Materi Training 2G RF Planning & Optimization [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Hotel Paragon Jakarta 14 & 15 Agustus 2013



Training Material



2G RF Planning for Network Optimization



Our Product and Service



Learning Center Research and Development



Industrial Product



www.floatway.com



Lingga Wardhana Educational Background :  Electrical Engineering, Gadjah Mada University (2001 – 2006)  MBA Program, Gadjah Mada University (2011 – present )



Professional Experience :  PT. Siemens Indonesia, Network Optimization Engineer (2006 – 2008)  PT. Lexcorp Solution, RF Optimization Consultant (2008 – 2009)  PT. Nexwave, RF Optimization Consultant (2009)  PT. Lintas Media Telekomunikasi, 3G RF Senior Optimization Consultant (2009 – 2010)  PT. Floatway Systems, Founder (2010 – Present)



Achievements :  1st winner of Indosat Telco Project 2005  1st winner of Indosat Wireless Innovation Contest 2007, Hardware Category 3rd position in European Satellite Navigation Competititon 2009 for Regional Gipuzkoa/Spain (www.galileo-masters.eu)



Agenda Day One 09.00-10.00 : Step by step 2G RF Planning Process Propagation Model Link Budget dB Review dBm Review 10.00-10.15 (Coffee Break) 10.15-12.00 : GSM Frequency Allocation Frequency Planning Rules 12.00-13.00 (Makan Siang, Sholat) 13.00-15.00 : Review Materi Co-channel & Adjacent Channel Interference 15.00 – 15.30 (Coffee Break, Sholat) 15.30 – 17.00 : Frequency Hopping Strategy Review Materi



PROSES BELAJAR



5



Proses Belajar Belajar merupakan hak setiap orang, akan tetapi kesempatan mengikuti program pengembangan diri di Floatway Learning Center adalah suatu privilege.



Privilege bahwa seseorang secara formal telah menjalani kegiatan belajar dan mendapatkan pengakuan atas hasil belajarnya.



Perlu dicatat bahwa belajar merupakan kegiatan individual. Yang diharapkan bahwa peserta juga melakukan kegiatan mandiri seperti membaca, menerapkan teori pada praktek nyata, menganalisis dan hal-hal lain yang mengembangkan kemandirian belajar di luar kelas formal.



Sehingga harapannya tidak terjadi kesenjangan antara pemberi materi dan peserta program dan terjadi pertukaran informasi di antara peserta di dalam kelas dan akhirnya kegiatan training class menjadi kegiatan yang menyenangkan tanpa meninggalkan semangat dan kegigihan atau profesional.



WHAT IS RF ENGINEER



7



What is RF Engineer? RF Engineer atau Radio Frequency Engineer adalah seseorang yang bertanggung jawab segala sesuatu hal pada jaringan seluler yang berhubungan dengan sisi radio.



di sisi radio kita dapat mengetahui user perception atau “rasa” yang dialami oleh pengguna jaringan operator



RF PLANNING AND OPTIMIZATION



9



RF Planning Planning Team Planning Tools



Site Data (Engineering Parameter)



Planning Tools : NetAct Planner (NSN) Unet (Huawei) TEMS Cell Planner (Ericsson) Asset3G (Aircom)



Map Tools : MapInfo Google Earth Necto SiteSee Common Map Tools



Site Data dari Planning (Engineering Parameter) Untuk OSS tim



Digunakan oleh RF Optimization team dan Drivetest team.



OSS Engineer or Database Engineer Site Data dari Planning (Engineering Parameter)



OSS Tools



Parameter Database



BTS



BSC



2G Network



Capacity and Utilization Database



Digunakan oleh Planning Team salah Alarm satunya untuk Database membuat map dengan relasi adjacent



Site Data dari Planning team dan Parameter Database digunakan untuk membuat Drivetest Cell File



OSS Engineer



Performance Database OSS Tools : NetAct OSS (NSN) M2000 (Huawei) LMT (Huawei) Citrix (Ericsson) WINFIOL (Ericsson) Batrana (Siemens) Ms Access & Ms Excell



Data-data dari OSS digunakan oleh RF Optimization untuk proses optimisasi



Drivetest Engineer Site Data dari Planning team dan Parameter Database digunakan untuk membuat Drivetest Cell File Drivetest team mengambil data “user experience” dengan Drivetest Tool



Drivetester Team



Drive Test Cell File



Drivetest Tools



Drive Test Logfile RF Optimization Team



Drivetest Tools : TEMS Investigation Nemo Probe Data Logfile digunakan RF Optimization untuk dianalisis.



Logfile dari Drivetester Untuk RF Optimization



Rigger Team Site Audit Tools



Site Audit Data/ Physical Data



Data-data physical seperti antenna height, antenna downtilt, azimuth dan panoramic picture diambil oleh tim Rigger.



Site Audit Tools : Kompas GPS Kamera Meteran Tilt meter Rigger Team



Physical data selain digunakan oleh RF Optimization, juga oleh Planning Team untuk mengupdate Site Data.



RF Optimization Performance Statistik dari OSS



Logfile dari Drivetester



Measurement Analysis Tools



Drivetest Post Processing Tools



Physical site data dari rigger atau dari planning team



Proposal and Reporting



Parameter CR Neighbour CR Physical CR Alarm Clearance



RF Optimization Team Parameter Change Request akan dieksekusi oleh tim OSS, Physical Change oleh tim Rigger, Hardware clearance akan diekskalasi ke tim BSS.



RF Planning Scope of Work Scrambling Code Planning in 3G Planning for Capacity Expansion



Planning for add new site



Frequency Planning in 2G



RF Planning



Neighbour Planning



Database Parameter for New site



Physical Parameter for New Site



RF Optimization Scope of Work Knowing and Reporting Network Performance Support for newsite and capacity expansion requirement



Knowing and tuning for optimal Network Parameter



RF Optimization



Drivetest analysis and recommenda tion



Acessibility Performance Improvement



Integrity Performance Improvement



Retainability Performance Improvement



STEP BY STEP PROSES RF PLANNING



17



Step by step proses RF Planning



Step by step proses RF Planning Analisis trafik dan coverage Perencanaan Rollout



Perencanaan pasar operator



Link Budget



Trafik dan Coverage



Konfigurasi BTS



Model Trafik



Kebutuhan coverage



Step by step proses RF Planning Analisis trafik dan coverage



Step by step proses RF Planning Nominal cell plan Pada saat penentuan Nominal Cell Plan data-data mengenai perangkat yang akan digunakan seperti tipe BTS, tipe antena, tipe feeder sudah harus didefinisikan, juga data-data mengenai lokasi site dan juga coverage predictions dengan model propagasi yang telah di-tuning sesuai dengan keadaan sebenarnya.



Plan juga harus memperhitungkan site yang sudah ada atau existing site agar tidak terjadi pemborosan biaya dengan penambahan site baru padahal site yang sudah ada dapat lebih dimaksimalkan kapasitasnya.



Step by step proses RF Planning Radio Site Survey Hal-hal yang perlu di survey :



Radio Site Survey adalah survey awal untuk menentukan bahwa titik pada nominal plan benarbenar cocok untuk diimplementasikan site. Pada saat penentuan posisi site biasanya terdapat tiga titik yang akan di survey. Dari ketiga titik tersebut terdapat batas toleransi biasanya 20% dari jarak antar site. Misalnya pada jaringan GSM dengan jarak rata-rata 800 meter di area urban maka lokasi yang di-survey dari titik awal maksimum dengan radius 160 meter.



