Modul Langkah Langkah Penggunaan Software Hrs Dan Petrelpdf PDF [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

LANGKAH-LANGKAH PENGGUNAAN SOFTWARE HAMPSON RUSSELL & PETREL



FAID MUHLIS 115.120.034



PROGRAM STUDI TEKNIK GEOFISIKA FAKULTAS TEKNOLOGI MINERAL UNIVERSITAS PEMBANGUNAN NASIONAL “VETERAN” YOGYAKARTA 2015



i



HALAMAN PERSEMBAHAN



Pertama-tama saya ucapkan terimakasih kepada Allah SWT karena rahmat dan kuasaNya maka saya dapat menyelesaikan Modul ‘Langkah-langkah penggunaan software HRS & Petrel’ ini dengan tepat pada waktunya.



Ucapan terimakasih ditujukan kepada: 



Bapak Steven Palar selaku Manager Subsurface dan Bapak Willy Brianno yang telah memberikan kesempatan dan waktunya untuk menjadi pembimbing saat melaksanakan Kerja Praktek di Chevron Indonesia Company. Banyak ilmu bermanfaat yang saya dapatkan dari bimbingan serta pengajaran.







Bapak Ardian Novianto, ST, MT sebagai dosen prodi Teknik Geofisika UPN “Veteran” Yogyakarta yang mengampu mata kuliah seismik diantaranya yaitu Pengolahan Data Seismik, Interpretasi Data Seismik, Inversi Seismik dan Seismik Atribut.







Adit Saputra, ST, Muhammad Masnur, ST dan Adi Wijayanto,ST sebagai pembimbing selama pengajaran software Hampson Russell serta software Petrel.



ii



KATA PENGANTAR Ucapan puji dan syukur atas kehadirat Allah SWT, Zat yang maha kuasa dan segala daya bagiNya yang telah memberikan kesehatan dan kesempatan sehingga dapat mengerjakan Modul “Langkah-langkah Penggunaan Software Hampson Russell & Petrel”. Meskipun terdapat banyak hambatan dalam tahap pengerjaanya, namun Modul ini dapat selesai tepat pada waktunya. Tidak lupa ucapan terimakasih kepada semua pihak yang telah membantu dalam proses pengerjaan mulai dari awal sampai akhir pembuatanya. Kemudian dalam penyusunan, tidak henti-hentinya diharapkan saran serta kritik dari para pembaca. Kesalahan dan kekurangan dalam penyusunanya, disadari dapat bermanfaat dalam hal penyusunan pada edisi berikutnya berikutnya. Demikian laporan “Langkah-langkah Penggunaan Software Hampson Russell & Petrel” ini dibuat semoga dapat berguna bagi diri sendiri khususnya dan pembaca pada umumnya. Atas perhatiannya diucapkan terimakasih.



Yogyakarta, 30 Desember 2015 Penulis



Faid Muhlis



iii



DAFTAR ISI MODUL HALAMAN JUDUL...........................................................................................i HALAMAN PERSEMBAHAN .........................................................................ii KATA PENGANTAR ........................................................................................iii DAFTAR ISI MODUL .......................................................................................iv - PENDAHULUAN ..........................................................................................v - SOFTWARE HAMPSON RUSSELL .............................................................vi - SOFTWARE PETREL ....................................................................................vii DAFTAR PUSTAKA BIOGRAFI SINGKAT PENULIS



iv



v



DAFTAR ISI PENDAHULUAN I. Seismik Refleksi ................................................................................................1



I.1. Hukum Dasar Seismik ...............................................................................1 I.2. Tahapan Metode Seismik...........................................................................2 I.3. Komponen Seismik Refleksi......................................................................3 I.3.1. Impedansi Akustik ...........................................................................3 I.3.2. Koefisien Refleksi............................................................................3 I.3.3. Wavelet.............................................................................................4 I.3.4. Polaritas Seismik..............................................................................4 I.3.5. Trace Seismik ..................................................................................5 I.3.6. Resolusi Vertikal Seismik................................................................ 6 II. Data Sumur (Log) .............................................................................................7 II.1. Gamma Ray Log .......................................................................................7 II.2. Density Log ...............................................................................................7 II.3. Neutron Porosity Log ...............................................................................8 II.4. Sonic Log ..................................................................................................8 II.5. Resistivity Log...........................................................................................9 II.6. Caliper Log...............................................................................................9 II.7. Checkshot..................................................................................................9 III. Well Seismic Tie ..............................................................................................10 III.1. Seismogram Sintetik................................................................................11 III.2. Ekstrak Wavelet .......................................................................................11 IV. Metode Inversi AI ..........................................................................................12 V. Seismik Atribut ................................................................................................13



PENDAHULUAN



I. Seismik Refleksi Seismik refleksi merupakan metode geofisika yang memanfaatkan gelombang pantul dari batas lapisan di bawah permukaan. Pengiriman sinyal dalam bentuk gelombang ke dalam bumi, kemudian sinyal tersebut akan terpantulkan oleh batas antara dua lapisan, dan selanjutnya sinyal pantulan direkam oleh receiver (geophone atau hidrophone), seperti yang ditunjukkan pada Gambar 1.



Gambar 1. Ilustrasi penjalaran gelombang seismik dari sumber ke penerima (Sukmono, 1999)



Gelombang seismik ada yang merambat melalui interior bumi yang disebut sebagai body wave dan ada juga yang merambat melalui permukaan bumi yang disebut surface wave. Body wave dibedakan menjadi dua berdasarkan arah getarnya. Gelombang P (longitudinal) merupakan gelombang yang arah getarnya searah dengan arah perambatan gelombang sedangkan gelombang yang arah getarnya tegak lurus dengan arah perambatannya disebut gelombang S (transversal). Surface wave terdiri atas Reyleigh wave dan Love wave.



I.1. Hukum Dasar Seismik Metode seismik refleksi menggunakan 3 hukum dasar antara lain Hukum Snellius, Asas Fermat dan Hukum Huygens. Pendahuluan



1



1. Hukum Snellius Gelombang datang, gelombang pantul dan gelombang bias terletak pada satu bidang. Sudut pantul sama dengan sudut datang. 2. Asas Fermat Fermat menyatakan bahwa gelombang akan menempuh jarak yang terpendek dengan waktu yang tercepat bila melalui sebuah medium. 3. Hukum Huygens Gelombang akan membentuk muka gelombang yang baru ketika mengenai bidang diskontinu. I.2. Tahapan Metode Seismik Secara umum, metode geofisika mempunyai tiga bagian penting dalam pengerjaannya. Metode seismik refleksi terbagi dalam 3 kegiatan, yaitu akuisisi data seismik, pengolahan data seismik, dan interpretasi data seismik. 1. Akuisisi Data Seismik Akuisisi data merupakan pekerjaan pengambilan data di lapangan. Menggunakan peralatan seismik refleksi, diharapkan mampu memperoleh gambaran bawah permukaan secara baik nantinya. Maka diperlukan penentuan parameter-parameter lapangan yang cocok dari suatu daerah penelitian. 2. Pengolahan Data Seismik Data seismik direkam ke dalam pita magnetik setelah kegiatan akuisisi selesai. Setelah itu data tersebut diproses di pusat pengolahan data seismik. Tujuan dari pengolahan data seismik adalah menghasilkan penampang seismik dengan S/N (signal to noise ratio) yang baik tanpa mengubah bentuk kenampakan-kenampakan refleksi, sehingga dapat dihasilkan sebuah penampang yang dapat menggambarkan keadaan dan bentuk dari perlapisan di bawah permukaan bumi seperti keadaan sebenarnya. 3. Interpretasi Data Seismik Interpretasi data seismik adalah menjelaskan arti geologis pada suatu data seismik. Sering interpretasi juga dilakukan dengan mengaitkan



Pendahuluan



2



data seismik (dengan resolusi lateral) dengan data lain, contohnya data sumur (dengan resolusi vertikal), sehingga kondisi bawah permukaan dapat dijelaskan dengan baik dan berdasarkan bukti yang nyata.



I.3. Komponen Seismik Refleksi Komponen seismik refleksi ini meupakan hal-hal yang diturunkan (derivative value) atau dihasilkan dari parameter dan data seismik refleksi. I.3.1. Impedansi Akustik Seismik adalah metode yang memanfaatkan penjalara waktu gelombang pada suatu medium. Sedangkan penjalaran gelombang tersebut dipengaruhi oleh adanya densitas serta kecepatan medium yang dilaluinya, Impedansi akustik (AI) yang merupakan gambaran dari tubuh lapisan merupakan hasil perkalian antara keduanya. AI = vp.ρ Dimana: AI = Nilai acoustic impedance



vp = Kecepatan gelombang P ρ



= Densitas batuan



Dalam teorinya, Sukmono (1999), menganalogikan AI dengan acoustic hardness. Batuan yang keras dan sukar dimampatkan, seperti batugamping mempunyai AI yang tinggi, sedangkan batuan yang lunak seperti lempung yang lebih mudah dimampatkan mempunyai AI rendah.



I.3.2. Koefisien Refleksi Sebuah gelombang akan terpantulakan pada suatu lapisan yang mempunyai nilai impedansi akustik yang berbeda. Maka koefisien refleksi merupakan cerminan dari bidang batas lapisan tersebut. Koefisien refleksi dapat bernilai postitif (+) maupun negative (-).



Pendahuluan



3



KR =



AI2 − AI1 AI2 + AI1



=



(ρ2.v2) − (ρ1.v1) (ρ2.v2) + (ρ1.v1)



Dimana: KR = Koefisien refleksi AI1 = Impedansi akustik lapisan atas AI2 = Impedansi akustik lapisan bawah



I.3.3. Wavelet Wavelet merupakan kumpulan dari sejumlah gelombang harmonik yang mempunyai amplitudo, frekuensi, dan fasa tertentu. Ada empat macam jenis wavelet (Gambar 2) berdasarkan fase gelombangnya, yaitu wavelet fase nol, fase maksimum, fase minimum, dan fase campuran. Tipe-tipe wavelet ini mempunyai letak konsentrasi energi (simpangan maksimum atau amplitudo) yang berbeda-beda.



Gambar 2. Jenis fase : (a) fasa minimum, (b) fasa campuran, (c) fasa maksimum, dan (d) fasa nol (Sukmono, 1999)



I.3.4. Polaritas Seismik Brown, 2006, cited by Sukmono, (2001) membagi kedua jenis polaritas tersebut menjadi polaritas konvensi Amerika (SEG) dan konvensi Eropa yang polanya saling berkebalikan. Dari kedua jenis polaritas tersebut, polaritas konvensi Amerika (SEG) yang sering digunakan sebagai polaritas standar. Badley dan Michael mendefinisikan polaritas normal dan terbalik



Pendahuluan



4



menurut SEG (Society of Exploration Geophysicist) sebagai berikut (Sukmono, 1999): 1. Sinyal yang memiliki polaritas positif (menandakan adanya kenaikan impedansi akustik) direkam dengan angka negatif pada perekam, memiliki defleksi gelombang negatif pada monitor dan ditampilkan sebagai lembah (trough) pada tampilan seismik. 2. Sedangkan sinyal yang memiliki polaritas negatif (menandakan adanya penurunan nilai impedansi akustik), dinyatakan dengan puncak (peak).



