No Load and Load Test Polines [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

LAPORAN PRAKTIKUM



NO LOAD DAN LOAD GENERATOR SINKRON Teknik Tenaga Listrik



PERCOBAAN O2 Tanggal Percobaan : 31 Maret 2015



Disusun oleh : M Rizky Adriansyah S



( 12 / 3.31.13.0.13 )



LT-2A



PROGRAM STUDI TEKNIK LISTRIK JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI SEMARANG 2015



1.1.



PENDAHULUAN Mesin sinkron bila difungsikan sebagai motor berputar dalam kecepatan konstan, apabila dikehendaki kecepatan yang bersifat variabel, maka motor sinkron di-lengkapi dengan dengan pengubah fre-kuensi seperti “Inverter”atau “Cyclo-converter”. Sebagai generator, beberapa mesin sinkron sering dioperasikan secara paralel, seperti di pusat-pusat pembangkit. Ada-pun tujuan dari paralel adalah adanya pembagian beban antara generator yang satu dengan lainnya. Ada dua struktur medan magnet pada mesin sinkron yang merupakan dasar keja dari mesin tersebut, yaitu kumparan yang mengalirkan penguatan DC dan sebuah jangkar tempat dibangkitkannya ggl AC. Hampir semua mesin sinkron mempunyai jangkar diam (stationer) dan struktur medan berputar. Kumparan DC pada struktur medan yang berputar dihubungkan pada sumber luar melalui slipring dan sikat, tetapi ada juga yang tidak mempergunakan sikat yaitu sistem “brushless excitation”



1.2.



TUJUAN 1. Dapat memahami pengertian no load dan load generator sinkron. 2. Dapat memahami gambar rangkaian no load dan load generator sinkron. 3. Dapat mengukur tegangan dan arus pada generator sinkron dengan menggunakan alat amperemeter dan voltmeter. 4. Menentukan nilai R (ohm) suatu beban dengan menggunakan alat multimeter.



1.3.



DASAR TEORI



Generator sinkron adalah mesin sinkron yang digunakan untuk mengubah daya mekanik menjadi daya listrik bolak-balik (ac). Pada dasarnya Generator sinkron terdiri dari stator, rotor, dan celah udara. Motor DC adalah motor yang bekerja dengan sumber tegangan DC Power Supply adalah Alat yang berfungsi untuk menghasilkan tegangan yang dibutuhkan. Volt meter adalah Alat untuk mengukur tegangan. Ampere meter adalah Alat untuk mengukur arus. Saat awal jangan memasangkan motor DC dengan alternator : ini berarti bahwa hanya motor DC yang harus dijalankan. Startng dari 0 V, meningkatkan nilai tegangan suplai DC untuk memulai motor DC dan menyesuaikan tegangan ini hingga kecepatan nominal alternator tercapai. Ketika motor dc telah panas, mengukur arus exciter, arus dan tegangan yang diserap oleh motor DC : IEM = …….. (A) IM = …….. (A) UM = ……. (V) Menghitung daya yang diserap oleh armatur motor: PMm = UM (IM – IEM) = ………. (W) Sesuai dengan kerugian mekanik motor DC Menghentikan motor dan pasangkan motor DC dengan alternator tetapi tidak pada exciter generator. Mulai lagi dari 0 V, menambah supply tegangan DC untuk memulai set motor-alternator dan menyesuaikan tegangan hingga kecepatan nominal alternator tercapai. Ukur arus exciter, tegangan arus dan diserap oleh motor DC : IEM0 = ……… (A) IM0 = ………. (A) UM0 = ………. (V) dan menghitung daya yang diserap oleh dinamo motor PM0 = UM0 (IM0 – IEM0) = ………. (W) Perbedaan PGM = PM0 – PMm = …….. (W) merupakan kerugian mekanik alternator. Sekarang, dengan alternator motor yang ditetapkan pada kecepatan