1. Koordinat GPS 2. Informasi Ketinggian 3. Informasi antena, posisi, tinggi, azimuth



4. Informasi adanya halangan 5. Sketsa dan gambar sekeliling site



Step by step proses RF Planning Radio Site Survey



Equipment yang diperlukan : GPS, Kompas, Teropong, Kamera Digital, Papper Maps yang akurat, Meteran, Inklinometer, Coverage Plot dan Form isian site survey.



Step by step proses RF Planning Radio Site Survey



Equipment yang diperlukan : GPS, Kompas, Teropong, Kamera Digital, Papper Maps yang akurat, Meteran, Inklinometer, Coverage Plot dan Form isian site survey.



Step by step proses RF Planning Radio Site Survey



Equipment yang diperlukan : GPS, Kompas, Teropong, Kamera Digital, Papper Maps yang akurat, Meteran, Inklinometer, Coverage Plot dan Form isian site survey.



Step by step proses RF Planning Radio Site Survey



Equipment yang diperlukan : GPS, Kompas, Teropong, Kamera Digital, Papper Maps yang akurat, Meteran, Inklinometer, Coverage Plot dan Form isian site survey.



Step by step proses RF Planning Site Investigation Kegiatan Sipil dan keperluan instalasi perlu melakukan survei tersendiri yang dinamakan Site Investigation antara lain menginvestigasi kekuatan tanah, instalasi antena yang cocok, Informasi luas area dan informasi sumber daya yang akan digunakan apakah menggunakan jaringan PLN atau harus menggunakan genset.



Step by step proses RF Planning Sistem Desain Setelah survey selesai dilakukan maka penentuan frekuensi BCCH dan frekuensi TCH dilakukan.



Implementasi Pada tahap ini dilakukan pekerjaan instalasi, commisioning dan testing.



Step by step proses RF Planning Proses Optimasi Setelah site on-air maka dilakukan proses optimisasi pada site tersebut.



Hal-hal dilakukan saat PLO antara lain : 1. Konfigurasi dilapangan sudah terimplementasi sesuai dengan Final Cell Plan 2. Performance sudah mencapai KPI yang diinginkan



Sering juga disebut new site optimization atau PLO



3. Melakukan initial tuning parameter



4. Mengambil Drive test Measurement



Karena trafik terus meningkat maka kegiatan optimasi harus terus berjalan. Pada suatu saat perlu penambahan kapasitas untuk mengakomodir trafik yang terus naik. Pada poin ini analisis trafik dan coverage perlu dilakukan dan proses planning berjalan berulang lagi.



RADIO WAVE PROPAGATION



30



Radio Wave Propagation



Radio Frekuensi dengan rentang frekuensi antara 3Hz sampai 3000 GHz dibagi klasifikasinya menjadi 12 bagian. Komunikasi seluler GSM 900 MHz dan 1800 MHz termasuk dalam kategori UHF.



Radio Wave Propagation Meskipun gelombang radio merambat di udara tanpa impedansi sama sekali. Tetapi bukan berarti pentransmissian gelombang radio tanpa loss sama sekali.



Faktor-faktor yang mempengaruhi Radio Wave Propagation antara lain : 1. Fakta bahwa gelombang radio dipantulkan oleh permukaan bumi (karena permukaan bumi bersifat konduktif) 2. Loss pada saat pentransmissian karena terdapat halangan gedung atau pepohonan 3. Variasi topografi seperti hutan, pedesaan atau perkotaan



Radio Wave Propagation Short Term (fast) dan Long Term (slow) fading



Receiving Level



Variations due to Rayleigh fading



Variations due to shadowing Global mean



distance



Long and short term fading



Fast fading muncul karena halangan-halangan yang bersifat sebagai pemantul. Dan akhirnya diterima pada antena penerima berbagai macam sinyal dengan berbagai macam fase, amplitudo dan kadang-kadang saling menghilangkan satu dengan lainnya. Hal ini dapat mengakibatkan lemahnya sinyal.



Beberapa solusi dapat digunakan untuk mengurangi efek Fast/Short/Rayleight fading antara lain dengan menambah power output dan juga penggunaan space diversity pada antena.



Radio Wave Propagation Space Diversity Diversity dapat diartikan penggunaan dua sinyal di sisi penerimaan yang memiliki perbedaan history pada saat pentransmissian, sehingga salah satu sinyal dengan kualitas yang terbaik yang digunakan.



Gambar disamping menunjukkan Receive Diversity pada sistem GSM dengan menggunakan teknik Space Diversity atau dua RX yang terpisah sejauh L



LINK BUDGETING



35



Link Budgeting Pada praktek nyata perbedaan antara coverage uplink dan downlink sering terjadi karena perbedaan power antara MS dan BTS. Tetapi bagaimanapun system balancing antara uplink dan downlink harus diperhatikan sebelum melakukan kalkulasi coverage.



Link Budgeting Maka balancing sistem untuk GSM900 power class 4 dengan Pout MS = 2W atau 33 dBm dan GdBTS = 3.5 dB dan sensitivitas MS sens = -104 dBm dan sensitivitas BTS BTS sens = -110 dBm maka didapatkan output power maksimum BTS = 42.5 dBm



Link Budgeting EiRP (Effective Radiated Power) Power efektif yang diradiasikan pada sisi antena atau yang disebut ERP atau EiRP



Huruf i pada EiRP menginterprestasikan apabila power yang sama diberikan kepada antena isotropik yang mempunyai power yang sama dengan antena dengan gain Ga BTS. Seperti telah dijelaskan pada bagian sebelumnya EiRP dan ERP mempunyai selisih sebesar 2.15 dB



Link Budgeting MS Power Classes MS Power Class



Output Power (dBm)



Sensitivity (dBm)



2



39



-106



3



37



-106



4 (handheld)



33



-104



5 (handheld)



29



-104



MS Power Class



Output Power (dBm)



Sensitivity (dBm)



1



30



-104



2



24



-104



BTS Output Power Output power (dBm)



Sensitivity (dBm)



43.5



-110



33



-106



22



-100



GSM 900



GSM 1800



Link Budgeting Feeder Loss Feeder Type



800/900 (dB/100m)



1800/1900 (dB/100m)



LCF 1/2”



7.0/7.2



10.5



LCF 7/8”



4.0



6.5



LCF 1-1/4”



3.3



5.3



LCF 1-5/8”



2.6



4.2



Feeder length VS Feeder type Feeder Length (m)



Feeder Type



MiniMacro



GSM900



DCS1800



WCDMA2100



1 - 20



LDF 1/2"



AVA 7/8"



AVA 7/8"



AVA 7/8"



21 - 30



-



AVA 7/8"



AVA 7/8"



AVA 7/8"



31 - 40



-



AVA 7/8"



AVA 7/8"



AVA 7/8"



41 - 50



-



AVA 7/8"



AVA 7/8"



AVA 7/8"



51 - 60



-



AVA 7/8"



LDF 1 1/4"



LDF 1 1/4"



60 - 70



-



LDF 1 1/4"



LDF 1 1/4"



LDF 1 1/4"



70 - 80



-



LDF 1 1/4"



AVA 1 5/8"



AVA 1 5/8"



> 80



-



AVA 1 5/8"



AVA 1 5/8"



AVA 1 5/8"



Short Quiz 1 (Link Budgeting)



Sebuah jaringan indoor multi operator GSM 900 dipasangkan ke sebuah gedung. Berapakah EIRP pada sebuah antena, dimana antena tersebut disambungkan dengan feeder LCF 7/8” dengan panjang 200 meter melewati combiner dengan loss 9 dB, sebuah splitter dengan loss 3 db dan gain antenna 3 dBi?