Gambar 3. Polaritas normal dan polaritas terbalik menurut SEG, a. pada minimum phase dan b. pada zero phase (Sukmono, 1999)



Mengunakan konvensi ini, dalam sebuah penampang seismik dengan tampilan polaritas normal SEG, maka dapat diperkirakan: 1. Batas refleksi berupa trough pada penampang seismik, jika AI2 > AI1. 2. Batas refleksi berupa peak pada penampang seismik, jika AI2 < AI1.



I.3.5. Trace Seismik Model dasar dalam model satu dimensi kondisi bawah permukaan dapat digambarkan oleh trace seismik. Mengacu pada model konvolusi, Pendahuluan



5



menyatakan bahwa tiap trace merupakan hasil konvolusi sederhana dari refelektivitas bumi dengan fungsi sumber seismik ditambah dengan noise. Dapat dituliskan sebagai berikut (tanda * menyatakan konvolusi):



S (t) = W (t) * r (t) + n (t) Dimana: S(t) = Trace seismik W(t) = Wavelet seismik r(t)



= Reflektivitas bumi



n(t) = Noise Konvolusi dapat dinyatakan sebagai “penggantian (replacing)” setiap koefisien refleksi dalam skala wavelet kemudian menjumlahkan hasilnya seperti yang dinyatakan oleh Russell, 1996. Konvolusi tersebut akan saling mengurangkan, menambahkan ataupun tidak memberikan pengaruh antar wavelet tergantung jarak antar batas lapisan dan frekuensi yang digunakan.



I.3.6. Resolusi Vertikal Seismik Resolusi adalah jarak minimum antara dua objek yang dapat dipisahkan oleh gelombang seismik (Sukmono, 1999). Range frekuensi dari seismik hanya antara 10 – 70 Hz yang secara langsung menyebabkan keterbatasan resolusi dari seismik. Nilai dari resolusi vertikal adalah:



r



=



𝑣 4𝑓



Dimana: r = Jarak v = Kecepatan gelombang f = Frekuensi gelombang



Pendahuluan



6



Dapat dilihat dari persamaan diatas bahwa hanya batuan yang mempunyai ketebalan di atas 1/4 λ yang dapat dibedakan oleh gelombang seismik. Ketebalan ini disebut ketebalan tuning (tunning thickness). Dengan bertambahnya kedalaman, kecepatan bertambah tinggi dan frekuensi bertambah kecil, maka ketebalan tuning bertambah besar.



II. Data Sumur (Log) Log adalah suatu grafik kedalaman (bisa juga waktu) dari suatu data yang menunjukkan parameter yang diukur secara berkesinambungan di dalam sebuah sumur (Harsono, 1997). Log tersebut akan membantu interpreter dalam membaca informasi penampang seismik. Ada berbagai macam jenis log yang mempunyai fungsinya masing-masing. Sebuah sumur tidak selalu mempunyai data log secara keseluruhan. Terdapatnya data log pada usatu sumur dapat dilihat berdasarkan keekonomisan yang bergantung pada keperluan data pada suatu sumur. Fungsi log berdasarkan jenisnya dapat dijelaskan sebgai berikut.



II.1. Gamma Ray Log Prinsip gamma ray log adalah suatu rekaman tingkat radioaktifitas alami yang terjadi karena tiga unsur, yaitu: Uranium (U), Thorium (Th), dan Potassium (K) yang ada pada batuan. gamma ray sangat efektif dalam membedakan lapisan permeabel dan impermeabel karena unsur-unsur radioaktif cenderung berpusat di dalam serpih yang impermeabel dan tidak banyak terdapat dalam batuan karbonat atau pasir yang secara umum adalah permeabel. Gamma ray log biasa digunakan untuk menentukan jenis litologi dari suatu batuan.



II.2. Density Log Prinsip kerja log ini yaitu alat memancarkan sinar gamma energi menengah ke dalam suatu formasi sehingga sinar gamma akan bertumbukan dengan elektron-elektron yang ada. Tumbukan tersebut akan menyebabkan hilangnya energi (atenuasi) sinar gamma yang kemudian akan dipantulkan dan diterima oleh detektor yang akan diteruskan untuk direkam ke permukaan. Dalam hubungan fisika atenuasi merupakan fungsi dari jumlah elektron yang



Pendahuluan



7



tedapat dalam formasi yaitu densitas elektron yang mewakili densitas keseluruhan. Beberapa kelebihan dari log densitas antara lain mampu mengukur berat jenis batuan yang kemudian digunakan untuk menentukan porositas batuan tersebut, dapat membedakan minyak dan gas dalam ruang pori-pori karena fluida tadi berbeda berat jenisnya, dan bersama log lain misalnya neutron log, lithologi batuan dan tipe fluida yang dikandung batuan dapat ditentukan.



II.3. Neutron Porosity Log Neutron log tidak mengukur volume pori secara langsung tetapi menggunakan karakter fisik dari air dan mineral untuk melihat kontras rigid dan mengabaikan pengukuran volume pori atau porositas. Cara kerja log ini yaitu partikel-partikel neutron energi tinggi dipancarkan dari suatu sumber ke dalam formasi batuan. Partikel-partikel ini akan bertumbukan dengan atom-atom pada batuan sehingga mengakibatkan hilangnya energi dan kecepatan. Tumbukan neutron dengan atom H pada formasi yang mempunyai massa atom yang sama adalah yang paling signifikan. Partikel yang telah kehilangan energi tersebut kemudian akan dipantulkan kembali, diterima detektor dan direkam ke atas permukaan. Dengan mengetahui banyaknya kandungan atom hidrogen dalam batuan maka akan dapat diketahui besarnya harga porositas batuan tersebut.



II.4. Sonic Log Sonic log adalah log yang bekerja berdasarkan kecepatan rambat gelombang suara. Gelombang suara dipancarkan ke dalam suatu formasi kemudian akan dipantulkan kembali dan diterima oleh receiver. Waktu yang dibutuhkan gelombang suara untuk sampai ke penerima disebut interval transite time. Besarnya selisih waktu tersebut tergantung pada jenis batuan dan besarnya porositas batuan tersebut sebagai fungsi dari parameter elastik seperti K (bulk modulus), μ (shear modulus), dan densitas (ρ) yang terkandung dalam persamaan kecepatan gelombang kompresi (Vp) dan gelombang shear (Vs). Sehingga log sonik sering digunakan untuk mengetahui porositas litologi selain itu juga digunakan untuk membantu interpretasi data seismik, terutama untuk mengkalibrasi kedalaman formasi. Pada batuan yang porous maka kerapatannya



Pendahuluan



8



lebih kecil sehingga kurva log sonik akan mempunyai harga lebih besar dan sebaliknya pada batugamping. Besaran dari pengukuran log sonik dituliskan sebagai harga kelambatan (1 per kecepatan atau slowness).



II.5. Resistivity Log Log resistivitas adalah log yang bekerja berdasarkan konduktivitas batuan. Jadi semakin tinggi nilai konduktivitasnya maka resistivitasnya (hambatan) semakin kecil. Arus listrik dapat mengalir di dalam formasi batuan dikarenakan konduktivitas dari air yang dikandungnya. Resitivitas formasi diukur dengan cara mengirim arus bolak-balik langsung ke formasi (laterolog) atau menginduksikan arus listrik ke dalam formasi (alat induksi). Dalam aplikasi lapangan, laterolog menawarkan banyak kelebihan dibandingkan alat induksi lama antara lain resolusi vertikal lebih baik daripada alat induksi lama dan mampu mengukur resistivitas dari 0.2 sampai dengan 40 ohm. Akan tetapi untuk mendeteksi hidrokarbon diperlukan data geologi setempat atau dari data sumur di sekitarnya, dimana untuk resistivitas rendah digunakan induksi sedangkan untuk resistivitas tinggi adalah laterolog (Harsono, 1997).



II.6. Caliper Log Caliper log adalah log yang menjelaskan mengenai besar-kecilnya suatu lubang bor. Hal tersebut dikarenakan batuan yang terdapat di bawah permukaan dapat mengalami runtuh akibat tidak kompaknya suatu batuan.



II.7. Checkshot Checkshot dilakukan bertujuan untuk mendapatkan hubungan antara waktu dan kedalaman yang diperlukan dalam proses pengikatan data sumur terhadap data seismik (well tie seismik).



Pendahuluan



9



Gambar 4. Geometri source dan receiver pada : (a) survei checkshot di darat dan (b) pada sumur deviasi (Anstey and Geyer, 1987; Goetz, et al., 1979)



Survei ini memiliki kesamaan dengan akuisisi data seismik pada umumnya namun posisi geofon diletakkan sepanjang sumur bor atau dikenal dengan survei Vertical Seismic Profilling (VSP). Data yang didapatkan berupa one way time yang dicatat pada kedalaman yang ditentukan sehingga didapatkan hubungan antara waktu jalar gelombang seismik pada lubang bor tersebut.



III. Well Seismic Tie Well seismic tie merupakan suatu tahapan untuk mengikatkan data sumur terhadap data seismik. Pinsip proses tersebut adalah menempatkan reflektor seismik pada kedalaman yang sebenarnya dengan seismogram sumur yang bersesuaian dengan suatu bidang batas. Pencocokkan dilakukan dengan mengkoreksi nilai tabel time depth dari data checkshot tiap sumur agar two way time pada seismogram sintetik jatuh pada time data seismik. Hasil analisis well seismic tie akan memperlihatkan bahwa pada seismogram sintetik dapat dialakukan korelasi dengan horison-horison pada data seismik yang merepresentasikan perubahan koefisien refleksi atau suatu bidang batas perlapisan batuan. Digunakan parameter pencocokan yang sama antara data seismik dengan data sumur sehingga dapat dilakukan pengikatan antara keduanya. Dalam hal ini parameter yang digunakan adalah RC (menggambarkan batas lapisan) yang di dapat dari nilai AI (menggambarkan tubuh batuan). AI di dapat dari perkalian antara Pendahuluan



10



kecepatan (kecepatan gelombang merambat pada tubuh batuan) dengan densitas (tubuh batuan). Sehingga diperlukan antara lain seismogram seismik (data seismik alsi) dan seismogram sintetik (berdasarkan data sumur) yang diikat.



III.1. Seismogram Sintetik Seismogram sintetik adalah rekaman seismik buatan yang dibuat dari data log kecepatan dan densitas. Data kecepatan dan densitas membentuk fungsi koefisien refleksi yang selanjutya dikonvolusikan dengan wavelet. Seismogram sintetik ini dapat membantu mengidentifikasi horizon (picking horizon) pada penampang seismik (aspek lithologi, umur, kedalaman, dan sifat-sifat fisis lainnya) karena resolusi vertikalnya lebih baik dari data seismik. Disatu sisi seismogram sintetik menunjukkan data kedalaman yang akurat (sehingga dapat dilakukan konversi time to depth). Seismogram sintetik biasanya ditampilkan dengan format (polaritas dan fasa) yang sama dengan rekaman seismik. Sehingga perlu dilakukan ekstrak wavelet dari data seismik.



Gambar 5. Seismogram sintetik merupakan hasil konvolusi wavelet dengan koefisien refleksi (Sukmono, 1999)



III.2. Ekstrak Wavelet Salah satu kelemahan dari seismogram sintetik adalah umumnya dibuat dengan menggunakan frekuensi yang sama untuk seluruh penampang melakui proses ekstraks wavelet. Padahal frekuensi yang dipakai tersebut umumnya diambil dari zona target (misalnya daerah reservoar). Hal ini sering Pendahuluan



11



mengakibatkan terjadinya miss tie pada daerah di luar zona target tersebut. Miss tie adalah perbedaan waktu refleksi terhadap horison yang sama, namun direkam dari arah yang berbeda. Penyebab miss tie adalah salah satu atau kombinasi dari geometri reflektor, parameter perekaman, dan parameter pengolahan.



