................................ 12



Gambar 3.3



Potongan melintang jembatan ........................................................................... 12



Gambar 3.4



Pemodelan Struktur Jembatan .......................................................................... 12



Gambar 3.5



Response Spektrum Kota Palu .......................................................................... 20



Gambar 3.6



Gaya Dalam Pilar............................................................................................... 24



PT. Perentjana Djaja - 2018



iv



Perencanaan Jembatan Poboya



Daftar Tabel Tabel 2.1



Klasifikasi Tanah Lempung Berdasarkan N-SPT (Bowles, 1988) ..................................... 7



Tabel 2.2



Klasifikasi Tanah Pasir Berdasarkan N-SPT (Bowles, 1988)............................................ 7



Tabel 3.1



Baban Rem ..................................................................................................................... 17



Tabel 3.2



Faktor amplifikasi untuk PGA dan 0.2 detik .................................................................... 19



Tabel 3.3



Faktor amplifikasi untuk periode 1 detik .......................................................................... 19



Tabel 3.4



Modal participation mass ratio ........................................................................................ 22



PT. Perentjana Djaja - 2018



v



Perencanaan Jembatan Poboya



Bab 1 1 Pendahuluan 1.1



Umum



Infrastruktur merupakan aset fisik yang vital bagi suatu negara dalam rangka mecapai kesejahteraan. Infrastruktur berperan dalam perkembangan perekonomian, sosial, budaya, dan hingga pertahanan dan keamanan negara. Kelengkapan dan integrasi infrastruktur menjadi salah satu tolok ukur kemajuan suatu negara. Infrasturktur atau prasarana dalam bahasan ini adalah sistem fisik yang menjadi penunjang utama berlangsungnya suatu proses atau aktivitas. Oleh karena itu, infrastruktur sangat beragam berdasarkan proses atau aktivitas yang disokong, diantaranya infrastruktur jalan, transportasi, air, manajemen limbah, energi, dan rekreasi. Infrastruktur ada yang kecil dan sederhana, misalnya selokan air, namun ada pula yang berukuran besar dan kompleks, misalnya jembatan. Jembatan adalah infrastruktur yang pada awalnya berfungsi menghubungkan dua buah lokasi yang terpisah karena ada rintangan, misalnya lembah, sungai, dan laut. Pada perkembangan selanjutnya, jembatan juga berfungsi untuk menghindari terjadinya lalu lintas yang sebidang, yaitu untuk overpass dan/atau flyover. Rancang jembatan disesuaikan dengan kebutuhan, misalnya untuk jembatan pipa-pipa, jembatan pejalan kaki, jembatan jalan raya, dan jembatan kereta api. Pembangunannya memerlukan perencanaan yang baik dan benefit-cost analysis yang akurat. Baik perencanaan dan benefit-cost analysis yang dilakukan harus menyeluruh, dari tahapan konstruksi hingga pemeliharaan, agar jembatan berfungsi dengan optimal selama masa layannya. 1.2



Peraturan



Peraturan-peraturan yang digunakan dalam perencanaan struktur jembatan adalah : a.



Perencanaan Pembebanan Struktur Atas Jembatan mengikuti Bridge Design Manual BMS yang diterbitkan oleh Direktorat Jalan Raya, Departemen Pekerjaan Umum, Republik Indonesia, Desember 1992 (BMS).



b.



Standar Pembebanan Untuk Jembatan (SK.SNI. T-02-2005), sesuai dengan Kepmen PU No. 498/KPTS/M/2005.



c.



Perencanaan Struktur Beton untuk Jembatan (SK.SNI. T-12-2004), sesuai dengan Kepmen PU No. 498/KPTS/M/2005.



d.



Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan Gedung dan Non Gedung, SNI 03-17262012.



PT. Perentjana Djaja - 2018



1



Perencanaan Jembatan Poboya 1.3



Material



Material yang digunakan adalah :



1.4



a. Abutment



: Beton K-350



b. Pier



: Beton K-350



c. Pierhead



: Beton K-350



d. Slab



: Beton K-350



e. Pile cap



: Beton K-350



f.



: fy=400 MPa



Besi Beton Konsep Desain



Perencanaan elemen struktur dilakukan dengan metoda kekuatan batas (metoda ultimite) dimana nilai beban dinaikan dengan faktor beban seperti yang terdapat dalam peraturan perencanaan struktur beton, harus lebih kecil atau sama dengan kapasitas penampang yang dikalikan dengan faktor reduksi. Faktor Reduksi Kekuatan (ø) mengikuti nilai-nilai di bawah ini : a. Lentur, tanpa gaya aksial merupakan fungsi regangan tarik terluar.Pada penampang elemen struktur yang memiliki perilaku tarik, nilai 0,90 dapat digunakan yaitu saat nilai regangan baja tulangan terluar yang mengalami tarik tidak kurang dari 0,005.



b. Geser dan Torsi



=



0,75



1) Aksial tarik, dan aksial tarik dengan lentur



=



0,90



2) Aksial tekan, dan aksial tekan dengan lentur



=



0,65



d. Dengan penulangan geser biasa



=



0,65



e. Tumpuan pada beton



=



0.75



c. Gaya aksial, dan gaya aksial dengan lentur :



PT. Perentjana Djaja - 2018



2



Perencanaan Jembatan Poboya



BAB 2 2 Tinjauan Teoritis 2.1



Struktur Jembatan



2.1.1



Definisi Jembatan



Jembatan adalah infrastruktur yang pada awalnya berfungsi menghubungkan 2 (dua) buah lokasi yang terpisah karena ada rintangan, misalnya lembah, sungai, dan laut. Pada perkembangan selanjutnya, jembatan juga berfungsi untuk menghindari terjadinya lalu lintas yang sebidang, yaitu overpass dan/atau flyover. Jembatan merupakan komponen yang penting dalam suatu jaringan transportasi, yaitu sebagai fungsi keseimbangan (balancing). Perencanaan kapasitas jembatan erat kaitannya dengan prediksi pertumbuhan laju lalu lintas yang akan terjadi. Jika kapasitas jembatan kurang dalam menampung lalu lintas yang terjadi, maka lalu lintas akan terhambat. Sebaliknya, jika kapasitas jembatan mampu menampung lalu lintas yang terjadi, maka lalu lintas berjalan lancar. Biaya pembangunan jembatan mahal, lebih mahal daripada jalan biasa. Oleh karena itu jembatan harus didesain dengan efisien, ekonomis, aman, dan nyaman. Selain itu, jembatan juga harus didesain cantik dan indah agar dapat menjadi sesuatu yang ikonis bagi suatu wilayah sehingga menjadi daya tarik wisatawan untuk berkunjung.