DECIBEL REVIEW



42



dB Review Decibel (dB) adalah satuan (unit) yang menyatakan perbandingan (ratio) dalam bentuk logaritma basis 10. Unit ini sering digunakan untuk menyatakan penguatan (gain) atau redaman (losses) level sinyal, daya dan tegangan. Decibel (dB) digunakan agar representasi gain lebih sederhana. Misal penguatan 10*log (1,000,000,000/1) dapat dituliskan 90 dB. Contoh lain penguatan dari 1ke 0,000000001 dapat dituliskan menjadi -90 dB. Ini memudahkan dalam penulisan penguatan sinyal pada telekomunikasi



dBm Review Unit dBm mengekspresikan absolute value dari power. Untuk mengubah dari power (watts) ke dBm



Satuan ini sering digunakan dalam telekomunikasi untuk merepresentasikan nilai yang sangat besar atau sangat kecil dalam bentuk yang lebih sederhana.



Kesimpulannya gunakan db untuk mengekspresikan ratio antara dua nilai power. Dan gunakan dBm untuk mengekspresikan absolute value dari power.



Short Quiz 2 (dB Review) 1.



2.



Sebuah output RF dengan power 40 watt dimasukkan ke dalam combiner dengan loss 3 dB berapa watt kah keluaran dari combiner?



Jika diketahui power output maksimum sebuah BTS adalah 20 Watt berapa dBm-kah output maksimum BTS tersebut ?



GSM FREQUENCY ALLOCATION



46



GSM Frequency Allocation



Pada standar jaringan GSM frekuensi yang lebih tinggi digunakan untuk komunikasi downlink dan frekuensi yang lebih rendah digunakan untuk komunikasi uplink. Hal ini berhubungan dengan power uplink yang biasanya lebih rendah daripada power downlink Guard band sebesar 200 kHz diaplikasikan di batas-batas frekuensi antar operator untuk menghindari terjadinya saling interference pada operator penyedia layanan GSM.



2G Frequency Allocation in Indonesia GSM 900



DCS 1800



Frequency & Wavelength Panjang gelombang () adalah jarak yang di ukur dari satu titik dari sebuah gelombang ke titik yang sama di gelombang selanjutnya. = kecepatan cahaya / frekuensi ( c = 3 x 108 m/s) Perilaku Gelombang Radio : • Semakin panjang panjang gelombang, semakin jauh gelombang radio merambat. • Semakin panjang panjang gelombang, semakin mudah gelombang radio melalui atau mengitari penghalang. • Semakin pendek panjang gelombang, semakin banyak data yang dapat di kirim.



Short Quiz 3 (Frequency Spectrum) 1.



2.



Untuk penetrasi indoor dan coverage bagaimana perbandingan antara sinyal frekuensi GSM dan frekuensi DCS apabila kedua site tersebut memiliki power, ketinggian dan konfigurasi antenna yang sama ?



Apakah keuntungan operator dengan frekuensi GSM 1800 yang contiguous (berdampingan) dibandingkan dengan frekuensi yang tidak berdampingan seperti yang dialami oleh operator-operator GSM di Indonesia ?



FREQUENCY PLANNING RULES



51



Frequency Planning Rules



BCCH carriers



TCH carriers



BCCH frequency



TCH frequency Spacing Frequency



Setiap operator seluler akan mendapatkan sekumpulan ARFCN (satu ARFCN = 200 kHz) dan dibagi menjadi dua kelompok yaitu BCCH carriers dan TCH carriers.



Misalkan sebuah operator mendapatkan 40 carriers dari channel 1 sampai 40. Maka pembagian channelnya akan tampak seperti gambar diatas,



Frequency Planning Rules



Maka didapatkan pembagian 1. 15 carriers digunakan untuk BCCH frequency



2. 24 carriers digunakan untuk TCH frequency 3. 1 carrier digunakan untuk guard band antara BCCH carriers dan TCH carriers



Frequency Planning Rules Sektor yang saling berhadapan atau berada dalam satu site minimal harus berselisih 2 ARFCN, sektor yang memiliki azimuth sama dan bersebelahan langsung juga harus berselisih 2 ARFCN.



Jaringan pada real network jauh lebih rumit dimana orientasi setiap antena tidak homogen dan jumlah konfigurasi TCH jauh lebih lebih banyak.



CO-CHANNEL/ ADJACENT CHANNEL INTERFERENCE



55



Co-channel Interference



Co-Channel Interference adalah interferensi yang disebabkan karena penggunaan frequensi yang sama oleh cell carrier dan juga cell yang lain.



Pada GSM Spesification rasio antara carrier dan interference atau disebut C/I harus lebih besar dari 9dB. Tetapi biasanya operator menentukan bahwa rasio C/I harus lebih besar dari 12 dB. Apabila digunakan frequency hopping maka margin berkurang 3dB



Adjacent Channel Interference



Setiap frekuensi ARFCN mempunyai bandwidth 200 kHz. Dan setiap frequency yang adjacent (berbeda 200 kHz atau 1 ARFCN) tidak diperbolehkan memiliki sinyal yang terlalu kuat juga. Meskipun berbeda frekuensi beberapa sinyal yang berhimpitan frekuensinya dapat mempengaruhi kualitas.



Pada GSM Spesification rasio antara carrier dan adjacent frekuensi harus lebih besar dari 9dB. Adjacent Channel Interference harus dihindari pada cells di site yang sama dan juga pada neighbouring cells.



Adjacent Channel Interference Perencanaan frekuensi untuk menghindari adjacent dan co-channel interference.



Short Quiz 4 ( Frequency Planning) 1.



Sebuah operator memiliki site GSM dengan sector heterogen seperti tampak pada gambar dibawah. Apabila ditentukan ARFCN BCCH : 51 – 68, ARFCN TCH : 70 -87, ARFCN 69 sebagai guard band. Dan konfigurasi cell 2/2/2. Lakukan alokasi frequency untuk cell-cell dibawah ini.



FREQUENCY HOPPING



60



Frequency Hopping



Frequency hopping adalah teknik penggunaan sistem spread spectrum untuk mengurangi efek interferensi, multipath fading dan juga untuk menghindari frequency jamming.



Dalam Frequency hopping setiap frequency carrier berubah dalam sekuensial yang bersifat pseudorandom.



Ada dua macam frequency hopping yaitu Baseband Hopping dan juga Synthesizer hopping.



Frequency Hopping Keuntungan frequency hopping 1. Frekuensi hopping memudahkan dalam proses planning karena enginner tidak perlu lagi mem-plan satu-persatu frekuensi untuk setiap TCH carrier 2. Karena frekuensi hopping terdiri dari sekumpulan frekuensi maka dengan mengatur tabrakan antar frekuensi seminimal mungkin bisa meningkatkan performansi jaringan. 3. Dengan frekuensi hopping mengurangi loss-loss yang disebabkan dari fading, multipath propagation dan karena co-channel interference.



Frequency Hopping Synthesizer Hopping 1 x 1 Semua site menggunakan frekuensi grup yang sama. Semua sektor dalam satu site menggunakan HSN (Hopping Sequence Number) yang identik tetapi antar site HSN harus berbeda.