IV. Metode Inversi AI Refleksi gelombang seismik memberikan gambaran data bawah permukaan secara lateral, sedangkan data sumur memberikan data bawah permukaan secara vertikal. Langkah awal yang dilakukan yaitu menghubungkan (tie) data sumur ke data seismik dan mengestimasi nilai wavelet. Proses inversi melakukan pemodelan impedansi akustik dengan cara mengkonvolusi nilai wavelet dengan seismogram sintetis sesuai dengan tras penampang seismik.



Gambar 6. Skema proses konvolusi dan dekonvolusi (Yilmaz, 1987)



Seismik impedansi akustik dapat digolongkan sebagai data atribut seismik yang diturunkan dari amplitudo. Hasil akhir dari inversi seismik adalah impedansi. Apabila data seismik konvensional melihat batuan di bawah permukaan sebagai batas antar lapisan batuan, maka data impedansi akustik melihat batuan di bawah permukaan bumi sebagai susunan lapisan batuan itu sendiri. Oleh karena itu data impedansi akustik lebih mendekati gambaran nyata lapisan di bawah permukaan sehingga lebih mudah untuk diinterpretasi dan mampu memberikan gambaran yang lebih jelas untuk penyebaran batuan baik secara vertikal maupun lateral.



Pendahuluan



12



V. Seismik Atribut Seismik atribut merupakan pengukuran spesifik dari geometri, dinamika, kinematika, dan juga analisis statistik yang diturunkan dari data seismik. Informasi awal dari penerapan seismik atribut adalah gelombang seismik konvensional yang kemudian diturunkan menjadi fungsi tertentu dengan manipulasi matematis, sehingga kita dapat memperoleh informasi atau gambaran yang dapat membantu kita dalam menginterpretasi kondisi bawah permukaan. Secara umum, atribut turunan waktu akan cenderung memberikan informasi struktur, sedangkan atribut turunan amplitudo lebih cenderung memberikan informasi perihal stratigrafi dan reservoir. Peran atribut frekuensi sampai saat ini belum betul-betul dipahami, namun terdapat keyakinan bahwa atribut ini akan memberikan informasi tambahan yang berguna perihal reservoir dan stratigrafi. Atribut atenuasi juga praktis belum dimanfaatkan saat ini, namun dipercaya dimasa datang akan berguna untuk lebih memahami informasi mengenai permeabilitas. Contoh atribut adalah RMS dan variance. RMS (amplitudo seismik) dapat digunakan sebagai DHI (Direct Hydrocarbon Indicator), fasies, dan pemetaan sifatsifat reservoar. Perubahan nilai amplitudo secara lateral dapat digunakan untuk membedakan satu fasies dengan fasies lainnya. Contohnya, lapisan concordant yang memiliki nilai amplitudo tinggi, sedangkan hummocky dicirikan oleh amplitudo yang rendah, dan chaotic memiliki amplitudo yang paling rendah dibandingkan ketiganya. Lingkungan yang didominasi oleh batupasir juga memiliki nilai amplitudo yang lebih besar dibandingkan batuan serpih. Sehingga kita dapat memetakan penyebaran batupasir lebih mudah dengan peta amplitudo. Sedangkan atribut variance menyoroti variasi vertikal pada impedansi akustik. Atribut ini membandingkan jejak samping satu sama lain pada setiap posisi sampel. Jika ada perbedan itu mungkin karena kesalahan atau adanya noise. Penggunan atribut ini harus diaplikasikan dengan structural smoth atribute untuk mengurangi noise.



Pendahuluan



13



vi



DAFTAR ISI SOFTWARE HAMPSON & RUSSELL I. Membuat Database .......................................................................................... 1 II. Input Data ......................................................................................................... 3 II.1. Data Sumur ............................................................................................... 3 II.1.1. Data Log ......................................................................................... 3 II.1.2. Data Directional Survey ................................................................. 7 II.1.3. Data Marker .................................................................................... 10 II.2. Data Seismik ............................................................................................. 13 III. Analisa Log .................................................................................................... 18 III.1. Analisa Zona Target ................................................................................ 18 III.2. Analisa Crossplot .................................................................................... 25 IV. Well Tie Seismik ............................................................................................ 30 IV.1. Koreksi Checkshot .................................................................................. 30 IV.2. Ekstrak Wavelet ....................................................................................... 32 IV.3. Korelasi ................................................................................................... 39 V. Inversi Seismik ................................................................................................. 42



SOFTWARE HAMPSON & RUSSELL Software Hampson & Russell dapat membantu dalam melakukan interpretasi data geofisika di bidang Oil & Gas. Interpretasi dapat dilakukan dengan proses inversi seismik sehingga mendapat tampilan penampang seismik berupa Acoustic Impedance (AI). Berbeda dengan Reflection Coefficient (RC) yang menunjukan batas lapisan, nilai AI telah menunjukan tubuh batuan yang dilalui gelombang. Proses tersebut dibantu dengan kehadiran data seismik yang diikat dengan data sumur melalui proses Well Tie Seismik.



I. Membuat Database Buat folder sebelum melakukan project untuk mempermudah pengerjaan. Siapkan juga dua folder dalam Olahan yaitu folder Well dan Seismik, sehingga hasil pengerjaan nanti tidak saling bercampur antara pengerjaan data sumur dengan data seismik.



Buka software Geoview pada Hampson-Russell (HRS) dan buat project baru, kemudian simpan dengan nama yang diinginkan > OK.



Langkah-langkah penggunaan software HRS



1



database buka database database baru Catatan: Tanda (√) pada Show the Well Explorer after loading the database menunjukan bahwa window Well Explorer akan terbuka secara otomatis.



lokasi penyimpanan



nama database yang tersimpan format database



Kemudian akan muncul window Geoview (atas) dan window Explorer (bawah).



Langkah-langkah penggunaan software HRS



2



II. Input Data Setelah Database dibuat, proses berikutnya adalah input data. Data yang dimasukan berupa data sumur dan data seismik.



II.1. Input Data Sumur Data sumur yang dimasukan dalam proses iniput data sumur berupa data log, data directional sumur (untuk sumur deviasi) dan data marker.



II.1.1. Data Log Lakukan input data log pada window Explorer dengan cara, pilih Import Data > Logs, Check Shots, Tops Deviated Geometry from Files. Data yang dimasukan berupa data log seperti GR, RHOB, NPHI, P-Wave, dll.



Langkah-langkah penggunaan software HRS



3



Setelah muncul window File Import, tentukan lokasi tersedianya data sumur. Pilih data sumur yang mempunyai format .LAS yang akan dimasukan lalu klik Add > Next.



lokasi penimpanan data format data saat pencarian (.LAS)



data tersedia



data terinput



format input data



Kemudian pada window Destination Well untuk meletakan data log yang dimaukan pada data sebuah sumur (sehingga input dapat dilakukan tidak dalam waktu yang sama, hal tersebut dikarenakan nama sumur akan tersimpan dan akan menjadi tujuan dari data lain yang akan dimasukan). Lakukan perubahan nama jika diinginkan > Next.



Langkah-langkah penggunaan software HRS



4



nama data sesuai file



nama sumur sesuai data



nama sumur yang diinginkan



Pada window Well Data Settings digunakan untuk memasukan informasi sumur seperti data Koordinat, Tipe Sumur (bisa dikosongkan), Ketinggian Kelly Bushing dan Ketinggian Permukaan (bias dikosongkan). Perhatikan juga pada Elevasi Unit menggunakan satuan yang sesuai pada data log yang dapat dilihat pada View File Contens. kemudian > Next.



ketik nama sumur yang sudah tersimpan



satuan koordinat (UTM)



satuan elevasi



untuk melihat informasi sumur



Pada window Log File Details digunakan untuk menentukan jenis-jenis data log. Informasi mengenai jenis data log yang digunakan dapat dilihat pada View File Contens. Kemudian akan muncul pilihan file yang ingin dilihat informasinya > View File. Setelah semua informasi diisikan > OK.



Langkah-langkah penggunaan software HRS



5



tipe log dan nama log



satuan log dan satuan elevasi log



sesuaikan dengan acuan



jenis log dan satuan log



tanda (√) berarti log akan ditampilkan



nilai log setiap kedalaman



Jika data log berhasil dimasukan maka akan muncul pesan seperti gambar disamping > OK.



Kemudian akan muncul pilihan metode perhitungan dalam proses input data, pilih Metric > OK.



Kemudian pada window Well Explorer akan muncul sumur CIC-1 yang sudah diinput.



Langkah-langkah penggunaan software HRS



6



sumur CIC-1 yang sudah terinput



II.1.2. Data Directional Survey Perlu diketahui tipe sumur berdasarkan bentuknya ada dua yaitu sumur vertikal dan sumur deviasi. Keduannya dapat dilihat berdasarkan nilai kedalamannya (MD dan TVD). -



MD = TVD, maka berupa sumur vertikal



-



MD > TVD, maka berupa sumur deviasi



Apabila berupa sumur vertikal, maka kedalaman sumur telah diinput bersamaan dengan input data log.



Namun apabila sumur berupa sumur deviasi, maka perlu dilakukan input data deviasi dari sumur tersebut. Menggunakan cara yang sama seperti input log yaitu pilih Import Data > Logs, Check Shots, Tops Deviated Geometry from Files. Pada window Import File, tentukan lokasi tersedianya data deviasi sumur yang akan dimasukan, kemudian pilih data berformat .txt. Rubah Log File Format dengan General ASCII, kemudian pilih tipe data adalah Deviated Geometry > Next.



Langkah-langkah penggunaan software HRS



7



lokasi penimpanan data format data saat pencarian (.txt)



data tersedia



data terinput



format input data



Kemudian pada window Import Deviated Geomery, pilih View File Contents untuk melihat informasi data. Tentukan satuan, data deviasi yang akan diinput, kemudian tentukan lokasi tersedianya data > Next.



jenis data yang diinput (koordinat/sudut) dan satuannya



lihat pada kolom line data dimulai dari line 1 Sehingga line to skip=0



column 1



2



3



4



referensi dan tipe data kedalaman (MD)



Kemudian pada window Destination Well Settings digunakan untuk memasukan data pada sumur. Pilih nama sumur yang telah tersimpan sebelumnya pada Destination Well Name > Next > OK.



Langkah-langkah penggunaan software HRS



8



nama file (.txt)



nama sumur



Selain dilakukan dengan cara melakukan input data. Cara lain dapat dilakukan secara manual (copy-paste). Klik tanda panah warna biru pada data sumur yang telah dimasukan, pilih Create Derivation Geometry.



Deviated Geometry (Not Available) menunjukan bahwa tidak terdapat informasi mengenai sumur deviasi



Kemudian tentukan satuan dan pengukuran kedalaman yang berasal dari Kelly Bushing. Pindahkan data dari Ms Exel lalu copy nilai kedalaman dan koordinat X & Y yang telah disusun teratur sesuai tampilan dalam HRS. Blok semua kolom lalu klik pada Log Data Options, pilih Paste from clipboard to selected > Update.



Langkah-langkah penggunaan software HRS



9



1 referensi data sumur



samakan satuan antara MD (ft) dan KB (ft)



3



2 untuk menyimpan data



Perhatikan gambar sumur pada sebelah nama sumur, berubah menjadi sumur deviasi.