2.1.2



Klasifikasi Jembatan



Klasifikasi jembatan ditinjau dari beberapa aspek, yaitu sebagai berikut: a. Material Berdasarkan material penyusunnya, jembatan dibedakan menjadi 6 (enam) jenis, yaitu: 



jembatan kayu atau bambu;







jembatan batu;







jembatan beton;







jembatan baja;







jembatan komposit; dan







jembatan kabel.



b. Penggunaan Berdasarkan penggunaannya, jembatan dibedakan menjadi 4 (empat) jenis, yaitu: 



jembatan pejalan kaki (pedestrian bridge);







jembatan jalan raya (highway bridge);







jembatan kereta api (railway Bridge); dan







jembatan untuk keperluan khusus lain, misalnya untuk pipa minyak dan gas, pipa air, saluran irigasi,



PT. Perentjana Djaja - 2018



3



Perencanaan Jembatan Poboya dan lain-lain. c. Bentang Berdasarkan bentangnya, jembatan dibedakan menjadi 4 (empat) jenis, yaitu: 



jembatan bentang pendek;







jembatan bentang menengah;







jembatan bentang panjang; dan







jembatan bentang sangat panjang.



d. Bentuk Struktur Berdasarkan bentuk struktur, jembatan dibedakan menjadi 6 (enam) jenis, yaitu: 



jembatan pelat;







jembatan balok (beam);







jembatan rangka (truss);







jembatan pelengkung/busur (arch);







jembatan gantung (cable stayed); dan







jembatan suspense (suspension).



e. Statika Berdasarkan statika strukturnya, jembatan dibedakan menjadi 2 (dua) jenis, yaitu:



2.2







jembatan statis tertentu; dan







jembatan statis tidak tertentu.



Perencanaan Struktur Jembatan



2.2.1



Faktor-faktor Diperhatikan



Ada faktor-faktor yang harus dikaji dalam menentukan jenis jembatan yang akan dibangun. Faktor-faktor tersebut harus dikaji secara cermat dan holistik agar jembatan yang dibangun dapat berfungsi optimal selama pelaksaaan konstruksi dan pengoperasian. Faktor-faktor yang perlu diperhatikan diuraikan sebagai berikut: a. Kebutuhan Fungsional Penentuan fungsional jembatan berhubungan dengan penentuan kapasitas dan geometri jembatan. Jembatan yang telah dibangun harus mampu menampung beban lalu lintas sekarang dan prediksi untuk beberapa tahun kedepan untuk moda transportasi yang melintasinya. b. Kondisi Geometrik dan Topografi Jembatan yang dibuat harus mempertimbangkan kondisi geometrik yang meliputi alinyemen horizontal dan vertika serta ruang bebas (clearance) di bawah dan di atas jembatan, yang tentu berhubungan erat dengan kondisi topografi di lokasi. Kondisi geometrik dan topografi akan mempengaruhi penentuan bentang jembatan, tinggi pilar, kelengkungan, jumlah dan jarak antar pilar, dan lain-lain. c. Kondisi Lapisan Tanah Kondisi lapisan tanah berpengaruh pada pemilihan tipe fondasi jembatan. Selain itu, kondisi tanah juga PT. Perentjana Djaja - 2018



4



Perencanaan Jembatan Poboya mempengaruhi penentuan panjag bentang yang paling ekonomis dan tipe struktur atas yang digunakan. d. Kemudahan Pelaksanaan Tingkat kemudahan dalam pelaksanaan konstruksi jembatan akan mempengaruhi harga jembatan, waktu pelaksanaan, ketersediaan tenaga kerja, serta gangguan terhadap kondisi eksisting di lokasi jembatan akan dibangun. e. Perawatan Masing-masing material memiliki langkah perawatan yang berbeda. Untuk jembatan yang terbuat dari beton bertulang relative memerlukan sedikit perawatan selama masa layannya. Perawatan umumnya dilakukan pada bagian perletakkan, sambungan, dan lapisan penutup lantai jembatan. Sedangkan untuk jembatan yang terbuat dari material baja memerlukan perawatan berkala untuk mencegah korosi. f.



Estetika Struktur jembatan seringkali ditujukan sebagai ciri khas daerah tersebut, sehingga aspek estetik menjadi hal penting untuk diperhatikan. Keberadaan jembatan dapat menjadi nilai tambah keindahan lingkungan sekitarnya. Untuk memenuhi tujuan tersebut, penting untuk memilih tipe dan jenis jembatan yang sesuai dengan tata letak dan kondisi prasarana yang berdekatan dengannya.



g. Pembiayaan Aspek pembiayaan menjadi penting dalam penentuan tipe dan jenis jembatan di suatu lokasi, serta material yang digunakan. Tipe jembatan sangat mempengaruhi biaya pelaksanaan konstruksi dan pemeliharaan. Perhitungan biaya pelaksanaan konstruksi dan biaya pemeliharaan perlu dilakukan secara utuh dengan seksama. Terkadang jika ditinjau hanya dari salah satu komponen saja, misalnya biaya pelaksanaan konstruksi yang murah, dapat jadi menyebabkan biaya pemeliharaan yang mahal di masa datang.