Ada konfigurasi tertentu untuk MAIO untuk menghindari interferensi cochannel dan adjacent channel.



Frequency Hopping Synthesizer Hopping 1 x 3 Setiap sector memiliki frekuensi grup yang berbeda.



Jarak minimal antar frekuensi dalam group 2 ARFCN. Jarak minimal antar frekuensi beda sektor dalam satu site 2 ARFCN. Semua sektor dalam satu site menggunakan HSN (Hopping Sequence Number) yang identik tetapi antar site HSN harus berbeda.



Frequency Hopping Synthesizer Hopping 1 x 1 MAIO Management Jumlah TRX



Sector 1



Sector 2



Sector 3



TRX1



0



2p



4p



TRX2



2



2p + 2



4p + 2



TRX3



4



2p + 4



4p + 4



….



….



….



….



TRXn



2n-2



2p+(2n-2)



4p+(2n-2)



P = jumlah TRX per sektor n = urutan TRX Jumlah TRX



Sector 1



Sector 2



Sector 3



TRX1



0



6



12



TRX2



2



8



14



TRX3



4



10



16



Contoh site dengan konfigurasi 3/3/3



Frequency Hopping Synthesizer Hopping 1 x 3 MAIO Management Jumlah TRX



Sector 1



Sector 2



Sector 3



TRX1



0



1



0



TRX2



2



3



2



TRX3



4



5



4



….



….



….



….



TRXn



2n – 2



4n – 2



6n – 2



n = urutan TRX



Frequency Hopping Cyclic Hopping dan Random Hopping



Pada Synthesizer Hopping ada dua macam lompatan frekuensi yaitu Cyclic Hopping dan Random Hopping. Pada Cyclic Hopping lompatan berdasarkan pattern tertentu sedangkan pada Random Hopping lompatan frekuensi bersifat Random.



Frequency Hopping Kalkulasi Fractional Load Perhitungan fractional load digunakan untuk menentukan Apakah dengan jumlah frekuensi yang tersedia dapat digunakan untuk penggunaan teknik SFH karena berhubungan dengan probabilitas frekuensi yang sama dipancarkan pada saat yang bersamaan. Oleh sebab itu semakin besar pengalokasian frekuensi untuk teknik SFH 1 x1 atau 1 x 3 maka kualitas RF semakin baik. Untuk menggunakan teknik SFH 1 x 3 maksimum Fractional Load adalah sebesar 50%.



Frequency Hopping Kalkulasi Fractional Load



Perbandingan FER antara SFH 1 x 3 dengan Fractional Load 30% dan 60%. FER atau Frame Erasure Rate adalah perhitungan persentase sebuah blok pada sebuah frame yang dihapus karena kesalahan pada saat parity check (CRC). Dapat dilihat dengan Fractional Load 30% memberikan kualitas jaringan yang lebih baik.



Short Quiz 5 (Frequency Hopping) 1.



2.



3.



Bandingkan Fractional Load cell-cell GSM pada ketiga operator besar Telkomsel, Indosat, XL apabila ketiganya menggunakan SFH 1 x 1, alokasi BCCH 15 ARFCN dan maksimum konfigurasi TRX 4/4/4 ? Bandingkan Fractional Load cell-cell GSM pada ketiga operator besar Telkomsel, Indosat, XL apabila ketiganya menggunakan SFH 1 x 3, alokasi BCCH 15 ARFCN dan maksimum konfigurasi TRX 4/4/4 ? Apabila maksimum fractional load untuk SFH adalah 60% baik untuk SFH 1 x 1 maupun SFH 1 x 3 berapa maksimum konfigurasi TRX untuk DCS tiap operator apabila alokasi BCCH ARFCN 29 dan guard band 1 ?



Short Quiz 6 (Frequency Hopping) 1.



Pelajari kembali materi mengenai SFH 1 x 1 dan SFH 1 x 3. Kemudian tentukan MAIO , frequency group dan HSN pada kumpulan site-site GSM 900 dibawah ini apabila diketahui ARFCN yang digunakan untuk frekuensi TCH adalah 2 sampai 28. Dan teknik SFH yang digunakan adalah SFH 3 x 3 ?



Agenda Day Two 08.00-08.30 : Review Materi 08.30-10.00 : Traffic Engineering in GSM TCH and SDCCH Channel Dimensioning 10.00-10.15 (Coffee Break) 10.15-12.00 : GSM Architecture & BTS Type 12.00-13.00 (Makan siang, sholat) 13.00-15.00 : Handover and Cell Reselection Concept GSM Radio Optimization 15.00-15.30 (Coffee Break, Sholat) 15.30-17.00 : Drivetest Optimization Post Test



GSM CHANNEL TYPE



73



GSM Channel Type



TCH/F dan TCH/H Traffic Channels digunakan untuk transmisi data.



BCH (Broadcast Channels) hanya digunakan pada saat DL untuk sinkronisasi MS dan informasi broadcast. CCCH (Common Control Channel) digunakan untuk komunikasi dua arah downlink dan uplik pada saat pengaksesan awal sebelum MS melakukan panggilan telepon, SMS dll DCCH (Dedicated Control Channel) digunakan untuk komunikasi dua arah downlink dan uplink untuk sinyal dedicated.



TRAFFIC CHANNEL



75



Traffic Channel Trafik merepresentasika n penggunaan kanal dan dapat diartikan holding time tiap unit waktu atau besaran panggilan per jam untuk setiap satu sirkuit (kanal). Sebagai contoh sebuah cell memiliki dua carrier/TRX dan alokasi untuk kanal TCH misalkan 14 TCH (didapat dari 2 x 8 -2 = 14, dua kanal yang lain diperuntukkan untuk kanal BCCH dan SDCCH) maka dengan GOS 2% berdasarkan tabel erlang B trafik yang dilewatkan sebesar 8.2003 Erlang.



Trafik dihitung dalam Erlang (E), sebagai contoh seorang subscriber menggunakan telepon selama satu jam maka akan menghasilkan trafik sebesar 1E.



Seorang ilmuwan berkebangsaan Denmark, Erlang, menemukan Erlang B Table untuk mengasumsikan banyaknya erlang yang dapat ditampung berdasarkan jumlah kanal dan GOS.



GOS 2% disini diartikan dari 100 antrian panggilan masuk hanya 2 panggilan yang mengalami congestion (kepenuhan).



Hal sebaliknya juga bisa dilakukan. Contoh apabila kita memiliki besaran trafik dan ingin diketahui besaran kanal yang dibutuhkan. Misalkan trafik 33 Erlang dengan GOS 2% maka channel yang dibutuhkan 43 kanal.



Traffic Channel Tabel Erlang B Dengan alokasi 14 kanal dan menggunakan GOS 2% maka berdasarkan tabel erlang B trafik yang dilewatkan sebesar 8.2003 Erlang.



Erlang Calculator Menggunakan Calcucel



Tools seperti calcucel dapat digunakan untuk menghitung Traffic dari sebuah kanal dengan menggunaka n tabel Bagaimana erlang B. perhitungan dimensionin g kanal TCH atau SDCCH apabila data yang perlu dihitung dalam jumlah besar ?



Short Quiz 7 (Traffic Channel) 1.