II.1.3. Data Marker Kemudian melakukan input data marker yang berguna sebagai penanda kemenerusan lapisan pada interpretasi picking horizon (Petrel). Data dapat dimasukan dengan cara yang sama seperti data directional survey, yaitu secara input data maupun manual. - Apabila dilakukan dengan input data, maka pilih Import Data > Logs, Check Shots, Tops Deviated Geometry from Files. menentukan lokasi tersedianya data marker yang akan dimasukan, kemudian pilih data berformat .txt dengan tipe data adalah Top > Next. Sesuaikan dengan informasi data pada View File Contents dan sesuaikan dengan nama sumur > OK. - Apabila dilakukan dengan cara manual, klik tanda panah warna biru di sebelah sumur. Kemudian pilih tanda panah biru lagi pada Top. Sesuaikan satuan kemudian paste data marker pada tabel > Update.



Langkah-langkah penggunaan software HRS



10



Kedua cara tersebut akan menghasilkan hasil yang sama setelah dilakukan input data marker.



data marker telah berhasil dimasukan



Kemudian perihal keperluan proses Well Seismic Tie maka diperlukan data yaitu checkshot dan P-wave. Sseperti dengan data sebelumnya bahwa dapat dimasukan pada menu Import Data > Logs, Check Shots, Tops Deviated Geometry from Files (dengan nama sumur yang sama) maupun input secara manual (copy-paste). Apabila dilakukan secara manual maka pilih Log Options > Create a new log in table > pilih jenis log yaitu P-wave. Klik tanda panah di sebelah log P-wave yang telah ditambah. Kemudian lakukan paste data kedalaman dan kecepatan pada tabel > Update.



Langkah-langkah penggunaan software HRS



11



jenis log yang akan ditambahkan



Perlu diperhatikan mengenai informasi data log, sesuai atau tidak



Tentukan nilai satuan dalam feet dan pengukuran adalah Kelly Bushing, agar sesuai dengan informasi data log yang lain. Selanjutnya lakukan input pada data Checkshot (jenis log: checkshot, satuan: two way time, perhatikan satuan kedalaman yaitu ft dan referensinya yaitu KB). Data sumur telah selesai dimasukan, dimana di dalamnya terdapat informasi tipe log, directional survey sumur dan marker.



(√) sumur CIC-1 (√) data top (√) deviated survey sumur



(√) checkshot (√) P-wave (√) jenis log dan satuan



Langkah-langkah penggunaan software HRS



(√) satuan dan referensi kedalaman



12



II.2. Data Seismik Kembali pada menu Geoview, pilih Strata lalu Start New Project > OK. Tentukan letak penyimpanan, tulis nama project dengan nama yang sama pada saat pertama pembuatan project. Hal tersebut agar memungkinkan dapat dilakukan well seismic tie. Karena bila data mempunyai nama yang sama, data antara sumur dan seismik akan saling terkorelasi.



membuat database baru lokasi penyimpanan membuka database yang tersimpan (.pjr) membuka database yang berhubungan dengan window Well Explorer yang terbuka nama database yang tersimpan (gunakan nama yg sama dengan sumur agar dapat terkorelasi)



format database



Kemudian akan muncul window Hampsom-Russell - Strata pilih menu Data Manager > Open Seismic > From SEG-Y File untuk melakukan input data seismik.



Langkah-langkah penggunaan software HRS



13



Selanjutnya akan muncul window File Selection Page seperti gambar dibawah. Tentukan lokasi tersedianya data seismik dengan memilih format pada filter pilih format *.*. Pilih data seismik kemudian Add > Next.



lokasi penimpanan data



data tersedia



format data saat pencarian (*.*)



data terinput



Pada window Geometry Type Page digunakan untuk menentukan jenis data seismik (3D atau 2D Line), 3D (dikarenakan tipe data seismik berupa 3D) > Next.



Langkah-langkah penggunaan software HRS



14



Pada window General Parameter Page for Single File, digunakan untuk menentukan informasi pada data seismik (dapat dilihat pada Header Dump) antara lain: - Tipe Amplitudo



: Seismic



- Domain berupa



: Time



- Pengolahan seismik



: Post Stack



- Nomer Inline & Xline



: Yes



- Koordinat X & Y



: Yes



- Penomoran CDP secara sekuen : Yes (default) Serta letak penyimpanan hasil dari proses import data seismik > Next.



informasi data seismik yang dapat dilihat pada Header Dump informasi data seismik



lokasi penyimpanan hasil proses import



Pada window SEG-Y Format and Header Page, digunakan untuk melakukan pengaturan terhadap data SEG-Y seismik. Klik Detail Specification kemudian isikan data inline dan xline yang dimulai pada byte yaitu 189 dan 193, koordinat X dan Y pada byte 73 dan 77, lokasi CDP pada byte 21 serta lokasi Offset pada byte 37. Kemudian pada Detail Specification > OK untuk mengatur skala 𝟏



𝟏



koordinat secara otomatis (-100.00 = 𝟏𝟎𝟎 sehingga nilai koordinat × 𝟏𝟎𝟎).



Langkah-langkah penggunaan software HRS



15



1



2



Catatan: Ignore Receiver X & Y coordinates dikarenakan tidak terdapat informasi koordinat receiver pada Detail Specification.



Kemudian apabila byte (interval 4 byte) yang diisikan telah sesuai maka dapat dilihat pada Header Dump yang menunjukan nilai yang sesuai juga > Next > Scan. Kemudian data akan diproses….



Progress….



Langkah-langkah penggunaan software HRS



16



Setelah proses selesai akan muncul window Geometry Grid Page seperti pada gambar di bawah. Maka bentuk line pengukuran akan muncul pada tampilan. Perlu diingat untuk melakukan pengecekan terhadap input data agar sesuai dengan data yang diatur pada window SEG-Y Format and Header Page > OK > Proses….



display geometri pengukuran



lakukan cek data agar sesuai



Progress….



Kemudian setelah proses selesai akan muncul 3 window. Window pertama (Well to Seismic Map Menu) adalah window yang menunjukan telah tersambungnya data seismik dengan data sumur yang dimasukan dengan terdapatnya (√), window kedua (Strata: Seismic Window Data Menu) adalah pilihan menu data seismik yang ingin ditampilkan maupun dihapus, sedangkan window ketiga adalah tampilan penampang seismik dalam 2D berdasarkan data seismik dan data sumur yang telah berhasil diinput.



Langkah-langkah penggunaan software HRS



17



tampilan penampang seismik (inline/xline) yang digeser setiap step (1 step)



karena data seismik berupa data 3D maka terdapat inline dan xline, xline menunjukan perpotongan terhadap tampilan dari inline



3



display penampang seismik dan sumur CIC1 yang telah ditampilkan



2 1



(√) pada kolom plot menunjukan sumur telah ditampilkan pada display penampang seismik



kedalaman dalam domain time (ms)



file data seismik yang telah diinput dengan pilihan show untuk ditampilkan dan pilihan delete untuk menghapus



nilai inline/xline, time dan amplitudo trace yang ditunjuk oleh cursor



Catatan: Apabila tidak muncul sumur CIC pada window pertama maka data sumur dan data seismik tidak terkorelasi dikarenakan penggunaan nama project yang berbeda.



III. Analisa Log Sebelum melakukan analisa terhadap data seismik, dilakukan analisa terlebih dahulu terhadap data sumur. Analisa tersebut berupa analisa zona target dan analisa crossplot. Analisa zona target untuk menentukan penentuan zona prospek berdasarkan log sumur (quick look). Sedangkan analisa crossplot untuk mengetahui sensitifitas data terhadap kemampuan untuk memisahkan antara sand dan shale guna untuk kelayakan proses inversi.



III.1. Analisa Zona Target Analisa ini digunakan untuk mengetahui respon data log berdasarkan jenis log yang dimasukan (GR, Resistivity, RHOB, NPHI, P-Wave, dll). Berdasarkan



Langkah-langkah penggunaan software HRS



18



respon dari data log tersebut, maka dapat diketahui indikasi keberadaan hidrokarbon (DHI yaitu Direct Hydrocarbon Indication). Namun cara lain dapat dilakukan yaitu berdasarkan data hasil sumur produksi yang telah ada. Marker pada sumur produksi tersebut digunakan sebagai acuan terhadap potensi keberadaan hidrokarbon. Analisa zona target dilakukan dengan menampilkan data log ke dalam kolom-kolom pengelompokan log berdasarkan fungsinya masing-masing. Buka menu elog pada Geoview, kemudian Open Project > OK.



membuat database baru membuka database yang telah tersimpan (.pjr) membuka database yang berhubungan dengan window Well Explorer yang terbuka, buka project data seismik



Kemudian akan muncul window eLog beserta window Select Well Menu yang digunakan untuk pemilihan sumur yang akan ditampilkan > Open.



pilih well untuk ditampilkan



Selanjutnya pada window eLog akan muncul kurva data log (garis warna merah). Pada display tersebut akan ditampilkan juga data marker (garis warna hitam) yang Langkah-langkah penggunaan software HRS



19



telah dimasukan. Informasi lain yang ditampilkan cukup lengkap, antara lain nama log, nilai dan satuan log, koordinat log beserta ketinggian KB, ditampilkan juga kedalaman dalam dua domain yaitu domain depth dan time. Hal tersebut dikarenakan data log dan data seismik telah terintegrasi, namun perlu diingat bahwa posisi sumur belum berada pada posisi sebenarnya dikarenakan kedua domain tersebut belum dikorelasi. Pada display window eLog dapat dilakukan pengaturan agar dapat membantu mempermudah dalam analisa zona target. Klik icon



pada tampilan



menu display untuk melakukan setting pengaturan tampilan. menu display



marker



informasi data sumur



kurva log beserta nama log, nilai dan satuan



kedalaman domain depth menu-menu eLog



Setelah icon



kedalaman domain time



track log, digunakan untuk mengelompokan log berdasarkan fungsinya masing-masing



dipilih, maka akan muncul window Parameter Menu for Well



CIC-1. Terdapat banyak menu pada window tersebut, pada menu Layout digunakan untuk penentuan tipe log yang akan dimunculkan yang dilakukan dengan pemberian tanda (√) pada kolom. Penggolongan jenis log juga dapat dilakukan pada menu ini. Sehingga terdapat 3 track utama yaitu track 1 untuk litologi, track 2 untuk keberadaan dan jenis fluida, track 3 untuk keberadaan fluida pada porositas batuan,



Langkah-langkah penggunaan software HRS



20



sedangkan 2 track penunjang adalah track 4 sebagai checkshot dan track 5 sebagai P-wave.



menu terpilih



penomoran track



jenis log yang ditampilkan pada track yang diinginkan



untuk menghapus semua (√)



Pada menu Curves digunakan untuk melakukan pengaturan terhadap tampilan log seperti nilai maksimal & minimal, satuan, skala, dll. Pengaturan tersebut dapat dimanfaatkan guna analisa petrophysics (quick look) mengenai kandungan fluida pada porositas batuan berdasarkan dua jenis log yaitu log Neutron Porosity dan log Density. Caranya dengan membalikan nilai Start dan End pada log Density guna untuk mendapatkan perpotongan pada kedua log tersebut, kemudian pilih Fill Option: Single Color untuk memunculkan satu warna yaitu Yellow sesuai pada Fill Color guna untuk mengetahui perpotongan kedua log yang dapat dilihat dengan terisi warna pada perpotongan kedua log tersebut. Kemudian pada Area yaitu From 2nd Curve yang menunjukan bahwa batas warna yaitu antara kurva density log dengan kurva kedua yang dipilih yaitu neutron porosity log pada pilihan kolom 2nd Curve.



