Tutorial Ion Exchange [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

Tutorial Ion Exchange Separation Process 2 May 2018



1. An ion-exchange column containing 99.3 g of amberlite ionexchange resin was used to remove Cu2+ from a solution where c0 = 0.18 M CuSO4. The tower height = 30.5 cm and the diameter = 2.95 cm. The flow rate was 1.37 cm3 solution/s to the tower. The breakthrough data are shown below: t (s)



420



480



510



540



600



660



720



780



810



870



900



c (g mol Cu/L)



0



0.0033



0.0075



0.0157



0.0527



0.1063



0.1433



0.1634



0.1722



0.1763



0.180



The concentration desired at the break point is c/c0 = 0.010. Determine the break-point time, fraction of total capacity used up to the break point, length of the unused bed, and the saturation loading capacity of the solid.



c/c0



t



2. Use the conditions of Example 12.4-1 for ion exchange of Cu2+ with H+. However, determine the effect of total concentration in the solution on the loading of Cu2+ on the resin. Do this for a total concentration C of 0.010 N in the solution at equilibrium instead of 0.10 N. also, the concentration of Cu2+ in the solution is 0.002 M (0.004 N) instead of 0.02 M.



3. For the case where the cation NH4+ (A) replaces H+ (B) in a polystyrene resin with 8% DVB, calculate the equilibrium constant KA,B. The total resin capacity Q = 2.0 equiv/L wet bed volume. The total concentration C = 0.20 N in the solution. Calculate at equilibrium the equivalents of NH4+ in the resin when the concentration of NH4+ in solution is 0.04 N.



Table 12.4-1 Strong-Base Anion Exchange (Relative to Cl- as 1.0)



ClINO3CH3COOSO42OH-



1.0 8.7 3.8 0.2 0.15 0.05 – 0.07



Strong-Acid Cation Exchanger (Relative to Li+ as 1.0)



Li+ H+ Na+ NH4+ K+ Mg2+ Cu2+ Ca2+



1.0 1.27 1.98 2.55 2.90 3.29 3.85 5.16