2.2.2



Bentang Optimal



Panjang bentang berpengaruh pada berbagai faktor pemilihan tipe dan jenis jembatan yang akan dibangun, terutama pada faktor struktural, faktor pelaksanaan konstruksi, faktor biaya konstruksi. Pada dasarnya tidak ada aturan untuk panjag bentang suatu jembatan, namun beberapa ahli telah melakukan kajian mendalam terkait pengaruh panjang bentang jembatan terhadap tipe dan jenis jembatan agar diperoleh kondisi paling optimal. Hasil kajian tersebut dapat dijadikan acuan dalam penentuan panjang bentang optimal jembatan seperti terlihat dalam Gambar 2.1.



PT. Perentjana Djaja - 2018



5



Perencanaan Jembatan Poboya



Gambar 2.1



2.2.3



Acuan Panjang Bentang Optimal Berdasarkan Jenis Jembatan



Kajian Penentuan Tipe Jembatan



Jembatan yang berada di suatu lokasi rencana trase jalan mempunyai masalah yang beraneka ragam. Pada umumnya bentang jembatan relatif panjang, dikarenakan melintasi sungai ataupun lembah dengan lebar yang cukup besar. Bangunan jembatan direncanakan harus mampu memikul kondisi operasional secara optimum selama masa layan, serta ekonomis baik dalam pelaksanaan konstruksi maupun pemeliharaan di masa datang.



2.3



Sistem Struktur



Sistem struktur jembatan direncanakan menggunakan sistem struktur Prestress I Girder. Sistem prestressed diilustrasikan pada Gambar 2.2.



Gambar 2.2 PT. Perentjana Djaja - 2018



Sistem Struktur Prestress



6



Perencanaan Jembatan Poboya 2.4



Analisa Pondasi



2.4.1



Klasifikasi Tanah Dan Penentuan Kuat Geser Tanah



Profil lapisan tanah dibuat berdasarkan kesamaan dan kemiripan sifat geoteknik tanah, yaitu: jenis tanah dan derajat kekerasan tanah. Pembagian lapisan tanah berdasarkan CPT dapat dilihat pada Gambar 2.3.



Bowles’s extensio n



Gambar 2.3



Grafik Klasifikasi Tanah untuk Cone Elektrik Standard (Robertson dan Campanella, 1983)



Pembagian lapisan tanah dapat pula berdasarkan N-SPT, seperti terlihat Tabel 2.1 dan Tabel 2.2. Tabel 2.1



Klasifikasi Tanah Lempung Berdasarkan N-SPT (Bowles, 1988) N’70



Remarks



Very soft



0-2



Squishes between fingers when squeezed



3-5



Very easily deformed by squeezing



Hard



Tabel 2.2 Description Dr



6-9



cemented



Very stiff



OCR



Stiff



increasing



Medium



Aged/



NC



Soft



Young clay



Consistency



Hard to deform by hand squeezing



17-30



Very hard to deform by hand



> 30



Nearly impossible to deform by hand



Klasifikasi Tanah Pasir Berdasarkan N-SPT (Bowles, 1988)



Very Loose 0



10-16



Loose 0.15



Medium 0.35



Dense



0.65



Very dense 0.85



SPT N’70 Fine



1-2



PT. Perentjana Djaja - 2018



3-6



7-15



16-30



?



7



Perencanaan Jembatan Poboya Medium



2-3



4-7



8-20



21-40



> 40



Coarse



3-6



5-9



10-25



26-45



> 45



Fine



26-28



28-30



30-34



33-38



Medium



27-28



30-32



32-36



36-42



Coarse



28-30



30-34



33-40



40-50



wet (kN/m3)



11-16



14-18



17-20



17-22







2.4.2



< 50



20-23



Kohesi (C)



Kohesi (c) tanah harus ditentukan berdasarkan atas hasil tes Triaxial CU, dan/atau Unconfined Compressive Test. Selain itu, kohesi dapat pula dicari dari korelasi antara N-SPT dengan undrained shear strength. Grafik korelasi



Soil groups refer to Unified system



Undrained shear strength - kN/m



2



antara N-SPT dengan undrained shear strength dapat dilihat dalam Gambar 2.4.



CH



Sowers



CL



SC-ML



Terzaghi and Peck



SPT N-value - blows/300 mm



Gambar 2.4



(Terzaghi & Peck, 1967)



Korelasi antara N-SPT dengan Undrained Shear Strength Tanah Lempung (Terzaghi & Peck, 1967)



2.4.3



Sudut Geser Dalam ()



Sudut geser dalam () tanah harus ditentukan berdasarkan atas hasil tes Triaxial CU, dan/atau Unconfined Compressive Test. Dapat pula diperoleh dari hasil korelasi antara cone bearing, qc, dengan sudut geser dalam seperti terlihat dalam Gambar 2.5.



PT. Perentjana Djaja - 2018



8



Perencanaan Jembatan Poboya



Gambar 2.5



Korelasi Antara Sudut Geser Dalam ’ dan qc untuk Pasir (Robertson dan Campanella, 1983 dan beberapa peneliti lainnya)



2.4.4



Metodologi Analisis



Secara umum, kapasitas aksial ultimit pondasi tiang diperoleh melalui persamaan sederhana yang merupakan jumlah dari daya dukung ujung dan tahanan selimut, atau: Qu = Qs + Qp = fs.As + qp.Ap dimana, QS = daya dukung selimut QP = daya dukung ujung fs = unit load-transfer pada tahanan selimut qp = unit load transfer pada tahanan ujung Ap = luas penampang ujung tiang As = luas selimut tiang



Gambar 2.6



PT. Perentjana Djaja - 2018



Daya Dukung Aksial Pondasi Tiang



9



Perencanaan Jembatan Poboya 2.4.5



Daya Dukung Selimut



Tahanan selimut ultimate (Qs) tiang pada lapisan lempung dihitung berdasarkan persamaan berikut: Qs = α x Cu x P x L dimana, α = faktor adhesi cu = kuat geser undrained p = keliling tiang L = panjang tiang



Gambar 2.7



2.4.6



Faktor Adhesi vs. Kuat Geser Undrained untuk Tiang Pancang (API RP2A, 1986)



Daya Dukung Ujung



Untuk tiang pancang pada lapisan lempung saturated pada kondisi undrained (φ = 0), Qp dihitung dengan rumus berikut ini: Qp = 9 x Cu x Ap (dalam kN/m2) dimana, AP = luas penampang tiang cu = kuat geser undrained