Langkah-langkah penggunaan software HRS



21



menu terpilih



lakukan pengaturan seperti berikut



Kemudian pada menu Scale & Details digunakan untuk mengatur skala yang dipakai, pengaturan tampilan pada track dan juga detail mengenai penampilan marker. menu terpilih



pengaturan penampilan marker (top): 1. tampilkan semua 2. tampilkan sebagian 3. tidak ditampilkan pengaturan warna pada display log: 1. kurva log 2. grid 3. line top



Langkah-langkah penggunaan software HRS



22



Pada menu Synthetics berhubungan dengan sintetik seismik seismogram yang akan digunakan dalam proses Well Tie. Sintetik seismogram ini dibuat berdasarkan ekstrak wavelet yang dilakukan. Namun karena belum dilakukan ekstrak wavelet, maka wavelet yang muncul adalah wavelet bawaan yang telah ada. menu terpilih



wavelet terinput



wavelet yang ditampilkan



Pada menu Seismic Views digunakan untuk melakukan pengaturan terhadap tampilan penampang seismik (letaknya bersebelahan dengan data sumur). Pengaturan yang dapat dilakukan, antara lain tampilan trace sampai horizon yang akan dimunculkan. menu terpilih



data seismk dimasukan



data seismik yang ditampilkan



pengaturan horizon yang ditampilkan



pengaturan tampilan trace: tebal garis, warna, fill color, polaritas, wiggle



Langkah-langkah penggunaan software HRS



23



Terakhir menu Template digunakan untuk melakukan penyimpanan (Save as) terhadap pengaturan yang sudah dilakukan sehingga dapat dilakukan penampilan tampilan yang sama (Load) pada project yang lain > Apply > OK.



menu terpilih



Setelah pengaturan tampilan selesai dilakukan maka akan terlihat tampilan seperti pada gambar di bawah. Sehingga jenis log telah dikelompokan sesuai fungsinya masing-masing, kemudian disebelahnya terdapat tampilan penampang seismik. Serta marker pun telah dimunculkan. Terlihat data seismik mempunyai kedalaman yang lebih dalam dari pada data sumur, jika sebaliknya maka lakukan pengecekan terhadap satuan yang digunakan sumur. Garis merah pada penampang menunjukan bentuk sumur. Perlu diingat bahwa sampai pada proses ini posisi sumur belum berada pada posisi kedalaman sebenarnya dikarenakan belum dilakukan koreksi.



Langkah-langkah penggunaan software HRS



24



III.2. Analisa Crossplot Analisa crossplot digunakan untuk menentukan zona target layak untuk dilakukan inversi atau tidak dilihat dari kemampuannya memisahkan antara sand dengan shale. Pada window eLog, pilih Crossplot > General maka akan muncul window Well Log Crossplot Menu. Kemudian Add jenis log yang ingin dilakukan crossplot, berkaitan dengan penentuan batuan maka digunakan log P-Impedance, log Density dan log Gamma Ray > Next.



jenis log



Langkah-langkah penggunaan software HRS



log yang dipakai



25



Kemudian Add sumur yang akan dilakukan crossplot > Next. Selanjutnya letakan log sesuai dengan X-axis maupun Y-axis yang diinginkan untuk dianalisa > Next.



log pada X-axis



sumur yang tersedia



sumur yang akan dianalisa



log pada Y-axis



nama dan judul crossplot



Selanjutnya sesuaikan jenis log dengan satuan yang diinginkan > Next. Kemudian tentukan rentang kedalaman Start & End Vertical Depth (dapat berdasarkan marker Start & End Tops) untuk menentukan zona target yang akan dianalisa > Next > OK.



satuan log jenis log



rentang berdasarkan kedalaman



rentang berdasarkan marker



Langkah-langkah penggunaan software HRS



26



Setelah selesai akan muncul window Crossplot Display. Untuk melakukan pengaturan pilih New Plot > Gammya Ray vs P-Impedance (primary). Akan muncul window Data Specification Menu yang digunakan untuk mengatur terhadap tampilan X-axis dan Y-axis > OK.



Langkah-langkah penggunaan software HRS



27



Tampilan sesuai yang diinginkan akan munsul seperti gambar di bawah. Sebelum melakukan analisa perlu diketahu antara perbedaan sand dan shale berdasarkan masing-masing jenis log, antara kain: - Density log akan menunjukan respon shale lebih besar dibandingkan sand. Hal tersebut dikarenakan shale lebih kompak sehingga akan lebih padat dibandingkan sand. - Gamma Ray log akan menunjukan respon shale lebih besar dibandingkan sand. Hal tersebut dikarenakan shale lebih mengandung unsur radioaktif dibandingkan sand. - P-Impedance log akan menunjukan respon shale lebih tinggi dibandingkan sand. Hal tersebut berkaitan dengan P-Impedance merupakan perkalian dari kecepatan dengan densitas. Analisa dapat dilakukan dengan memilih menu Zones > Add.



Kemudian akan muncul window Add/Edit Zone Filter. Pada Current Zone Selection diisikan sesuai analisa litologi yang diinginkan (Sand/Shale). Kemudian pilih jenis Mode Gambar dan Warna Litologi (perlu diingat untuk tidak menekan OK terlebih dahulu). Untuk menggambar lakukan cara sebagai berikut:



Langkah-langkah penggunaan software HRS



28



1. Menentukan panjang zona, klik cursor pada sisi tepi area Shale lalu klik (bila dilakukan analisa terhadap Shale). Langsung lanjut klik cursor kesisi tepi yang lain. 2. Menentukan lebar zona dengan mengarahkan cursor menjauhi garis pada point 1, klik cursor. Tanda silang berwarna merah menunjukan bahwa data telah masuk ke dalam zona analisa. Bila telah sesuai > OK. Kemudian lakukan hal yang sama untuk analisa Sand.



analisa yang diinginkan (sand/shale)



data (merah) telah dikelompokan berdasarkan zona bentuk zona: - rectangle = segiempat - polygon = membuat bangun sendiri - ellipse = bulat warna zona



Langkah-langkah penggunaan software HRS



klik OK setelah selesai menggambar



29



Terkhir untuk memunculkan hasil analisa dapat dipilih menu Cross-Section. Selanjutnya akan muncul window Cross Section Display. Dapat dilakukan pengaturan terhadap tampilannya dengan memilih menu View > Display Options.



untuk menentukan arah defleksi



keterangan warna pada gambar



untuk memunculkan legenda



tampilan pengaturan Y-axis tampilan pengaturan X-axis: - grid mengatur garis background - range mengatur memunculkan scroll pada X-axis



IV. Well Seismik Tie Penampang seismik dengan kemampuan menentukan kemenerusan lapisan perlu dikontrol menggunakan data sumur dengan high vertical resolution. Sehingga apabila kondisi lapisan bawah permukaan dapat diketahui melalui analisa sumur (berdasarkan log maupun tes coring) akan dapat disebarkan dengan menggunakan penampang seismik untuk mengetahui kemenerusannya (picking horizon). Maka diperlukan proses Well Tie Seismic yang bertujuan pengikatan antara data seismik dengan data sumur. Pada proses pengikatan ini diperlukan parameter yang sama, yaitu nilai Reflection Coefficient (RC). RC seismik sudah bernilai mutlak dari hasil pengukuran dan pengolahan sedangkan RC sumur (seismogram sintetik) berasal dari nilai Acoustic Impedance (AI) buatan. AI buatan dihasilkan dari perkalian antara log P-wave sebagai data kecepatan dengan log RHOB sebagai data densitas.



IV.1. Koreksi Checkshot Data checkshot membantu untuk memposisikan sumur pada posisi sebenarnya. Sehingga disinilah perlunya intergrasi antara data checkshot dengan



Langkah-langkah penggunaan software HRS



30



log P-wave. Pilih menu Check Shot, muncul dua window antara lain window Check Shot Analysis dan Check Shot Parameters. Pada window Check Shot Parameters pilih tipe interpolasi adalah Spline (pada penentuan ini bersifat optional tergantung data sumur, penentuan yang dilakukan bersifat penentuan interpolasi data) > Apply. Pada window Check Shot Analysis > OK.



penentuan persifat optional: linier, spline atau polinomial



Kemudian akan dibuat data baru yaitu data checkshot yang telah dikorelasi dengan Pwave,



beri



nama



>



OK



(untuk



menyimpan).



Setelah disimpan maka posisi sumur akan berubah seperti pada gambar di bawah. Perhatikan kedalaman sumur pada gambar 1 dan 2. Pada gambar 1 2250 ms sedangkan pada gambar 2 posisi sumur berada pada kedalaman yang lebih dalam yaitu 2600 ms. Kemudian penamaan nama log juga akan berubah, gambar 1 yaitu P-wave sedangkan gambar 2 adalah P-wave 1_chk.



Langkah-langkah penggunaan software HRS



31



1



2



IV.2. Ekstrak Wavelet Wavelet merupakan kumpulan dari sejumlah gelombang harmonik yang mempunyai amplitudo, frekuensi, dan fasa tertentu. Parameter tersebut tidak selalu sama pada suatu lokasi dengan lokasi yang lain. Sehingga bentuk wavelet dipengaruhi oleh kondisi bumi sebenarnya. Berkaitan dengan perlunya dibuat seismogram sintetik, maka perlu diketahui wavelet pada lokasi dengan cara ekstrak wavelet. Ada beberapa cara dalam ekstrak wavelet antara lain use well, statistical, ricker dan bandpass. - Use Well melakukan pembuatan wavelet dengan menggunakan bantuan sumur.



Langkah-langkah penggunaan software HRS



32



- Statistical melakukan pembuatan wavelet dengan menggunakan perhitungan statistik berdasarkan spectrum amplitude. - Ricker melakukan pembuatan wavelet secara langsung. - Bandpass melakukan pembuatan wavelet berdasarkan frekuensi yang ditentukan. Salah satu cara adalah Use Well yaitu dengan melakukan ekstrak wavelet pada daerah sekitar sumur. Sebelumnya perlu diketahui Panjang Gelombang di daerah sumur yang akan dimasukan dalam parameter Wavelength. Panjang Gelombang di dapatkan dari perhitungan Kecepatan dibagi dengan Frekuensi.  Frekuensi Pada menu Strata > Process > Utility > Amplitude Spectrum.



Maka akan muncul window Amplitudo Spectrum Menu. Pada Volume Range Specification digunakan untuk membatasi volume seismik (karena data berupa 3D dengan sumur deviasi) untuk mengetahui frekuensi dominan yang ingin diketahui > Next > OK.



Langkah-langkah penggunaan software HRS



33



volume seismik yang dipilih



inline dan xline muncul berdasarkan bentuk sumur pada volume seismik



Progress….



Kemudia akan muncul window Amplitude Spectrum Plot yang menunjukan kurva Frequency terhadap Amplitude. Pada kurva tersebut, cursor dapat diarahkan pada nilai amplitudo maksimal.



cursor diarahkan pada nilai amplitudo maksimal



nilai yang ditunjukan oleh cursor X adalah frequency (Hz) Y adalah amplitude



 Kecepatan Pada menu Well Explorer dengan melakukan convert satuan dari us/f (berdasarkan data) ke m/s (untuk mempermudah perhitungan). Pilih jenis log yang akan dilakukan convert (P wave 1) > Log Options > Duplicate selected logs in table. Selanjutnya akan muncul log P wave 1 copy 1 > Options > Log Unit Coversion.