nominal generator, alternator mengeksitasi sehingga untuk menghasilkan tegangan nominal UN. Mengukur arus exciter, tegangan arus dan diserap oleh motor dc: IEMe = ………. (A) IMe = ………. (A) UMe = ……….. (V) dan menghitung daya yang diserap oleh armature motor : PMe = UMe (IMe – IEMe) = ………. (W) Perbedaan PGFe = PMe – PM0 = …….. (W) Merupakan rugi-rugi inti besi alternator Tidak ada kerugian beban alternator : PG0 = PGm + PGFe = …….. (W) Tiga macam sifat beban jika dihubungkan dengan generator, yaitu : beban resistif, beban induktif, dan beban kapasitif. Akibat pembeban ini akan berpengaruh terhadap tegangan beban dan faktor dayanya. Gambar menunjukkan jika beban generator bersifat resistif mengakibatkan penurunan tegangan relatif kecil dengan faktor daya sama dengan satu. Jika beban generator bersifat induktif terjadi penurunan tegangan yang cukup besar dengan faktor daya terbelakang (lagging). Sebaliknya, Jika beban generator bersifat kapasitif akan terjadi kenaikan tegangan yang cukup besar dengan faktor daya mendahului (leading) 1.4.



Alat dan Bahan 1. Power Supply 2. Motor DC 3. Exciter 4. RPM meter 5. Volt Meter 6. Ampere Meter 7. Generator Sinkron 8. ELCB 9. Kabel Jumper



10.Multimeter Digital



1.5.



GAMBAR RANGKAIAN



Gambar 1. Rangkaian No – Load Test



Gambar 2. Rangkaian Load Tes



1.5.



LANGKAH KERJA A. No Load test 1. Dalam melakukan praktek tentang no load dan load generator sinkron terlebih dahulu di persiapkan alat yang akan digunakan yaitu kabel jumper merah dan hitam ,multimeter digital, powersupply, voltmeter, Amperemeter,RPM meter, generator sinkron dan motor DC. 2. Rangkai kabel dengan melihat gambar 1.1 untuk pengukuran tanpa beban 3. Rangkai pada generator sinkron dengan hubungan bintang. 4. Atur range batas ukur 1000 mA pada amperemeter. 5. Atur range batas ukur 500 V DC pada voltmeter



6. On kan power supply. 7. Atur tegangan hingga mendapatkan kecepatan RPM sampai 3000 8. Atur arus eksitasi seperti pada tabel, catat hasilnya pada tabel percobaan 9. Turunkan kecepatan menjadi 2500 rpm dan 2000 rpm 10. Lakukan seperti langkah nomer 8 11. Setelah selesai, kecilkan arus eksitasi dan kecepatan kemudian Offkan Power Supply. B. Load test 1. Dalam melakukan praktek tentang no load dan load generator sinkron terlebih dahulu di persiapkan alat yang akan digunakan yaitu kabel jumper merah dan hitam ,multimeter digital, powersupply, voltmeter, Amperemeter,RPM meter, generator sinkron dan motor DC 2. Rangkai kabel dengan melihat gambar 1.2 untuk pengukuran tanpa beban 3. Rangkai pada generator sinkron dengan hubungan bintang. 4. Hubungkan generator dengan beban R1 terlebih dahulu 5. Atur range batas ukur 1000 mA pada amperemeter. 6. Atur range batas ukur 500 V DC pada voltmeter 7. On kan power supply. 8. Atur tegangan hingga mendapatkan kecepatan RPM sampai 3000 9. Atur arus eksitasi hingga tegangan yang dihasilkan generator menjadi 380 V 10.On kan saklar ELCB, amati apa yang terjadi, catat hasilnya pada tabel 11.Ganti beban menjadi R2, R3, R4, R5, R6, R7 dan lakukan seperti langkah nomer 9 – 10 12.Ganti beban menjadi L1, L2, L3, L4, L5 dan lakukan seperti langkah nomer 9 – 10 13.Ganti beban menjadi C1, C2, C3 dan lakukan seperti langkah nomer 9 – 10 14.Setelah selesai, kecilkan arus eksitasi dan kecepatan kemudian Offkan Power Supply. 1.6.



HASIL PERCOBAAN Tabel A. No Load Test



Speed (min)



3000



2500



2000



Ig mA



Us (V)



Us (V)



Us (V)



100



200



160



130



150



300



240



190



200



360



300



240



250



340



280



300



380



300



350



320



400



340



450



350



500



360



550



370



Tabel B. Load Test



1.7.