Sebuah cell mengalami SDCCH Blocking. Saat ini cell tersebut dialokasikan satu kanal SDCCH. Pada saat busy hour traffic SDCCH yang harus dilewatkan sebesar 14.5 erlang. Dengan menggunakan GOS 2% berapa jumlah kanal SDCCH harus ditambah ?



2.



Sebuah cell mengalami TCH Blocking. Saat ini terdapat 14 kanal TCH pada cell tersebut. Pada saat busy hour traffic TCH yang harus dilewatkan sebesar 18 erlang. Dengan menggunakan GOS 2% berapa jumlah TRX yang harus ditambah pada cell tersebut ?



CAPACITY DIMENSIONING



80



Erlang Calculator Menggunakan NPFun32 NPFun32 adalah suatu add in pada Microsoft Excell yang dapat digunakan untuk membantu dimensioning capacity pada kanal GSM



Capacity Dimensioning (TCH Channel) Step by step proses (1)



2



Jumlah kanal Full Rate Jumlah kanal Half Rate



Jumlah kanal GPRS Dedicated



Erlang Offered (TCH)



Erlang Offered (TCH)=npErlbTraf(2%,Full Rate+(Half Rate*2)-Dedicated GPRS Channel)



TCH Traffic Busy Hour



Erlang Offered (TCH)



TCH Utilization



Capacity Dimensioning (TCH Channel) Step by step proses (2) Kebutuhan kanal TCH dengan utilisasi 80% dari Busy Hour Traffic



TCH Traffic Busy Hour



Kebutuhan kanal TCH =npErlbChs(TCH Traffic Busy Hour+(20%*TCH Traffic Busy Hour),2%)



Kebutuhan kanal TCH dengan utilisasi 80% dari Busy Hour Traffic



2



Jumlah kanal Full Rate Jumlah kanal Half Rate



Jumlah kanal GPRS Dedicated



Add/Reduce TCH



Capacity Dimensioning (SDCCH Channel) Step by step proses (1)



8



Erlang Offered (SDCCH)



Jumlah kanal SDCCH



Erlang Offered (SDCCH)=npErlbTraf(2%,(Jumlah kanal SDCCH*8)) SDCCH Traffic Busy Hour



Max SDCCH Traffic



VS



Average SDCCH Traffic



Erlang Offered (SDCCH)



Max SDCCH Traffic



SDCCH Utilization



Capacity Dimensioning (SDCCH Channel) Step by step proses (2) Kebutuhan kanal SDCCH dengan utilisasi 80% dari Busy Hour Traffic



Max SDCCH Traffic



8



Kebutuhan kanal SDCCH =ROUNDUP(npErlbChs(Max SD+(20%*Max SD),2%)/8,0)



Kebutuhan kanal SDCCH dengan utilisasi 80% dari Busy Hour Traffic



Jumlah SDCCH



Add/Reduce SDCCH



Short Quiz 8 (Capacity Dimensioning) Dengan menggunakan add in NPFun32. Isilah tabel dibawah ini.



2



2



0 13 16



22356



2



2



2



0 13 16



24084



2



1



2 10



24085



2



2



24086



2



24091 24092



14.905



2.035 1.435



0



5.575



0.425 0.415



0



3 16



9.695



0.95 0.555



0



2



2 11 16



16.465



1.84 1.345



0



2



3



0 12 16



19.88



3.16 2.515



0



2



0



2 13



0 16



0



0



0



2



2



0



2 13



0 16



0



0



0



1



SD Util



SD Traffic Ave



0



SDCCH



0.87



TCH



1.04



Total Channel



SD Traffic BH



# dedicated GPRS TS



2



Add/Reduce SDCCH



22355



Total # of SD Now



8.01



SD Util 80% - Need # of SD



0 13 16



Add/Reduce TCH



2



Total # of TCH Now



2



Utilization Capacity Dimensioning TCH Util 80% - Need # of TCH



SumOf# of SDCCH



2



TRAFFIC



Max SD Traffic



SumOf#ofTRX HR



22354



TCH Traffic BH



SumOf#ofTRX



TRAFFIC Utilization



cellId



SumOf# of DR Chn



Channel Data



Erlang Offer



TCH Utilization



TRX Data



SumOf# of FR Chn



1.



GSM ARCHITECTURE & BTS TYPE



87



GSM Architecture



Network Switching Systems Mobile Switching Center (MSC) berfungsi sebagai switch dan penghubung dengan jaringan fixed.



Base Station Systems Base Transceiver Station (BTS) BTS merupakan perangkat pemancar dan penerima yang memberikan pelayanan radio kepada MS.



Base Station Controller (BSC) BSC membawahi satu atau lebih BTS serta mengatur trafik yang datang dan pergi dari BSC menuju MSC atau BTS.



Home Location Register (HLR) HLR merupakan database yang berisi data-data pelanggan yang tetap. Visitor Location Register (VLR) VLR merupakan database yang berisi informasi sementara mengenai pelanggan, terutama saat lokasi dari pelanggan diluar cakupan area jaringan HLR-nya



BTS Type



Nokia’s BTS now merger as Nokia Siemens Networks



BTS Type



Siemens’s BTS now merger as Nokia Siemens Networks



BTS Type



Ericsson’s BTS



Tower Type



1. BTS Greenfield dengan struktur berkaki empat, biasanya untuk BTS dengan ketinggian lebih dari 30 meter di daerah rural 2. BTS Greenfield dengan struktur berkaki tiga, lebih hemat tempat dan cocok untuk daerah perkotaan 3. BTS kamuflase yang menyerupai pohon untuk keindahan estetika



4. BTS monopole



5. Ericsson Tower Tube, tower yang ramah lingkungan. 6. BTS yang difungsikan juga sebagai lampu penerangan



Indoor BTS



Gambar Antena indoor building. Beberapa gedung-gedung tinggi di kota besar seperti Jakarta misalnya diharuskan menggunakan antena indoor karena penetrasi sinyal BTS macro biasanya sangat lemah didalam gedung.



Short Quiz 9 ( Architecture) 1.



Si A (MOC) menelepon si B (MTC). Si A menggunakan jaringan 2G sedangkan si B menggunakan 3G. Gambarkan aliran data A ke B pada arsitektur jaringan seluler !



2. Si A kembali menelepon si B menggunakan Google Talk. Si A menggunakan jaringan 3G sedangkan si B menggunakan 2G. Gambarkan aliran data dari A ke B pada arsitektur jaringan seluler !



HANDOVER & CELL RESELECTION



95



Idle Mode and Dedicated Mode Idle mode adalah kondisi dimana MS tidak sedang melakukan panggilan telepon. Sedangkan dedicated mode adalah kondisi dimana MS sedang melakukan panggilan.



Cell Selection Cell Selection adalah proses sinkronisasi awal saat MS dinyalakan sehingga terhubung ke operator jaringan seluler dan layanan jaringan dapat digunakan sepenuhnya.



Proses Cell Selection menggunakan kanal logika BCCH untuk sikronisasi frekuensi antara MS dan cell.