Langkah-langkah penggunaan software HRS



34



Kemudian akan muncul window Log Unit Conversion. Pilih jenis log yang akan dikonvesi (P-wave). Selanjutnya atur Satuan Awal dan Satuan yang Diinginkan > Apply. Hasil proses akan muncul pada Log Unit Conversation Status Report. jenis konversi yang diinginkan (Amplitudo)



jenis log (P-wave) success / mis – matched amplitude unit satuan awal (us/ft) satuan akhir (m/s)



Selanjutnya copy nilai kecepatan pada Ms. Excel untuk mencari nilai rata-rata kecepatan. Kemudian dapat diketahui nilai Panjang Gelombang yaitu 152,51.



Langkah-langkah penggunaan software HRS



35



amplitudes dengan satuan m/s



panjang gelombang =



kecepatan rata − rata frekuensi dominan



Untuk mempermudah dalam pengerjaannya maka analisa difokuskan pada zona prospek yang diharapkan saja. Contoh diambil batasan zona prospek berdasarkan marker 100-1 (top) dan 112-3 (bottom). Munculkan marker yang diperlukan, Klik icon



> Scales & Details, pilih Show selected top > Tops



Selection. Kemudian muncul window Select Tops Menu, pilih marker dengan menekan Add > OK. OK.



menu terpilih



data marker keseluruhan



marker terpilih



Kemudian pada window eLog, akan muncul marker sesuai pilihan. Selanjutnya melakukan Ekstrak Wavelet dengan Use Well, pilih menu Wavelet > Extract Wavelet > Use Well.



Langkah-langkah penggunaan software HRS



36



Akan muncul window Wavelet Extraction Using Well Menu. Pada window Select Wells To Use For Wavelet Extraction digunakan untuk memilih sumur yang akan digunakan, pilih Add > Next. Pada window Composite Trace Extraction Parameters digunakan untuk memilih volume seismik, penentuan jenis interpolasinya dan radius interpolasi > Next.



Pada Wavelet Extraction Window digunakan untuk penentuan volume seismik yang akan diekstrak > Next. Pada window Wavelet Parameter digunakan untuk penamaan wavelet, parameter wavelength, tipe ekstraksinya > Next.



Langkah-langkah penggunaan software HRS



37



fokuskan pada zona prospek gunakan domain waktu / horizon (harus sudah picking horizon)



diisikan dengan acuan wavelength 152,51



nama wavelet wavelet yang pernah dibuat



tipe ekstraksi



Terakhir pada Wavelet Extraction Summary > OK.



Progress….



Setelah selesai maka akan muncul window Display Wavelet(s). Pada window ini dapat ditampilkan beberapa wavelet yang telah dibuat serta dapat ditampilkan Time, Frequency dan History dari setiap wavelet.



taper length



wavelet length



Langkah-langkah penggunaan software HRS



38



IV.3. Korelasi Korelasi merupakan proses penyamaan domain antara data seismik (domain time) dengan data sumur (domain depth). Proses korelasi dapat dilakukan dengan pilih menu Correlate. Maka akan muncul window Extract Composite Trace Menu yang digunakan untuk memunculkan trace seismik yang berada di sekitar area sumur sehingga akan memudahkan tampilan saat korelasi antara seismogram seismik dengan seismogram sumur. Pilih jenis interpolasi > OK.



Progress….



Setelah selesai maka pada window eLog akan muncul tampilan seperti di bawah. Akan muncul tampilan seismogram sumur (biru), seismogram seismik (merah) dan penampang seismik yang dilalui oleh sumur. Tujuan dari tampilan ini adalam melakukan korelasi semirip mungkin antara seismogram sumur dengan seismogram seismik. Parameter korelasi dapat dilihat dari nilai Current Correlation dan Time Shift. Nilai Current Correlation bergantuk terhadap seberapa mirip seismogram sumur dengan seismogram seismik yang ditentukan berdasarkan wavelet yang digunakan. Sedangkan Time Shift menunjukan adanya pergeseran (time domain) antara bentuk seismogram sumur dengan seismogram seismik.



Langkah-langkah penggunaan software HRS



39



Contoh: Digunakan wavelet wave0 untuk membuat seismogram sumur. 



Mengatur Time Shift: terlihat bahwa bentuk seismogram sumur sedikit lebih tinggi posisinya dibandingkan seismogram seismik (time 850-900 ms). Maka sejajarkan posisi dari kedua seismogram tersebut dengan cara arahkan cursor pada Pick/Trough (berdasarkan Snap to) di seismogram sumur kemudian arahkan lagi cursor pada Pick/Trough di seismogram seismik > Stretch (perhatikan perubahan nilai Time Shift).







Mengatur Current Correlation: ganti wavelet dengan melakukan ekstrak wavelet lagi untuk mendapatkan bentuk yang sesuai dengan seismogram sumur.



penampang seismik yang dilalui lintasan sumur



penampang seismik yang dilalui lintasan sumur



wavelet terpilih



penampang seismik (hitam) lintasan sumur (merah)



parameter korelasi



klik untuk menyamakan time shift (orange)



untuk mengakhiri proses (disimpan)



untuk menyetujui perubahan time shift



untuk menghapus pilihan time shift



untuk melakukan undo setelah stretch



pilihan: - Snap Peak/Trough = untuk memilih pada Peak/Trough - Snap Peak = untuk memilih pada Peak saja - Snap Trough = untuk memilih pada Trough saja - Do Not Snap = untuk memilih secara acak



Catatan: Stretch dapat dilakukan berkali-kali sesuai kebutuhan. Dilakukan lebih dari sekali dalam sekali proses Stretch juga dapat dilakukan namun dapat berdampak terhadap perubahan interval kedalaman sumur. Pilihan Apply Shift akan melakukan Stretch secara



Langkah-langkah penggunaan software HRS



40



otomotasi untuk mendapatkan time shift = 0 ms namun interval sumur akan berubah semuanya (jadi tidak disarankan). Setelah selesai > OK maka akan muncul perrintah untuk menyimpan data Checkshot baru hasil Stretch.



Cara lain dapat dilakukan tanpa melakukan Stretch (karena dapat merubah posisi sumur) yaitu dengan menu Parameters. Digunakan wave2 kemudian mengatur window corelasi disekitar marker yang dianalisa (warna kuning).



hasil pengaturan



Setelah mendapatkan Time Shift = 0 ms dan Current Correlation yang mendekati bentuk seismogram seismik (range dari 0-1, semakin kearah 1 maka semakin mirip) > Close. Maka hasilnya adalah sebagai berikut > OK.



wavelet yang dipakai dan hasil korelasi yang didapat



Langkah-langkah penggunaan software HRS



41



V. Inversi Seismik Proses selanjutnya akan disempurnakan pada edisi berikutnya. Sselanjutnya satu tehnik lain dalam interpretasi adalah inversi seismik yaitu merubah data seismik yang berupa RC (coefficient reflection) menjadi berupa AI (acoustic impedance) dengan bantuan proses sebelumnya yaitu ekstrak wavelet. AI seismik akan menampilkan penampang seismik yang menggambarkan tubuh batuan langsung. Berikut adalah contoh tampilan penampang seismik hasil inversi.



Langkah-langkah penggunaan software HRS



42



vii



DAFTAR ISI SOFTWARE PETREL I. Tahap Persiapan ............................................................................................... 1 I.1. Buka Software ............................................................................................ 1 I.2. Project Settings .......................................................................................... 3 II. Input Data ......................................................................................................... 4 II.1. Data Sumur ............................................................................................... 4 II.1.1. Well Head ....................................................................................... 4 II.1.2. Data Log ......................................................................................... 5 II.1.3. Data Directional Survey ................................................................. 6 II.1.4. Data Marker .................................................................................... 8 II.2. Data Seismik ............................................................................................. 10 II.2.1 Input Data Seismik .......................................................................... 11 II.2.2 Realize ............................................................................................. 13 II.3. Checkshot ................................................................................................. 14 III. Log ................................................................................................................ 16 III.1. Pengaturan Log ........................................................................................ 16 III.2. Marker Manual ........................................................................................ 19 IV. Interpretasi ..................................................................................................... 21 IV.1. Picking Fault ........................................................................................... 24 IV.2. Picking Horizon ...................................................................................... 27 V. Depth Structure Map ........................................................................................ 29 VI. Seismik Atribut ............................................................................................... 29



SOFTWARE PETREL Software Petrel dapat membantu dalam melakukan interpretasi data geofisika di bidang Oil & Gas. Interpretasi awal yang dilakukan pada penampang seismik adalah picking fault dan picking horizon. Picking fault yaitu menganalisa keberadaan sesar pada penampang vertikal berdasarkan ketidakmenerusan defelsi seismik. Sedangkan picking horizon yaitu menganalisa kemenerusan lapisan dengan melihat kemenerusan defleksi seismik yang dibantu dengan keberadaan sesar dan marker pada data sumur. Selanjutnya dilalakukan konversi terhadap domain waktu menjadi domain kedalaman agar penentuan mengenai kedalaman sebenarnya lebih mudah. Terakhir adalah dengan bantuan attribute seismic pada software, dapat memudahkan melakukan interpretasi berdasarkan melihat sudut pandang lain dari salah satu parameter seismik. Semua proses di atas akan mudah dilakukan karena Petrel mampu menampilkan hasil secara 2D, 3D maupun berupa slice (berdasarkan kedalaman atau horizon).



I. Tahap Persiapan Sebelum



melakukan



pekerjaan,



lakukan



beberapa



tahap



untuk



mempersiapkan pekerjaan. Antara lain menjalankan software, menyimpan project dan melakukan pengaturan project.



I.1. Buka Software Hal pertama yang dilakukan sebelum memulai project adalah melakukan persiapan awal. Jalankan software (klik dua kali), kemudian booting hingga muncul tampilan seperti gambar di bawah kemudian OK.



Langkah-langkah penggunaan software Petrel



1



Progress….



Software Petrel mempunyai banyak bagian dalam satu window Petrel. Bagianbagian tersebut mempunyai fungsi masing-masing yang dapat memudahkan dalam proses. Akan dijelaskan mengenai fungsi dari bagian-bagian sesuai dengan proses yang akan dilajankan.



Input: semua data yang dimasukan akan muncul pada menu ini



jendela kerja/tampilan hasil pekerjaan



menu umum pada software & menu tampilan software



menu Processes yang aktif (bold)



menu tersedia berdasarkan Processes yang aktif



Catatan: semua pekerjaan akan dipengaruhi berdasarkan menu pada Processes dimana yang aktif (bold) akan mempengaruhi proses pekerjaan yang dapat



Langkah-langkah penggunaan software Petrel



2



dilakukan dan juga mempengaruhi menu-menu yang akan muncul di sebelah kanan jendela kerja.



I.2. Project Settings Sebelum memulai pekerjaan, disarankan untuk mengatur sistem koordinat terlebih dahulu. Hal ini cukup penting dikarenakan koordinat menjadi hal yang sangat diperhatikan sehingga perlu diperhatikan dengan baik. Sehingga pada pengaturan ini, koordinat yang dimasukan akan sesuai pada zona UTM yang dipilih. Pada menu software pilih Project > Project settings.