R



Is (A)



Us (V)



R1



0,4



360



L1



0,3



340



C1



0,35



410



R2



0,55



350



L2



0,35



320



C2



0,5



440



R3



0,85



340



L3



0,55



280



C3



0,9



460



R4



1,1



300



L4



0,7



250



C4



R5



1,3



240



L5



0,8



210



C5



L



Is (A)



Us (V)



C



Is (A)



Us (V)



PEMBAHASAN Data-data hasil percobaan menunjukkan bahwa kecepatan putaran generator akan berpengaruh terhadap hasil output dari generator itu sendiri. Semakin cepat generator diputar maka generator akan lebih cepat mencapai arus nominalnya dengan arus yang lebih kecil jika



dibandingkan dengan ketika generator diputar dengan kecepatan yang lebih lambat. Namun kita tidak bisa seenaknya menambah kecepatan generator. Kita juga harus memperhatikan karakteristiknya dari generator itu sendiri. Setiap generator mempunyai batas maksimal kecepatan putaran yang diperbolehkan. Jika generator diputar melebihi batas tersebut akan sangat berisiko terhadap keamanan generator itu sendiri. Selain itu badak kemungkinan ketidakstabilan output tegangan jika generator dipaksa untuk berputar melebihi putaran nominalnya. Pada pembebanan kapasitif, semakin besar arus beban semakin besar tegangan terminal generator. Karena sifat dari beban kapasitif yaitu arus mendahului tegangan. Sehingga jika alternator dibebani kapasitif, maka arus jangkar akan mendahului GGL induksi yang dibangkitkan. Dengan arus jangkar yang mendahului tersebut akan menghasilkan dan memperkuat fluks jangkar (φa). Sehingga fluks total (φR) semakin besar Dengan fluks total yang semakin besar maka GGL induksi yang dihasilkan generator semakin besar juga Pada pembebanan induktif, semakin besar arus beban semakin kecil tegangan terminal generator. Karena sifat dari beban induktif yaitu arus tertinggal terhadap tegangan. Sehingga jika alternator dibebani induktif, maka arus jangkar ketinggalan terhadap GGL induksi yang dibangkitkan. Dengan arus jangkar yang ketinggalan tersebut maka akan dihasilkan fluks jangkar (φa) yang semakin turun sehingga fluks total (φr) semakin kecil. Dengan fluks total yang semakin kecil maka GGL induksi yang dihasilkan generator semakin kecil juga Pada pembebanan resistif, fluk tidak akan terpengaruh. Sehingga tegangan yang dihasilkan generator relative tetap.



1.8.



KESIMPULAN



Dari percobaan diatas dapat di simpulkan bahwa : 1. Semakin besar RPM yang di hasilkan, maka semakin besar pula tegangan yang dihasilkan dan arusnya pun tidak begitu besar 2. Jika pengukuran tanpa beban maka arus yang dibutuhkan tidak terlalu besar, sebaliknya jika berbeban maka arus eksitasinya harus di tambah 3. Jika alternator dibebani induktif, semakin besar induktansi berarti semakin besar arus yang mengalir pada beban. Dengan arus beban yang semakin besar, maka akan semakin besar juga pengurangan flux total pada motor.Karena fluks total semakin kecil, tegangan yang dihasilkan generator akan semakin kecil. 4. Jika alternator dibebani kapasitif, semakin besar induktansi berarti semakin besar arus yang mengalir pada beban. Dengan arus beban yang semakin besar, maka akan semakin besar juga penambahan flux total pada motor.Karena fluks total semakin besar, tegangan yang dihasilkan generator akan semakin besar. 5. Jika alternator dibebani resistif, fluk motor tidak akan terpengaruh.Sehingga tegangan yang dihasilkan generator relative tetap. 1.9.



DAFTAR PUSTAKA  DE LORENZO. 2011. Electrical power engineering. Italy : DE LORENZO SPA



 https://biondiocta.wordpress.com/2012/10/16/pengertianmotor-listrik-dc/  http://ieeexplore.ieee.org/xpl/articleDetails.jsp? reload=true&arnumber=6057282  http://dunia-listrik.blogspot.com/2009/04/generator-sinkron.html