PT. Perentjana Djaja - 2018



10



Perencanaan Jembatan Poboya



BAB 3 3 Perhitungan Struktur Jembatan 3.1



Struktur Jembatan Poboya



3.1.1



Sistem Struktur



Perencanaan Jembatan Poboya ini menggunakan sistem balok pracetak dengan sistem dua tumpuan sederhana. Balok pracetak yang digunakan adalah PCI girder. 3.1.2



Geometri Struktur



Geometri umum Jembatan Poboya adalah sebagai berikut : 1. Panjang total



= 15 m + 30 m + 15 m



2. Lebar jembatan



= 14 m



3. Jumlah lajur



= 2 m + 3,5 m + 3,5 m + 2 m



4. Lebar trotoar



= 1,5 m



5. Tinggi girder



= PCI 900 mm dan PCI 1700 mm



6. Jumlah pilar



= 2 buah



7. Jumlah abutment



= 2 buah



8. Tinggi pilar



= 4,5 m



9. Tinggi abutment



= 1,5 m



Gambar 3.1



PT. Perentjana Djaja - 2018



Denah Jembatan



11



Perencanaan Jembatan Poboya



Gambar 3.2



Gambar 3.3



3.1.3



Potongan memanjang jembatan



Potongan melintang jembatan



Pemodelan Struktur Jembatan Poboya



Software yang digunakan dalam pemodelan dan analisis struktur adalah program MIDAS Civil. Pengaruh kekakuan pondasi tiang dimodelkan untuk mengetahui perilaku struktur jembatan terhadap beban lateral gempa dengan menggunakan spring konstan pada pondasi jembatan.



Gambar 3.4



PT. Perentjana Djaja - 2018



Pemodelan Struktur Jembatan



12



Perencanaan Jembatan Poboya



Gambar 3.5



Gambar 3.6



Gambar 3.7



PT. Perentjana Djaja - 2018



Pemodelan Spring Konstan



Input rigid link pada struktur bawah Pilar



Input rigid link pada pierhead



13



Perencanaan Jembatan Poboya



Gambar 3.8



Gambar 3.9



Gambar 3.10



PT. Perentjana Djaja - 2018



Section properties PCI Girder



Section properties Pilar



Section properties Pierhead



14



Perencanaan Jembatan Poboya



Gambar 3.11



3.1.3.1



Section properties pondasi tiang



Pembebanan Jembatan



Secara umum kriteria pembebanan yang digunakan dalam perencanaan jembatan ini ditinjau dari 2 (dua) kondisi beban, yaitu : a. Beban Kerja (Working Load/ Service Load) Beban layan adalah beban yang bekerja pada saat kondisi layan bangunan jembatan, hal ini berkaitan dengan servisibilitas dari bangunan. b. Beban Batas (Ultimate Load) Beban batas adalah beban yang bekerja pada kondisi ultimit dari struktur, yaitu diperoleh dengan mengalikan beban yang bekerja dengan faktor beban. Berat Sendiri (Self Weight) Berat sendiri adalah berat dari elemen-elemen struktural jembatan. Berat sendiri ini belum termasuk beban mati tambahan. Berat Sendiri dihitung secara otomatis oleh program MIDAS civil. Beban Mati Tambahan (SDL) SDL adalah berat semua material non-struktural yang digunakan pada Jembatan seperti perkerasan (asphalt), lampu jalan, genangan air, dan parapet. γasphalt = 22.4 kN/m3 γair



= 10 kN/m3



PT. Perentjana Djaja - 2018



15



Perencanaan Jembatan Poboya



Gambar 3.12



Input beban mati tambahan



Beban Lalu Lintas Beban lalu lintas untuk Rencana Jembatan Jalan Raya terdiri beban lajur “D” dan beban truk “T”. Pembebanan lajur “D” ditempatkan melintang pada lebar penuh dari jalan kendaraan jembatan dan menghasilkan pengaruh pada jembatan yang eqivalen dengan rangkaian kendaraan sebenarnya. Jumlah total pembebanan lajur “D” yang ditempatkan tergantung pada lebar jalan kendaraan jembatan.



Gambar 3.13



Input beban hidup D



Beban truk “T” adalah berat kendaraan tunggal dengan tiga gandar yang ditempatkan pada berbagai posisi sembarang pada lajur lalu lintas. Tiap gandar terdiri dari dua pembebanan bidang bidang kontak yang dimaksud agar mewakili pengaruh roda kendaraan berat (trailer). Beban satu truk “T” ini hanya boleh ditempatkan per lajur lalu lintas rencana.



Gambar 3.14 PT. Perentjana Djaja - 2018



Beban T



16



Perencanaan Jembatan Poboya Gaya Rem Pengaruh rem dan percepatan lalu lintas harus dipertimbangkan sebagai gaya memanjang. Sistem penahan harus direncanakan untuk menahan gaya memanjang tersebut. Gaya rem sebesar 5% dari beban lajur D di anggap bekerja pada semua lajur lalu lintas. Tabel 3.1 Baban Rem PANJANG STRUKTUR (m)



GAYA REM S.L.S. (kN)



L  80



250



80 < L < 180



2.5 L + 50



L  180



500



Catatan : Gaya rem U.L.S. adalah 2.0 Gaya Rem S.L.S.



Beban Gempa Beban Gempa ditentukan berdasarkan SNI Gempa Jembatan 2013. Kondisi tanah di sekitar lokasi struktur bangunan adalah tanah sedang (Kelas Situs SD). Berdasarkan peraturan terbaru yaitu SNI Gempa 2013 gempa rencana ditetapkan mempunyai perioda ulang 1000 tahun, agar probabilitas terjadinya terbatas pada 7 % selama umur jembatan 75 tahun.



Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara koefisien respon elastik (CSM) dengan berat struktur ekivalen yang kemudian dimodifikasi dengan faktor modifikasi sebagai berikut: 𝐶𝑠𝑚 𝐸𝑄 = 𝑊 𝑅 𝑡 Keterangan: EQ adalah gaya gempa horizontal statis (kN) Csm adalah koefisien respons elastik R adalah faktor modifikasi respons Wt adalah berat total struktur terdiri dari beban mati dan beban hidup yang sesuai (kN) Koefisien respon elastik Csm diperoleh dari peta percepatan batuan dasar dan spektra percepatan (Error! eference source not found. hingga Error! Reference source not found.) sesuai dengan daerah gempa dan periode ulang gempa rencana. Koefisien percepatan yang diperoleh berdasarkan peta gempa dikalikan dengan suatu faktor amplifikasi sesuai dengan kondisi tanah sampai kedalaman 30 m di bawah struktur jembatan.



PT. Perentjana Djaja - 2018



17



Perencanaan Jembatan Poboya



Gambar 3.15 Peta percepatan puncak di batuan dasar (PGA) terlampaui 7% dalam 75 tahun



Gambar 3.16 Peta respon spektra percepatan 0.2 detik di batuan dasar untuk probabilitas terlampaui 7% dalam 75 tahun



PT. Perentjana Djaja - 2018



18



Perencanaan Jembatan Poboya



Gambar 3.17 Peta respon spektra percepatan 1 detik di batuan dasar untuk probabilitas terlampaui 7%



dalam 75 tahun Untuk penentuan respon spektra di permukaan tanah, diperlukan suatu faktor amplifikasi untuk PGA, periode pendek (T=0,2 detik) dan periode 1 detik. Faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada batuan dasar (FPGA), faktor amplifikasi periode pendek (Fa) dan faktor amplifikasi terkait percepatan yang mewakili getaran periode 1 detik (Fv). Error! Reference source not found. dan REF _Ref422471216 \h \* MERGEFORMAT Error! Reference source not found. memberikan nilai-nilai FPGA, Fa, dan Fv untuk berbagai klasifikasi jenis tanah.



Tabel 3.2 Faktor amplifikasi untuk PGA dan 0.2 detik



Tabel 3.3 Faktor amplifikasi untuk periode 1 detik



PT. Perentjana Djaja - 2018



19



Perencanaan Jembatan Poboya Perhitungan Koefisien Gempa Lokasi Palu Kelas Situs Tanah Sedang (SD) a. PGA Gunakan F PGA AS b SS Gunakan Fa SDS c S1 Gunakan Fv SD1



= = =



1,2 1 1,2



g



= = =



3 1 3



g



= = =



1,5 1,5 2,250



g



AS SDS



= =



1,200 3,000



g g



SD1



=



2,250



g



Ts To



= =



0,750 0,150



Detik Detik



g



g



g



Respon Spektra Palu Koefisien Gempa (C)



3,500 3,000 2,500 2,000 1,500 1,000 0,500 0,000 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8



T (Detik)



Gambar 3.18



PT. Perentjana Djaja - 2018



Response Spektrum Kota Palu



20



Perencanaan Jembatan Poboya 3.1.3.2



Kombinasi Pembebanan



Kombinasi Service : a. BS + SDL + D + Rem b. BS + SDL + T + Rem c. BS + SDL + T + Rem + Temp d. BS + SDL + T + Angin e. BS + SDL + T + Sentrifugal Kombinasi Ultimate : a. 1,3 BS + 2 SDL + 1,8 D + 1,8 Rem b. 1,3 BS + 2 SDL + 1,8 T + 1,8 Rem c. 1,3 BS + 2 SDL + 1,8 T + 1,8 Rem + 1,2 Temp d. 1,3 BS + 2 SDL + 1,8 T + 1,2 Angin e. 1,3 BS + 2 SDL + 1,8 T + 1,8 Sentrifugal f.



1,3 BS + 2 SDL + Gempa



g. 1,3 BS + 2 SDL + Gempa



3.1.4



Analisis Struktur



Analisis struktur dilakukan menggunakan program midas civil. Pengaruh interaksi struktur dengan tanah dimodelkan pada tiang – tiang pondasi sebagai spring sehingga perilaku struktur jembatan terhadap pembebanan dinamis gempa dapat diketahui.



Gambar 3.19



PT. Perentjana Djaja - 2018



Mode 1



21



Perencanaan Jembatan Poboya



Gambar 3.20



Mode 4



Tabel 3.4 Modal participation mass ratio



3.1.5 3.1.5.1



Desain Struktur Desain Element Pier



Gambar 3.21 PT. Perentjana Djaja - 2018



Penulangan Pier



22



Perencanaan Jembatan Poboya



PT. Perentjana Djaja - 2018



Gambar 3.22



Penulangan Pier



Gambar 3.23



Diagram Moment



23



Perencanaan Jembatan Poboya



PT. Perentjana Djaja - 2018



Gambar 3.24



Diagram Gaya Geser



Gambar 3.25



Diagram Gaya Aksial



24



Perencanaan Jembatan Poboya



PT. Perentjana Djaja - 2018



25



Perencanaan Jembatan Poboya 3.1.5.2



Desain Pierhead



Gambar 3.26



Penulangan Pierhead



Gambar 3.27 Diagram moment



Gambar 3.28 Diagram geser



PT. Perentjana Djaja - 2018



26



Perencanaan Jembatan Poboya



Tinggi balok



H



=



1,5 m



Lebar balok



B



=



2 m



Beton K300



fc'



=



29 Mpa



Besi tulangan



fy



=



400 Mpa



Es



=



200000 Mpa



Mu (-)



=



2000 kNm



cover



c



=



150 mm



diameter tulangan



db



=



25 mm



diameter tulangan sengkang



ds



=



16 mm



jumlah tulangan



nb



=



10 buah



Luas tulangan total



Asb



=



4910,7143 mm2



a = Ast * fy / (0.85*fc'*b)



a



=



39,843524 mm



d = H - 0,5 db - ds- c



d



=



1321,5 mm



Mn = Ast * fy * (d-a/2)