Kemudian akan muncul window Settings > Coordinates and units > Coordinates. Sehingga akan muncul window Coordinate reference system selection, tentukan zona UTM yang sesuai > OK. tampilan yang dipilih



tampilan zona



2



pilih zona UTM/zona koordinat berdasarkan daerah pekerjaan



1



Langkah-langkah penggunaan software Petrel



3



II. Input Data Seletah sistem koordinat ditentukan lakukan proses input data. Data yang dimasukan berupa data sumur dan data seismik.



II.1. Data Sumur Data sumur yang dimasukan berupa data Well Head, data Log, data Directional Sumur (untuk sumur deviasi) dan data Marker.



II.1.1. Well Head Tahap awal dalam proses input data sumur adalah melakukan input Well Head. Data Well Head memuat informasi sumur seperti nama, koordinat, tipe semur, kedalaman, dll yang ingin disertakan. Pilih Insert > New well folder. Kemudian akan muncul folder Well pada Input. Klik kanan pada simbol



> Import (on selection) dan open data Well Head.



New well hanya digunakan untuk memunculkan satu sumur



format Well head



Kemudian akan muncul window Import well head. Buat kolom sesuai data Well Head yang dimasukan. Perlu diperhatikan Attribute type disesuaikan dengan Attribute, Continuous untuk data berupa nilai dan Text untuk data berupa informasi. Kemudian Number of header lines menunjukan line pada data Well Head yang belum menunjukan informasi data yang akan dimasukan > OK.



Langkah-langkah penggunaan software Petrel



4



kolom yang dibuat



data Well head yang dimasukan



Kemudian akan muncul window Input data (kanan) > OK. Namun apabila belum dilakukan pengaturan koordinat awal pada Project settings maka akan muncul pesan seperti pada gambar di bawah (kiri) > Select Null.



untuk melakukan pengaturan koordinat



Informasi Well head



untuk memasukan koordinat data secara langsung



Catatan: Ok for all untuk melakukan OK secara keseluruhan data yang dimasukan, sehingga apabila data yang dimasukan berjumlah lebih dari satu maka akan langsung terbaca semua. Sedangkan untuk OK, data akan dimasukan satu persatu sehingga setiap data akan ditanyakan setiap datanya.



II.1.2. Data Log Melakukan input data log, klik kanan pada simbol



>



Import (on selection). Kemudian akan muncul window Import File lalu open data log sumur yang akan dimasukan. Akan muncul window Match files and



Langkah-langkah penggunaan software Petrel



5



wells yang digunakan untuk menentukan data log yang masuk dengan data Well head yang dimasukan sebelumnya > OK.



cocokan data log dengan data Well head



input data log (dapat lebih dari satu)



format log



Hasil dari proses import file akan muncul pada window Petrel message log (kiri). Sesaat kemudian akan muncul window Import well logs (kanan) yang digunakan untuk melakukan pengaturan terhadap data log yang akan masuk > OK for all.



hasil dari proses import



Automatic untuk melakukan pengaturan secara langsung (otomatis) tanpa dilakukan pengaturan. Specified untuk melakukan pengaturan terhadap log yang akan dimasukan antara lain jenis log yang akan dimasukan sesuai atau tidak.



II.1.3. Data Directional Survey Diketahui jenis sumur berupa sumur deviasi, sehingga perlu dilakukan input mengenai data lintasan sumur. Klik kanan pada simbol



>



Import (on selection). Kemudian akan muncul window Import File lalu open data directional survey yang akan dimasukan. Akan muncul window Match



Langkah-langkah penggunaan software Petrel



6



files and wells yang digunakan untuk menentukan data directional survey yang masuk dengan data Well head yang dimasukan sebelumya > OK.



cocokan data directional survey dengan data Well head



format log



Selanjutnya akan muncul window Import well path / deviation yang digunakan untuk melakukan pengaturan terhadap data input mengenai data deviasi. Pada Input data tentukan informasi yang terdapat pada data dan cocokan dengan kolom sesuai isi data deviasi sumur > OK. tampilan yang dipilih



sesuai dengan kolom data directional survey



sesuai dengan data directional survey



referensi KB



Catatan: Skip MD values equal to or smaller than previous MD digunakan untuk melakukan penghapusan data nilai MD yang mempunyai nilai lebih kecil



Langkah-langkah penggunaan software Petrel



7



dibandingkan MD sebelumnya. Karena nilai MD harus semakin bertambah nilainya.



II.1.4. Data Marker Input data marker dilakukan untuk memudahkan proses picking fault dalam proses interpretasi. Pilih Insert > New well tops. Kemudian akan muncul folder Well tops pada Input. Klik kanan pada simbol



>



Import (on selection) dan open data Marker pada window Import file.



format tops



Akan muncul window Import petrel well tops yang digunakan untuk melakukan pengaturan terhadap data marker yang akan dimasukan. Buat kolom sesuai data well tops yang dimasukan. Perlu diperhatikan Attribute type disesuaikan dengan Attribute, Continuous untuk data berupa nilai dan Text untuk data berupa informasi. Kemudian Number of header lines (0) menunjukan line pada data well tops yang belum menunjukan informasi data yang akan dimasukan > OK.



Langkah-langkah penggunaan software Petrel



8



kolom yang dibuat



data Well head yang dimasukan



Setelah data log, deviasi sumur dan marker selesai dimasukan centang folder Well dan Well tops untuk memunculkan sumur dan data marker. centang well untuk memunculkan sumur centang well tops untuk memunculkan marker



hasil sumur dan marker yang dimasukan pilih Windows kemudian pilih 3D window untuk memunculkan hasil dalam jendela kerja secara 3D



arah orientasi utara atas (hijau) dan bawah (merah)



menu terpilih



Langkah-langkah penggunaan software Petrel



9



Selanjutnya untuk mempermudah pembacaan terhadap data log tampilkan hasil berupa penampang sumur. Klik menu Window > New well section window maka akan dibuat jendela kerja baru pada window Select new well section template > OK.



Kemudian akan muncul tampilan seperti gambar di bawah apabila telah diaktifkan Well section untuk merubah jendela kerja. Aktifkan juga data log untuk memunculkan data log.



2



1



II.2. Data Seismik Setelah data sumur selesai dimasukan, berikutnya adalah input data seismik. Sedikit berbeda pada data 3D sehingga data berupa kumpulan inline dan



Langkah-langkah penggunaan software Petrel



10



xline dapat di rubah menjadi sebuah volume seismik dengan menu Realize. Menu ini akan merubah tampilan seismik sehingga menjadi mudah untuk di akses tiap penampang tanpa memerlukan waktu lebih lama, namun juga akan memakan banyak memori data seismik.



II.2.1. Input Data Seismik Pilih menu Insert > New seismic main folder sehingga akan muncul simbol



pada Input. Selanjutnya klik kanan pada simbol tersebut



kemudian pilih Insert seismik survey sehingga akan muncul simbol



.



Kemudin klik kanan pada simbol yang baru dan pilih Import (on selection) untuk memasukan data seismik.



Selanjutnya akan muncul window Import file (kiri), pilih data seismik yang akan dimasukan, sesuaikan formatnya > OK. Kemudian akan muncul pesan mengenai input data sesimik (kanan atas), dan bersamaan dengan munculnya window Input data (kanan bawah), apabila telah sesuai > OK. Proses….



Langkah-langkah penggunaan software Petrel



11



input data sesimik yang diinginkan



1



format data seismik



2



3



Progress….



Setelah proses selesai, pilih window 3D window untuk menampilkan tampilan seismik 3D maka akan terlihat luasan dan kedalaman pengukuran. Aktifkan sumur juga untuk melihat letak sumur pada penampang seimik.



sumur, marker, seismik aktif



luasan dan kedalaman Pengukuran seismik



Langkah-langkah penggunaan software Petrel



12



II.2.2. Realize Klik kanan pada hasil input data seismik kemudian pilih Realize. Kemudian akan muncul window Settings – Operations – Realize. Pada menu ini pilih kualitas yang diinginkan (disarankan 16 bit agar data tidak terlalu berat untuk dijalankan dan juga akan lebih mempunyai memori yang lebih ringan). > Realized. Prosess….



kualitas memepengaruhi tampilan, resolusi dan kecepatan proses



Seletah proses selesai akan muncul data seismik baru pada Input. Data hasil realize akan berbentuk volume seismik dan dapat lihat penampang secara Z.



proses realize telah selesai



seismik sebelum realize



seismik setelah realize



Langkah-langkah penggunaan software Petrel



13



II.3. Checkshot Klik kanan pada simbol



pada Input > Import (on selection).



Kemudian masukan data checkshot pada window Import file dengan format data yang sesuai > Open.



format data checkshot



Buat kolom sesuai data yang tertera pada data checkshot. Pastikan data terkoneksi pada sumur yang diinginkan pada window Import checkshots > OK. Selanjutnya pada window Input data > OK.



koneksikan data checkshot dengan sumur



Langkah-langkah penggunaan software Petrel



14



Setelah selesai dimasukan maka klik kanan kembali pada simbol yang sama > Settings. Pada window Settings pada bagian Time, koneksikan kembali antara data Well tops dengan sumur. Cara yang dilakukan yaitu pertama klik simbol Well tops pada input kemudian pilih garis panah biru pada window Settings. Lakukan hal sama pada sumur > Run.



1 2



3



Pada proses ini apabila telah dilakukan maka data sumur dan data seismik telah otomatis dikerelasi sehingga sumur telah berada pada posisi sebenarnya. Dapat dilihat pada gambar di bawah.



Langkah-langkah penggunaan software Petrel



15



III. Log Tampilan log dapat dirubah sehingga dalam pembacaannya lebih mudah. Tampilan tersebut antara lain, warna, peletakan jenis log yang baik dapat membantu pembacaan menjadi lebih jelas. Kemudian pada bab ini akan dibahas mengenai pembuatan marker secara manual. Data marker dapat dibentuk sendiri dengan melakukan analisa quick look dari jumlah sumur yang banyak sehingga dapat menjadi satu marker yang dapat mempermudah proses picking horizon.



III.1. Pengaturan Log Beri warna pada defleksi log dan posisikan jenis log berdasarkan track. Penggolongan jenis log juga dapat dilakukan pada menu ini. Sehingga terdapat 3 track utama yaitu track 1 untuk litologi, track 2 untuk keberadaan dan jenis fluida, track 3 untuk keberadaan fluida pada porositas batuan. Pilih icon



yaitu



Show well section template settings pada menu window software. Kemudian akan muncul window Update well section template > Ignore changes > OK.



Maka akan muncul window Settings template. Klik pada Add new object > Track untuk memunculkan track. Klik Track kemudian pilih Add new object > Log untuk memunculkan jenis log.



Langkah-langkah penggunaan software Petrel



16



menu-menu pilihan pengaturan template log



jenis log terpilih



Pada jenis log yang telah pilih



maka



sesuaikan



dengan jenis log yang diinginkan. Definition > Templates



untuk



memilih jenis log.



pengaturan curva log: warna, ukuran garis, tipe garis, arah curva



Langkah-langkah penggunaan software Petrel



Kemudian dapat



pengaturan



dilakukan



pada



Style > 2D.



17



Lakukan



hal



tersbut



untuk memasukan log resistivitas, RHOB dan NPHI. Maka hasil akan nilai masimal dan minimal yang dimasukan



seperti



gambar



disamping. Untuk Track ke-3 pada log RHOB lakukan pengaturan pada Style



>



Gerenal



settings



>



Reverse



untuk



menampilkan



kedua log yang saling crossover.