Cell Selection MCC



MNC



Brand



Operator



Status



Bands (MHz)



510



00



PSN



PT Pasifik Satelit Nusantara (ACeS)



Operational



Satellite



510



01



INDOSAT



PT Indonesian Satellite Corporation Tbk (INDOSAT)



Operational



GSM 900 / GSM 1800 / UMTS 2100



510



03



StarOne



PT Indosat Tbk



Operational



CDMA 800



510



07



TelkomFlexi



PT Telkom



Operational



CDMA 800



510



08



AXIS



PT Natrindo Telepon Seluler



Operational



GSM 1800 / UMTS 2100



510



09



SMART



PT Smart Telecom



Operational



CDMA 1900



510



10



Telkomsel



PT Telekomunikasi Selular



Operational



GSM 900 / GSM 1800 / UMTS 2100



510



11



XL



PT XL Axiata Tbk



Operational



GSM 900 / GSM 1800 / UMTS 2100



510



20



TELKOMMobile



PT Telkom Indonesia Tbk



Unknown



GSM 1800



510



21



IM3



PT Indonesian Satellite Corporation Tbk (INDOSAT)



Not operational



GSM 1800



510



27



Ceria



PT Sampoerna Telekomunikasi Indonesia



Operational



CDMA 450



510



28



Fren/Hepi



PT Mobile-8 Telecom



Operational



CDMA 800



510



89



3



PT Hutchison CP Telecommunications



Operational



GSM 1800 / UMTS 2100



510



99



Esia



PT Bakrie Telecom



Operational



CDMA 800



PLMN (Public Land Mobile Network) selection adalah proses pertama kali saat dilakukan cell selection PLMN, atau istilah mudahnya adalah operator, dibedakan dengan MCC (Mobile Country Code) dan MNC (Mobile Network Code).



Cell Re-Selection Cell Reselection adalah proses perpindahan mobile user dari satu cell ke cell yang lain pada saat idle mode



Cell awal yang ditinggalkan disebut source cell sedangkan cell tujuan disebut dengan target cell.



Handover Handover adalah proses perpindahan mobile user dari satu cell ke cell yang lain pada saat dedicated mode.



Handover berfungsi untuk tetap menjaga koneksi sewaktu melakukan panggilan ketika mobile user berada diluar jangkauan source cell. Terdapat beberapa kriteria yang menyebabkan terjadinya handover antara lain sinyal yang lemah pada source cell yang telah melewati batas yang telah ditentukan, kualitas yang kurang bagus dll.



Pada saat terjadi handover koneksi dengan source cell diputus dan dipindahkan ke target cell oleh sebab itu handover adalah proses yang sangat komplek dan kritis pada sistem GSM.



Handover



Handover Type Intra cell handover



Inter cell handover Inter BSC handover Inter MSC handover Inter PLMN



Paging Paging adalah proses broadcast pesan dari jaringan seluler kepada spesifik mobile user untuk mengetahui posisi tepatnya mobile user dalam suatu cell. Pendekatan yang sangat baik adalah sistem harus melakukan paging ke semua cell untuk mengetahui dimana tepatnya mobile user berada.



Tetapi apabila ini dilakukan maka kapasitas radio yang digunakan akan sangat besar.



Hal ini dapat diatasi dengan adanya Location Area dan Location Update.



Location Update Location Update digunakan untuk mengurangi jumlah proses paging yang harus dilakukan oleh sistem jaringan seluler.



Sistem jaringan seluler dibagi menjadi beberapa location area, setiap BSC dapat terdiri dari beberapa location area dan minimal terdiri dari satu location area.



Setiap mobile user mengidentifikasikan location area yang baru, dan berpindah ke location area yang baru maka MS akan melakukan Location Update.



Setiap proses Location update dilakukan update data-data tepatnya posisi MS berada dalam suatu cell akan disimpan dalam VLR (Visitor Location Register). Update data pada VLR diambil dari data subscriber pada HLR (Home Location Register).



Dengan adanya Location Update proses paging tidak harus dilakukan di semua cell di satu jaringan seluler tetapi hanya dilakukan oleh cell-cell yang berada dalam satu Location Area.



Proses Location update tidak hanya terjadi apabila terjadi perpindahan Location Area tetapi juga terjadi secara periodik apabila MS masih terletak pada Location Area yang sama agar data selalu ter-update.



Location Update



Outgoing Call Proses melakukan panggilan keluar atau Outgoing Call biasa disebut juga sebagai Mobile Originating Call (MOC)



Incoming Call Proses menerima panggillan masuk atau Incoming Call biasa disebut juga sebagai Mobile Terminating Call (MTC)



Short Quiz 10 (Handover & Cell Reselection)



Site A



Site A adalah sebuah newsite dengan Cell Id (CI) 64451, 5632, 5633 buatlah neighbour relation dengan mencantumkan CI source dan CI target agar newsite Site A dapat memproses handover dan cell reselection dengan cell-cell sekitarnya.



GSM RADIO OPTIMIZATION



108



WHY OPTIMIZATION?



109



Why Optimization ?



Why Optimization ? Why optimize a network? Hasn’t everything been done during planning phase?



NO!



• Parameter yang di-set pada proses planning harus ditinjau ulang menurut statistik jaringan



• Saat jumlah pengguna meningkat, ekspansi jaringan harus dipertimbangkan juga implementasi strategi baru • Frekuensi mungkin harus diubah untuk menghindari interferensi dan meminimalisir degradasi kualitas jaringan selama pertumbuhan user



Why Optimization ?



Dari sisi operator, Optimization dapat memaksimalkan efisiensi jaringan,



meminimalisir churn rate (pergantian kartu oleh user), menarik customer baru, meningkatkan kepuasan pelanggan dan menaikkan revenue.



Why Optimization ? Revenue Example : Berikut adalah suatu contoh perhitungan bagaimana dengan menaikkan CSSR (Call Setup Success Rate) dapat menaikkan revenue yang tidak sedikit ke operator. Skenario : Sebuah jaringan pada suatu Propinsi dengan 36 BSC Jumlah Trafik pada saat Busy Hour : 21.353 Erlang/BH Mean Call Holding Time (Rata-rata lama panggilan telepon) : 60 Detik CSSR Improvement sebesar 1,43 % dari 88,3 % ke 89,73 % Diasumsikan 50 % pengulangan panggilan dan 50 % kenaikan panggilan Harga adalah per menit adalah 100 IDR dan lama Busy Hour per day = 8 Berapakah Kenaikan Revenue yang diperoleh selama setahun? Perhitungan : Jumlah kenaikan panggilan pada Busy Hour : 21.353 Erlang × 3600/60 × 1,43 % = 18320 call/BH Jumlah kenaikan revenue per Busy Hour : 18320 × 50 % × 100 x 60/60 = 916000 IDR/BH Jumlah kenaikan revenue per tahun : 916000 × 8 × 365 = 2.674.720.000 IDR/Year Kesimpulan :



KEY PERFORMANCE INDICATORS



114



Key Performance Indicator



Menurut rekomendasi dari ITU (International Telecommunication Union) terdapat 3 kategori pengklasifikasian Key Performance Indicator (KPI) untuk evaluasi sebuah jaringan yaitu Accessibility, Retainability dan Integrity.



Key Performance Indicator Accessibility adalah kemampuan user untuk memperoleh servis sesuai dengan layanan yang disediakan oleh pihak penyedia jaringan. Contoh pada jaringan 2G yang termasuk dalam kategori Accessibility adalah Random Access Success Rate (RACH Success Rate), SD Drop Rate, SDCCH Success Rate, SDCCH Blocking Rate dan TCH Blocking Rate. Retainability adalah kemampuan user dan sistem jaringan untuk mempertahankan layanan setelah layanan tersebut berhasil diperoleh sampai batas waktu layanan tersebut dihentikan oleh user. Contoh pada jaringan 2G yang termasuk dalam kategori Retainability adalah TCH Drop Rate, Erlang per Minute Drop.