Mn



=



2556,6715 kNm



φ



=



0,9



φ Mn



=



2301,0044 kNm



Mu/φMn



=



0,8691857



ρ



=



0,001858



ρmin



=



0,0018



β1



=



0,85



εs



=



0,0815765



fy / Es



=



0,002



fs



=



ρb



=



0,0314288



0,75 ρb



=



0,0235716



Material



Desain lentur Moment negative



faktor reduksi



rasio tulangan rasio tulangan minimum



ρmaks



OK



400 Mpa



Desain Geser PT. Perentjana Djaja - 2018



27



Perencanaan Jembatan Poboya



Gaya geser ultimate



Vu



=



2100 kN



faktor reduksi



φ



=



0,75



Kuat geser beton



Vc



=



2419,6084 kN



jumlah kaki



n



=



diameter sengkang



Ds



=



13 mm



tegangan leleh tul. Sengkang



fy



=



400 Mpa



d



=



1321,5 mm



spasi



s



=



100 mm



Kuat geser sengkang



Vs



=



2807,6211 kN



φ (Vc + Vs)



=



3920,4222 kN



Vu / φ (Vc + Vs)



=



0,5356566



OK



0,66 * √fc * bw * d



=



9393,7738 kN



OK



4



Vs max



3.1.5.3



Desain Pelat Lantai



Gambar 3.29 Penulangan pelat lantai



PT. Perentjana Djaja - 2018



28



Perencanaan Jembatan Poboya



Gambar 3.30 Beban sdl



Gambar 3.31 Beban LL1



Gambar 3.32 Beban LL2



Gambar 3.33 Beban LL3



Gambar 3.34 Mu kombinasi 1



PT. Perentjana Djaja - 2018



29



Perencanaan Jembatan Poboya



Gambar 3.35 Vu kombinasi 1



Gambar 3.36 Mu kombinasi 2



Gambar 3.37 Vu kombinasi 2



Gambar 3.38 Mu kombinasi 3 PT. Perentjana Djaja - 2018



30



Perencanaan Jembatan Poboya



Gambar 3.39 Vu kombinasi 3



Tinggi balok Lebar balok



H B



= =



0,25 m 1 m



fc' fy Es



= = =



25 Mpa 400 Mpa 200000 Mpa



Material Beton K300 Besi tulangan Desain lentur Moment negative cover diameter tulangan diameter tulangan sengkang jumlah tulangan Luas tulangan total a = Ast * fy / (0.85*fc'*b) d = H - 0,5 db - ds- c Mn = Ast * fy * (d-a/2) faktor reduksi



rasio tulangan rasio tulangan minimum



PT. Perentjana Djaja - 2018



Mu (-) c db ds nb Asb a d Mn φ φ Mn Mu/φMn



= = = = = = = = = = = =



78,5 25 16 13 6,6666667 1340,9524 25,241457 204 102,6522 0,9 92,386976 0,8496869



ρ ρmin



= =



0,0065733 0,0018



β1 εs fy / Es fs



= = = =



kNm mm mm mm buah mm2 mm mm kNm kNm



0,85 0,017609 0,002 400 Mpa



OK



tulangan leleh



31



Perencanaan Jembatan Poboya



ρmaks



ρb 0,75 ρb



= =



0,0270938 0,0203203



tulangan underreinforced



Desain Geser Gaya geser ultimate faktor reduksi



Vu φ



= =



Kuat geser beton jumlah kaki diameter sengkang tegangan leleh tul. Sengkang



Vc n Ds fy d s Vs



= = = = = = =



173,4 2 13 400 204 100 216,70629



φ (Vc + Vs)



=



292,57971 kN



Vu / φ (Vc + Vs)



=



0,5092629



0,66 * √fc * bw * d



=



spasi Kuat geser sengkang



149 kN 0,75 kN mm Mpa mm mm kN



OK



Vs max



3.1.5.4



673,2 kN



OK



Perencanaan Pile Cap



Gambar 3.40 Penulangan pile cap



PT. Perentjana Djaja - 2018



32



Perencanaan Jembatan Poboya Daya dukung pondasi



Pall



=



1000 kN



Mu



=



12000 kNm



Tinggi balok



H



=



1,25 m



Lebar balok



B



=



14,6 m



Beton K300



fc'



=



29 Mpa



Besi tulangan



fy



=



400 Mpa



Es



=



200000 Mpa



Mu (-)



=



12000 kNm



cover



c



=



150 mm



diameter tulangan



db



=



25 mm



diameter tulangan sengkang



ds



=



25 mm



jumlah tulangan



nb



=



146 buah



Luas tulangan total



Asb



=



71696,4 mm2



a = Ast * fy / (0.85*fc'*b)



a



=



79,687 mm



d = H - 0,5 db - ds- c



d



=



1062,5 mm



Mn = Ast * fy * (d-a/2)



Mn



=



29328,3 kNm



faktor reduksi



φ



=



φ Mn



=



26395,5 kNm



Mu/φMn



=



0,45462



ρ



=



0,00462



ρmin



=



0,0018



β1



=



0,85



εs



=



0,031



fy / Es



=



0,002



fs



=



ρb



=



0,03143



0,75 ρb



=



0,02357



Material



Desain lentur Moment negative



rasio tulangan rasio tulangan minimum



ρmaks



PT. Perentjana Djaja - 2018



0,9



400 Mpa



OK



tulangan leleh



tulangan underreinforced



33



Perencanaan Jembatan Poboya



Desain Geser Gaya geser ultimate



Vu



=



12000 kN



faktor reduksi



φ



=



Kuat geser beton



Vc



=



14201,4 kN



jumlah kaki



n



=



4



diameter sengkang



Ds



=



16 mm



tegangan leleh tul. Sengkang



fy



=



400 Mpa



d



=



1062,5 mm



spasi



s



=



100 mm



Kuat geser sengkang



Vs



=



3419,43 kN



φ (Vc + Vs)



=



13215,6 kN



Vu / φ (Vc + Vs)