Kemudian



lakukan



pengaturan Track ke-3 untuk memunculkan warna pada crossover kedua log interval sumur yang akan ditampilkan batas pewarnaan yang diinginkan (antara RHOB dan NPHI)



pada Curve filling > Add new curve filling kemudian dicentang (√). Lakukan seperti



pengaturan gambar



disamping. warna fill pada crossover kedua log



Setelah itu > OK. Hasil dari pengaturan tampilan log dapat dilihat pada gambar sebagai berikut:



Langkah-langkah penggunaan software Petrel



18



track secara berurutan: 1, 2, dan 3 hasil crossover (kuning)



III.2. Marker Manual Pada submenu Well tops yaitu Stratigraphy, klik kanan pada Stratigraphy tersebut kemudian pilih Insert zone/horizon into. Sehingga akan muncul Horizon.



Selanjutnya aktifkan menu membuat marker yaitu pada menu Processes > Stratigraphy > Make/edit well tops. Sehingga akan muncul menu kerja disebelah kanan window software. Pilih Create/edit well tops (bisa dengan menekan T pada keyboard) untuk membuat marker.



Langkah-langkah penggunaan software Petrel



19



Kemudian klik kiri pada window Well section untuk memunculkan marker. Klik (tahan) pada marker untuk memposisikannya (ke atas atau ke bawah). Untuk mendapatkan kedalaman yang tepat maka klik kanan pada marker sehingga akan muncul window Set well top depth lalu isikan nilai kedalaman > OK.



marker buatan



marker hasil input data



Catatan: nama marker dapat dirubah sesuai keinginan dengan klik kanan pilih Settings.



Langkah-langkah penggunaan software Petrel



20



IV. Interpretasi Interpretasi



dilakukan



untuk



mengetahui



keberadaan



sesar



dan



kemenerusan lapisan. Untuk mempermudah pengerjaannya dilakukan pengaturan terhadap jendela kerja. Data seismik hasil Realize dapat memunculkan time slice. Untuk memunculkannya pilih Window > New 2D window. Kemudian akan muncul window 2D window, aktifkan sesimik dan sumur untuk melihat posisinya.



untuk memunculkan bermacam-macam window



untuk merubah tampilan semua window window yang sudah ada dan yang aktif (centang)



muculkan informasi yang diharapkan, Z untuk melihat penampang time slice



aktifkan windows terlebih dahulu untuk memunculkan jendela kerja



2



1



Kemudian untuk memunculkan penampang seismik pada xline atau inline, pilih Windows > New interpretation window.



Langkah-langkah penggunaan software Petrel



21



informasi inline/xline yang dilewati penampang



time domain



2 muculkan informasi yang diharapkan, inline/xline untuk melihat penampang penampang seismik yang aktif



1 aktifkan windows terlebih dahulu untuk memunculkan jendela kerja



pilih play untuk melihat tampilan penampang seismik digeser setiap interval 1 (tergantung pilihan 1, 5, 10, 50 dll)



nomor inline/xline



pewarnaan trace (peak/trough) pada penampang seismik



Dapat dilakukan pengaturan tampilan jendela kerja secara otomoatis yang dapat dipilih pada menu Windows.



2



1



Catatan: untuk menampilkan informasi pada jendela kerja maka: 1. Pilih jendela kerja yang aktif pada Windows terelbih dahulu kemudian 2. Pilih informasi yang akan ditampilkan.



Langkah-langkah penggunaan software Petrel



22



Selanjutnya buat batasan mengenai daerah analisa yang diinginkan (akan dibuat luasan sebesar daerah pengukuran). Cara ubah proses pada menu Processes > Make/edit polygons untuk memunculkan menu-menu kerja pada sebelah kanan tampilan software > icon Add new points untuk dapat menggambar, kemudian klik dengan cursor sesuai batasan yang diharapkan (bentuk dapat terdiri dari banyak titik dan untuk mengakhirinya klik 2x pada titik terakhir). Apabila terjadi kesalahan dapat dilakukan edit pada menu yang sama. Setelah proses menggambar polygon selesai maka akan muncul Polygons pada Input, untuk pengaturannya pilih Settings.



muncul Poliygon setelah proses menggambar selesai menu aktif



Lakukan pengaturan terhadap garis polygon > OK.



Catatan: garis poligon (ungu), garis xline aktif (kuning), garis inline (garis putus-putus) dan grid (biru).



Langkah-langkah penggunaan software Petrel



23



Kemudian dilakukan pengaturan tampilan pada lembar kerja. Tetap diperhatikan untuk mengaktifkan jendela kerja yang diinginkan aktif terlebih dahulu lalu aktifkan informasi (seismik, sumur, dll) untuk ditampilkan (karena bila diaktifkan informasi pada Input, tidak akan muncul secara otomatis pada semua jendela kerja).



2



1



IV.1. Picking Fault Pilih Insert > New interpretation folder untuk memunculkan folder interpretasi. Klik kanan pada



(rubah nama) > Insert



Fault untuk memunculkan interpretasi picking fault. Maka akan muncul Fault interpretation pada submenu Interpretation folder di menu Input. Selanjutnya pada menu Processes pilih Geophysics > Seismic interpretation untuk memunculkan menu kerja pada samping kanan jendela kerja. Pilih icon Interpretation fault (atau tekan F pada keyboard).



Langkah-langkah penggunaan software Petrel



24



Selanjutnya klik pada keberadaan sesar di penampang. Perlu diketahui mengenai data geologi lapangan terlebih dahulu untuk mengetahui keberadaan sesar utama kemudian sesar-sesar minor dapat di gambarkan. Dalam penampilannya, masih dengan cara yang sama yaitu mengaktifkan lembar kerja kemudian informasi pada menu Input.



hasil picking fault



Langkah-langkah penggunaan software Petrel



25



Catatan: untuk mempermudah mengetahui keberadaan dan posisi sesar, lihat pata Interpretation window kemudian play penampang seismik untuk melihat data seimik



yang



dijalankan



berdasarkan



inline/xline.



Dilakukan pada setiap interval pada inline/xline, maka diantara interval tersebut akan terlihat garis putus-putus menunjukan kemenerusan sesar. Untuk



mempermudah



proses berikutnya, maka sebaiknya pada



banyak



picking



titik fault



berjumlah sama dengan interval titik sama.



Lakukan pada setiap sesar yang terdapat pada penampang. Maka akan terlihat kemenerusan sesar secara keseluruhan, ukuran, lebar, bentuk dll. Pada hasil picking yang ditampilkan maka akan ditampilkan hasil picking dalam semua jendela kerja yang tersedia.



Langkah-langkah penggunaan software Petrel



26



IV.2. Picking Horizon Pilih Insert > New interpretation folder untuk memunculkan folder interpretasi. Klik kanan pada Interpretation folder 2 > Insert seismik horizon untuk memunculkan interpretasi picking horizon. Maka akan muncul Horizon interpretation pada submenu Interpretation folder 2 di menu Input. Selanjutnya pada menu Processes pilih Geophysics > Seismic interpretation untuk memunculkan menu kerja pada samping kanan jendela kerja. Pilih icon Interpretation horizon (atau tekan H pada keyboard).



Lakukan pengaturan terhadap picking horizon. Klik kanan pada simbol > Settings, kemudian pilih picking berdasarkan Peaks, Trough, None, dll. > OK.



pilihan picking



Langkah-langkah penggunaan software Petrel



27



Selanjutnya klik (tahan) pada kemenerusan lapisan berdasarkan defleksi seismik di penampang. Lakukan pada setiap marker yang terdapat pada sumur terlebih dahulu sebagai acuan picking. Maka akan terlihat kemenerusan lapisan secara keseluruhan, ukuran, lebar, bentuk dll. Pada hasil picking yang ditampilkan maka akan ditampilkan hasil picking dalam semua jendela kerja yang tersedia.



hasil picking horizon Catatan: akitifkan Cursor tracking pada setiap jendela kerja untuk mengetahui posisi cursor setiap jendela kerja. Dalam proses picking dilakukan secara bertahap dimulai dari data marker pada sumur. Picking dilakukan bergantian pada penampang inline dan xline karena setiap dari hasil picking, di penampang yang memotong hasil picking akan terlihat titik biru untuk mempermudah picking berikutnya.



Langkah-langkah penggunaan software Petrel



28



V. Depth Structure Map Proses selanjutnya akan disempurnakan pada edisi berikutnya. Setelah interpretasi mengenai picking fault dan picking horizon dilakukan, selanjutnya dilakukan konversi dari domain time menjadi domain kedalaman sehingga didapatkan posisi mengenai keberadaan hidrokarbon lebih akurat untuk ditentukan. Berikut adalah hasil dari proses konversi time to depth domain. Hasil berupa peta kedalaman.



VI. Seismik Atribut Kemudian dilakukan proses seismik atribut untuk melakukan analisa mengenai fault dan DHI (Direct Hydrocarbon Indication). Karena seismik attribute diperlukan untuk memperjelas anomali yang tidak terlihat secara kasat mata pada data seismik biasa. Seismik attribute antara lain RMS dan varian. Berikut adalah hasil dari proses atribut seismik RMS untuk penentuan DHI (lingkaran merah). Kemudian berturut di bawahnya adalah hasil proses ateibut seismik varian untuk melihat posisi kemenerusan struktur sesar (garis putusputus).



Langkah-langkah penggunaan software Petrel



29



Langkah-langkah penggunaan software Petrel



30



DAFTAR PUSTAKA



Anstey, N. A., and Geyer, R. L., 1987, Borehole velocity measurements and the synthetic seismogram: Boston, MA, IHRDC, 355 p. Brown, 2006, Op.Cit, Sukmono, S., 2001, Seismic Attributes for Sequence Stratigraphy and Seismic Geomorphology Analysis, Diktat Kuliah, Institut Teknologi Bandung. Harsono, A., 1997, Evaluasi Formasi dan Aplikasi Log, Schlumberger Oilfield Services, Jakarta. Russell, B.H., 1996, Strata Workshop, Hampson-Russell Software Services Ltd. Sukmono, S., 1999, Interpretasi Seismik Refleksi, Lab. Teknik Geofisika, Institut Teknologi Bandung. Sukmono, S., 2001, Seismic Attributes for Sequence Stratigraphy and Seismic Geomorphology Analysis, Diktat Kuliah, Institut Teknologi Bandung. Yilmaz, O., 1987, Seismic Data Processing, Tulsa: Society of Exploration Geophysicist.



BIOGRAFI SINGKAT PENULIS Lahir di Yogyakarta tanggal 24 November 1993. Memiliki nama lengkap yaitu Faid Muhlis dengan nama panggilan Faid. Duduk di bangku perkuliahan Universitas Pembangunan Nasional “Veteran” Yogyakarta angkatan 2012. Menuntut ilmu strata S1 program studi Teknik Geofisika dengan NIM 115.120.034. “Dengan adanya modul ini semoga teman-teman sekalian dapat membaca, mencoba



dan



belajar.



terdapat



kekurangan



Dan dan



apabila



kesalahan



dalam pemahaman saya, saya berharap untuk diluruskan. Terimakasih”



Email: [email protected] Linkedin: https://id.linkedin.com/in/faid-muhlis-283b8176 Web: http://faidmuhlis.blogspot.co.id



“we cannot solve our problem with the same thinking we used when we created them.” Albert Einstein