Integrity adalah derajat pengukuran disaat layanan berhasil diperoleh oleh user. Contoh pada jaringan 2G yang termasuk dalam kategori Integrity adalah Handover Succes rate, FER, RxQual, SQI. *Mobility adalah derajat pengukuran yang berkaitan pada mobilitas. Beberapa operator memasukkan beberapa KPI yang beruhubungan dengan mobilitas dalam group KPI mobility.



Key Performance Indicator Normal call flow untuk MOC dan relasinya dengan KPI



Key Performance Indicator Normal call flow untuk MTC dan relasinya dengan KPI



WORST CELL



119



Worst Cell Definisi Worst cell adalah sebuah site/cell yang memiliki performance jelek dan secara wajar mempengaruhi performance pada jaringan. Worst cell didefinisikan setelah KPI ditentukan. Apabila Key Performance Indicator telah didefinisikan maka proses selanjutnya adalah perumusan formula untuk KPI tersebut. Dan penentuan Worst cell dapat dibuat setelah diketahuinya formula dari setiap KPI.



Untuk menghasilkan sebuah Worst cell yang tepat maka diharuskan menggunakan dua kriteria yaitu kriteria value dan kontribusinya. Kontribusi dapat menggunakan kontribusi fail atau kontribusi trafik.



Worst Cell



Worst Cell Category



KPI 1 Name



Criteria 1



KPI 2 Name



Criteria 2



Accessibility



SDSR



SDSR Value < 96 %



Drops on SDCCH



Drops on SDCCH Contribution > 0.05 %



Accessibility



SDCCH Blocking Rate



SDCCH Blocking Rate Value > 2 %



Failed SDCCH Seizures due to Busy SDCCH



SDCCH Seizures due to Busy SDCCH Contribution > 0.05 %



Accessibility



TCH Blocking Rate



TCH Blocking Rate Value > 2 %



Failed TCH Seizures due to Busy TCH (Signaling Channel) + Failed TCH Seizures due to Busy TCH (Traffic Channel) Contribution > 0.05 %



Retainability



Drop Call



Drop Call Value > 1 %



Failed TCH Seizures due to Busy TCH (Signaling Channel) + Failed TCH Seizures due to Busy TCH (Traffic Channel) Call Drops on TCH



Retainability



TBF Completion Rate



TBF Completion Rate Value < 96 %



TBF Failure



TBF Failure Contribution > 0.05 %



Mobility



HOSR



HOSR Value < 96 %



HOSR Failure



HOSR Failure Contribution > 0.05 %



Integrity



GPRS throughput (kbps) GPRS throughput Value < 48 kbps



Integrity



EDGE throughput (kbps) EDGE throughput Value < 64 kbps



Call Drops on TCH Contribution > 0.05 %



CELL RESELECTION



123



Cell Reselection C1 Parameter Salah satu kriteria yang harus dipenuhi adalah C1 > 0 C1 = (A-Max (B, 0))



A = Rata-rata power yang diterima – RXLEV_ACCESS_MIN = RLA_P – RXLEVAMI (Siemens) = Received signal level – ACCMIN B = MS_TXPWR_MAX_CCH – P = MSTXPMAXCH – P (Siemens) = CCHPWR – P (Ericsson)



(Ericsson)



RXLEVAMI atau ACCMIN adalah parameter cell level yang mengindikasikan sinyal level minimum yang dibutuhkan MS untuk mengakses ke sistem.



MSTXPMAXCH/ CCHPWR adalah parameter yang mengindikasikan power transmit maksimum MS untuk mengakses ke sistem dan P adalah output power maksimum MS tergantung dari MS Class.



Cell Reselection C1 Parameter MS akan mengkalkulasi kriteria path loss pada serving cell dan non serving cell paling tidak selama 5 detik. Kriteria path loss terpenuhi jika C1> 0 (jika C1 < 0 pada periode paling tidak 5 detik maka cell dihilangkan dari list). Jika C1 pada neighbour cell lebih tinggi daripada C1 pada serving cell maka akan terjadi cell reselection dari serving cell ke neighbour cell.



Terdapat parameter CELLRESH(Siemens) dimana terdapat histerisis value pada perhitungan path loss C1. Sehingga apabila C1 neighbour cell > C1 serving cell + CELLRESH paling tidak selama 5 detik maka baru akan terjadi cell reselection.



Parameter CELLRESH(Siemens) berfungsi untuk menghindari terjadinya kejadian cell reselection yang tidak perlu (pingpong cell reselection).



Cell Reselection C2 Parameter C2 berguna pada saat penggunaan strategi load sharing antara GSM dan DCS dan juga untuk menghindari cell reselection yang tidak perlu pada fast moving MS dimana terdapat coverage microcell dan coverage macrocell.



C2 = C1 + CRESOFF



(Siemens)



- TEMPOFF



(Siemens)



C2 = C1 + CRO



(Ericcson)



- TO



PENTIME ( Siemens) / PT (Ericsson) < 31



(Ericsson)



C2 = C1 + CRESOFF (Siemens) C2 = C1 + CRO (Ericcson)



PENTIME ( Siemens) / PT (Ericsson) expired



C2 = C1 - CRESOFF (Siemens) C2 = C1 - CRO (Ericcson)



PENTIME = 31



Untuk kasus load sharing strategy antara GSM dan DCS biasanya akan dilakukan seting dimana C2 DCS > C2 GSM. Dengan TEMPOFF (Siemens) / TO (Ericsson) = 0 dan PENTIME ( Siemens) / PT (Ericsson) = 0. Sehingga hanya parameter CRESOFF(Siemens) / CRO (Ericcson) saja yang digunakan.



Cell Reselection C2 Parameter Aplikasi Timer Pentime/PT



Aplikasi Pada Fast Moving MS



Short Quiz 11 (Traffic Sharing) Cell A GSM memiliki traffic utilization 90% dan Cell B DCS memiliki traffic utilization 40 %. Keduanya berdekatan. Bagaimana setting parameter yang disarankan agar utilization kedua site balance? Cell C GSM memiliki traffic utilization 40% dan Cell D DCS memiliki traffic utilization 90 %. Keduanya berdekatan. Bagaimana setting parameter yang disarankan agar utilization kedua site balance?



Push ke DCS



CRO PT TO



Push ke GSM



POWER CONTROL & HANDOVER



129



Power Control Untuk menghindari dominasi interferensi dari user yang memiliki sinyal sangat kuat dan biasanya berada pada jarak yang lebih dekat dengan base station, digunakan konsep power control.



Power control akan mengatur daya pancar tiap-tiap user sehingga daya yang diterima oleh base station adalah sama untuk semua user yang tersebar secara acak pada setiap lokasi di dalam sel yang dicakup oleh base station.



Power control akan memerintahkan mobile station untuk menaikkan daya pancarnya ketika level RxLevel atau RxQual menurun dan akan memerintahkan MS untuk menurunkan daya pancarnya ketika RxLevel tinggi.



Handover & Power Control Parameter



Handover & Power Control Parameter 1 Ini adalah daerah dimana terjadi handover karena low RxLevel. Dimana threshold ini diatur oleh parameter HOLTHLVDL (Siemens) / threshold level downlink Rx level (LDR) (Nokia) pada sisi downlink dan parameter HOLTHLVUL (Siemens) / threshold level uplink Rx level (LUR) (Nokia) pada sisi uplink.