=



0,90802



OK



0,66 * √fc * bw * d



=



55134,7 kN



OK



0,75



Vs max



3.1.5.5



Desain Abutment



Gambar 3.41 Penulangan abutment



PT. Perentjana Djaja - 2018



34



Perencanaan Jembatan Poboya



Umum Tinggi abutment Lebar abutment Bentang jembatan Lebar jembatan



H Ba L B



= = = =



fc' E



= =



Pdl Pll SW



= = =



D



= = = = = = =



2,9 10 15 10



m m m m



Properties Material kuat tekan beton karakteristik Modulus elastisitas



25 Mpa 23500 MPa



Pembebanan Pdl, Pll TB



y



H



SW



Dead Load Beban berat sendiri struktur atas Beban kendaraan Beban berat sendiri abutment Beban Rem Beban D 5 % x beban D Beban T 5 % x beban T Beban Rem TB = 5 % D + 5 % T



PT. Perentjana Djaja - 2018



T TB y MTB



1807,59 kN 675 kN 2558,4 kN 5040,99 9 33,75 500 12,5 46,25 0,8 37



kN/m2 kN kN kN kN m kNm



35



Perencanaan Jembatan Poboya Beban Tekanan Tanah Lateral berat jenis tanah sudut geser tanah dalam koefisien tekanan at rest



ws φ Ko



= = =



Ta ya Mta



= = =



Beban surcharge Tekanan tanah akibat beban surcharge



qs Ts ys MTs



= = = =



Mu1 = 1,25*(Mta + MTs) + 1,8*MTB



Mu1



=



Pga fpga As Kh φ



= = = = =



17 kN/m3 30 0,5



Ts Ta ys ya



1. Tekanan tanah lateral Tekanan tanah lateral



357,43 kN 0,96667 m 345,511 kNm



2. Tekanan tanah akibat beban surcharge 20 290 1,45 420,5



kN/m2 kN m kNm



1024,11 kNm



3. Tekanan tanah dinamis akibat gempa



EAE



ye



Percepatan puncak batuan dasar Faktor amplifikasi As = pga x Fpga Koefesien beban gempa horizontal, Kh = 0,5 As sudut geser tanah dalam PT. Perentjana Djaja - 2018



0,3 1,2 0,36 0,18 30



36



Perencanaan Jembatan Poboya θ = arc tan (Kh)



θ



=



0,17809



KAE



=



0,38629



EAE



=



276,14 kN



ye Me



= =



1,93333 m 533,865 kNm



Faktor keutamaan struktur Beban mati total (Pdl + SW) Inersia penampang abutment Kekakuan dinding Periode natural abutment Koefisien gempa Faktor reduksi gempa Feq = Wt x I x C / R



I Wt Ixx Kp T C R Feq Meq



= = = = = = = = =



1 2294,79 2,28667 6609947 0,03739 0,36 1 826,13 660,901



Mu2 = Me + Meq



Mu2



=



1194,77 kNm



Koefisien tekanan aktif seismik



Beban Gempa



kN m4 kN/m dt



kN



Beban Struktur Atas b (m) PCI girder Pelat Lapisan asphalt Diafragma Paraphet



Beban pada abutment Beban D Total beban D Beban D pada abutment



10 10 1



Pdl D



= = =



Pll



=



PT. Perentjana Djaja - 2018



t (m)



A (m2)



n



0,22 0,1 0,15 0,5



0,7635 2,2 1 1,08 0,5



7 1 1 20 2



Berat jenis (kN/m3) 25 25 22 25 25 Total berat sendiri struktur atas



Berat kN 2004,1875 825 330 81 375 3615,1875



1807,594 kN 9 kN/m2 1350 kN 675 kN



37



Perencanaan Jembatan Poboya Beban Struktur Bawah



Dinding Pile Cap



b (m)



L (m)



h (m)



V (m3)



1,4 1,5



10 10



2,9 4,4



40,6 66



Load Case SW SDL LL EP EPE Eq -X Eq -Y



FX kN



46,25 647,425 276,137 826,1258 247,8377



FY kN



FZ kN 4200,9938 165 675



247,8377 826,1258



Berat jenis (kN/m3) 24 24 Total berat sendiri struktur bawah



MY kNm



Berat kN 974,4 1584 2558,4



MX kNm



37 766,0108 660,9006 660,9006 198,2702



198,2702 660,9006



Desain Tulangan Abutment (Sisi Dalam) Tebal dinding abutment Lebar abutment Material Beton Besi tulangan



Moment positive cover diameter tulangan diameter tulangan sengkang spasi tul utama jumlah tulangan Luas tulangan total a = Ast * fy / (0.85*fc'*b) d = H - 0,5 db - ds- c Mn = Ast * fy * (d-a/2) faktor reduksi



PT. Perentjana Djaja - 2018



tw B



= =



fc' Ec fy Es



= = = =



25 23500 400 200000



Mpa MPa Mpa Mpa



= = = = = = = = = = = = =



1194,77 50 32 13 100 100 80457,1 151,449 1321 40076,5 0,9 36068,9 0,03312



kNm mm mm mm



Mu (+) c db ds s nb Asb a d Mn φ φ Mn Mu /φ Mn



1,4 m 10 m



buah mm2 mm mm kNm kNm OK



38



Perencanaan Jembatan Poboya



rasio tulangan rasio tulangan minimum



ρ1 ρmin



= =



0,00609 0,0018



β1 εs fy / Es fs



= = = =



0,85 0,01924 0,002 400 Mpa



tulangan leleh



ρb 0,75 ρb



= =



0,02709 0,02032



tulangan underreinforced



Gaya geser ultimate faktor reduksi



Vu φ



= =



1102,26 kN 0,75



Kuat geser beton jumlah kaki diameter sengkang tegangan leleh tul. Sengkang



Vc n Ds fy d s Vs



= = = = = = =



11228,5 2 13 400 0,36 200 0,19121



φ (Vc + Vs)



=



8421,52 kN



Vu / φ (Vc + Vs)



=



0,13089



ρmaks Perencanaan Geser



spasi Kuat geser sengkang



3.1.5.6



kN mm Mpa mm mm kN



Perencanaan Pondasi Tiang



Gambar 3.42 Penulangan pondasi



PT. Perentjana Djaja - 2018



39



Perencanaan Jembatan Poboya 3.1.6



Perencanaan Daya Dukung Pondasi



Gambar 3.43 Gaya Aksial kombinasi servis non gempa



Project Ref. Calc Method Pile Properties Type Sha pe Di a meter Area Peri meter Uni t wei ght



: : :



Jembatan Poboya BH1 O'Neill and Reese, 1999



: : : : : :



Spun Pi l e Ci rcl e 0,60 m 2



0,283 m 1,885 m 24,00 kN



Soil Layer La yer 1 La yer 2 La yer 3 La yer 4



: : : :



Very Soft Si l ty Cl a y Soft Cl a yey Si l t Very Soft Cl a yey Si l t Medi um dens e Fi ne Sa nd



La yer 5 La yer 6 La yer 6



: : :



Dens e Si l ty Sa nd Very Stiff Si l ty Cl a y Stiff Cl a yey Si l t



Calculatin Depth of Pile Depth 10 Ul tima te Comp 2042,60 Al l owa bl e Comp 749,18 Al l owa bl e Pul l out 184,17



SOIL PROPERTIES Depth



Type Soi l



(m) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0



S S S S S S S S



ϒ' (kN/m 3) 11 11 11 11 11 11 11 11



σV '



Soi l La yer



N - SPT



1 1 1 1 1 1 1 1



0 16 19 24 34 41 40 37



(kN/m 2) 0 11,00 33,00 55,00 77,00 99,00 121,00 143,00



N - SPT



m kN kN kN



ULTIMATE α



β



CORRECTED



Cu (kN/m2)



0 58 62 60 60 60 60 60



-



-



1,50 1,26 1,15 1,08 1,01 0,95 0,90 0,85



Skin Friction, Qs (kN) Loca l 0,00 52,04 143,51 223,03 293,19 355,37 410,49 459,20



Cummu. 0,00 52,04 195,55 418,58 711,77 1067,13 1477,62 1936,82



End Bearing, Qult (kN) Qp (kN) 0,00 942,95 1007,98 975,46 975,46 975,46 975,46 975,46



0,00 994,99 1203,53 1394,04 1687,23 2042,60 2453,08 2912,28



Pull Out Capacity (kN)



SF



Wp



0.7*fr



Cummu.



Qpu



0,00 13,57 27,14 40,72 54,29 67,86 81,43 95,00



0,00 36,43 100,45 156,12 205,23 248,76 287,34 321,44



0,00 36,43 136,88 293,01 498,24 746,99 1034,33 1355,77



0,00 50,00 164,03 333,72 552,52 814,85 1115,76 1450,77



Depth (m) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0



ALLOWABLE Comp 2,5 2,5 Cap., Skin End Qall Friction Bearing (kN) (kN) (kN) 0,00 0,00 0,00 20,82 377,18 384,43 78,22 403,19 454,27 167,43 390,19 516,90 284,71 390,19 620,61 426,85 390,19 749,18 591,05 390,19 899,80 774,73 390,19 1069,91



5



3,0 Pull Out Capacity (kN) 0,00 16,67 54,68 111,24 184,17 271,62 371,92 483,59



itu



Project Ref. Calc Method Pile Properties Type Sha pe Di a meter Area Peri meter Uni t wei ght



: : :



Jembatan Poboya BH2 O'Neill and Reese, 1999



: : : : : :



Spun Pi l e Ci rcl e 0,60 m 2



0,283 m 1,885 m 24,00 kN



Soil Layer La yer 1 La yer 2 La yer 3 La yer 4



: : : :



Very Soft Si l ty Cl a y Soft Cl a yey Si l t Very Soft Cl a yey Si l t Medi um dens e Fi ne Sa nd



La yer 5 La yer 6 La yer 6



: : :



Dens e Si l ty Sa nd Very Stiff Si l ty Cl a y Stiff Cl a yey Si l t



Calculatin Depth of Pile Depth 10 Ul tima te Comp 2042,60 Al l owa bl e Comp 749,18 Al l owa bl e Pul l out 184,17



SOIL PROPERTIES Depth



Type Soi l



(m) 0,0 2,0 4,0 6,0 8,0 10,0 12,0



S S S S S S S



ϒ' (kN/m 3) 11 11 11 11 11 11 11



σV ' (kN/m 2) 0 11,00 33,00 55,00 77,00 99,00 121,00



Soi l La yer



N - SPT



1 1 1 1 1 1 1



0 16 19 24 34 41 40



N - SPT



m kN kN kN



ULTIMATE α



β



CORRECTED



Cu (kN/m2)



0 47 58 60 60 60 60



-



-



1,50 1,26 1,15 1,08 1,01 0,95 0,90



Skin Friction, Qs (kN) Loca l 0,00 52,04 143,51 223,03 293,19 355,37 410,49



Cummu. 0,00 52,04 195,55 418,58 711,77 1067,13 1477,62



End Bearing, Qult (kN) Qp (kN) 0,00 764,11 942,95 975,46 975,46 975,46 975,46



0,00 816,16 1138,50 1394,04 1687,23 2042,60 2453,08



ALLOWABLE Pull Out Capacity (kN)



SF



Wp



0.7*fr



Cummu.



Qpu



0,00 13,57 27,14 40,72 54,29 67,86 81,43



0,00 36,43 100,45 156,12 205,23 248,76 287,34



0,00 36,43 136,88 293,01 498,24 746,99 1034,33



0,00 50,00 164,03 333,72 552,52 814,85 1115,76



Depth (m) 0,0 2,0 4,0 6,0 8,0 10,0 12,0



2,5 2,5 Skin End Friction Bearing (kN) (kN) 0,00 0,00 20,82 305,65 78,22 377,18 167,43 390,19 284,71 390,19 426,85 390,19 591,05 390,19



Comp 3,0 Cap., Pull Out Qall Capacity (kN) (kN) 0,00 0,00 312,89 16,67 428,26 54,68 516,90 111,24 620,61 184,17 749,18 271,62 899,80 371,92



lasi Hasil



PT. Perentjana Djaja - 2018



40