2



Ini adalah threshold dimana power control untuk menaikkan RxLevel bekerja. Threshold pada daerah ini diatur oleh parameter LOWTLEVD (Siemens) / pc lower thresholds lev dl Rxlevel (LDR) (Nokia) pada sisi downlink. Dan LOWTLEVU (Siemens) / pc lower thresholds lev ul Rxlevel (LUR) (Nokia) pada sisi uplink.



3 4



Ini adalah kondisi dimana MS dalam level dan kualitas yang baik sehingga tidak perlu adanya power control yang bekerja. Ini adalah threshold dimana power control untuk menurunkan RxLevel bekerja. Threshold pada daerah ini diatur oleh parameter UTLEVD (Siemens) / pc upper thresholds lev dl Rx level (UDR) (Nokia) pada sisi downlink. Dan UTLEVU (Siemens) / pc upper thresholds lev ul Rxlevel (UUR) (Nokia) pada sisi uplink.



Handover & Power Control Parameter 5



Ini adalah threshold dimana power control untuk menaikkan RxLevel bekerja dan juga power control untuk menaikkan RxQual bekerja.



6



Ini adalah threshold dimana power control untuk menaikkan RxQual bekerja. Threshold pada daerah ini diatur oleh parameter LOWTQUAD (Siemens) / pc lower thresholds qual dl Rx qual (LDR) (Nokia) pada sisi downlink. Dan LOWTQUAU (Siemens) / pc lower thresholds qual ul Rx qual (LUR) (Nokia) pada sisi uplink.



7



Ini adalah threshold terjadinya handover yang diakibatkan karena low RxQual. Dimana threshold ini diatur oleh parameter HOLTHQUDL (Siemens) / threshold qual downlink Rx qual (QDR) (Nokia) pada sisi downlink dan parameter HOTHQUUL (Siemens) / threshold qual uplink Rx qual (QUR) (Nokia) pada sisi uplink.



8 Ini adalah daerah dimana level sinyal bagus tetapi kualitas jelek karena terdapat adanya interferensi. Pada daerah ini akan terjadi handover dapat berupa intracell handover atau intercell handover.



Short Quiz 12 (Power Control & Handover) Tentukan aksi yang akan terjadi pada jaringan apabila setting threshold untuk handover dan power control ditentukan seperti pada slide 18.



1. Kondisi Rx Level DL -100 dBm, Rx Qual DL 3? 2. Kondisi Rx Level DL -85 dBm, Rx Qual DL 6 ? 3. Kondisi Rx Level DL -78 dBm, Rx Qual DL 2 ?



4. Kondisi Rx Level UL -95 dBm, Rx Qual UL 3? 5. Kondisi Rx Level UL -92 dBm, Rx Qual UL 4?



COVERAGE & QUALITY ISSUES



135



Coverage Rx Level and Rxand Quality Issue Qual Pada jaringan 2G kita dapat memperhitungkan RF Coverage dan RF Quality dengan menganalisa sebaran Rx Level dan Rx Qual. Rx Level dipergunakan untuk mengukur kuat sinyal yang diterima oleh MS (dalam satuan dBm) sedangkan Rx Qual menunjukkan kualitas sinyal yang diterima oleh MS. Diukur dari Bit Error Rate sinyal yang diterima. Skala yang digunakan pada Rx Qual adalah 0 sampai 7.



RxQual



Bit Error Rate (BER)



0



BER < 0, 2 %



1



0,2 % < BER < 0,4 %



2



0,4 % < BER < 0,8 %



3



0,8 % < BER < 1,6 %



4



1,6 % < BER < 3,2 %



5



3,2 % < BER < 6,4 %



6



6,4 % < BER < 12,8 %



7



12,8 % < BER



Coverage and Quality Issue Bad Air Quality DL (RxLevel >=-85dBm & Rx Qual DL >= 5)



Dengan memperhitungkan distribusi trafik dimana banyak subscriber berada pada RxLevel yang bagus tetapi dengan RxQual jelek, interferensi mungkin saja terjadi pada area ini. Jika lebih dari 50% measurement berada pada kondisi ini (seperti terlihat pada gambar diatas) perlu dilakukan pengechekan dengan menggunakan drivetest, frequency scanning dan pengechekan adanya frekuensi co-channel dan adjacent channel/near channel pada map.



Coverage and Quality Issue Poor Coverage DL (TA 63  too far from the cell. • If DL radio is good, check the TX power. If there is MS power down regulation when the MS is close to the cell. If full power  suspect uplink interference or antenna, TMA problem.



• Verify or isolate the problem using OSS Statistic (Drop call and reasons).



Drive Test Improvements Sample Case: Missing Neighbor Hal ini dapat menyebabkan efek "cell dragging“ ; dimana MS bergerak tetapi masih dipegang oleh cell lama meskipun telah melewati jarak tertentu dan seharusnya dilayani oleh cell tetangga yang RXLevel-nya lebih bagus. Efek ini juga dapat menyebabkan RXQual dan SQI buruk karena interferensi cochannel.



Drive Test Improvements Sample Case: Non-mutual Relation Hal ini dapat menimbulkan efek yang sama dengan efek "Missing Neighbour". Pastikan neighbour relation dibuat “both way” apabila ditinjau dari site database. Untuk alasan tertentu, hubungan “one way” diperbolehkan, misalnya pada lokasi penjara, dll



Drive Test Improvements Sample Frequency Case: Co-channel BCCH scanning adalah cara yang paling praktis untuk menemukan sumber interferensi. Jika lebih dari satu BSIC terkodekan untuk satu ARFCN BCCH yang diamati, kita dapat menyimpulkan adanya "co-channel interference". Dengan mengetahui BSIC dan memeriksa pada site database kita dapat mengetahui cell yang menjadi sumber interferensi.



Drive Test Improvements Sample Case: Swap Feeder and Crossed Feeder Sebuah kasus cross feeder, dapat diidentifikasi melalui Drive Test dan biasanya menunjukkan banyak ping-pong HO.



Kasus swap feeder, mangakibatkan MS dilayani oleh Cell yang salah, misalnya pada saat MS berada di area main lobe sektor 1, MS tidak dilayani oleh sektor 1, tetapi diserving oleh sektor 2.



Drive Test Improvements Sample Case: Low Level Signal at Near Site Adanya halangan/medan perbukitan menjadi penyebab terjadinya kasus ini, meskipun tidak semuanya disebabkan oleh kondisi medan.



Seting CRO yang terlalu tinggi dibandingkan dengan BTS yang dekat dapat menjadi penyebabnya. MS akan “camp” pada BTS yang jauh meskipun Rx Levelnya tidak terlalu kuat tetapi karena nilai C2 yang tinggi.



End of Training Questions?



See you in other training class… TELECOMMUNICATION TRAINING  GSM Planning  3G/WCDMA Planning  GSM Optimization  3G/WCDMA Optimization  Wireless Broadband ELECTRONICS TRAINING  PCB Design with Eagle/Protel/OrCAD  Microcontroller System For Beginners  Microcontroller System For Advanced TECHNOPRENEURSHIP TRAINING



Contact Person : Lingga Wardhana Phone : +62 8562893622 Email : [email protected] Floatway Learning Centre Address : Cipinang Elok 2 Blok BJ No. 2C Cipinang Jakarta Timur Phone : (+62 21) 85911547 Fax : (+62 21) 85911547 www.floatway.com