Contoh Perhitungan Penulangan Tie Beam [PDF]

  • 0 0 0
  • Suka dengan makalah ini dan mengunduhnya? Anda bisa menerbitkan file PDF Anda sendiri secara online secara gratis dalam beberapa menit saja! Sign Up
File loading please wait...
Citation preview

PERENCANAAN TIE BEAM Data-data perencanaan tie beam       



Penampang balok tie beam arah x 35/70 Penampang balok tie beam arah y 45/80 Spesifikasi tulang longitudinal: fy=400MPa Spesifikasi tulangan transversal: fy=400Mpa Mutu beton: f’c = 35 MPa Berat jenis beton = 24 kN/m3 Tebal selimut beton = 75 mm [SNI 2847:2013 pasal 7.7.1]



Check dimensi tie-beam: Dimensi terkecil harus lebih besar atau sama dengan jarak bersih antara kolom yang diikat dibagi 20 tetapi tidak boleh melebihi 450 mm. [ACI 318-14 18.13.3.2] Jarak bersih antara kolom dibagi 20: 7000𝑚𝑚−800𝑚𝑚 20 8000𝑚𝑚−800𝑚𝑚 20



= 310 𝑚𝑚 ≤ 350𝑚𝑚 ≤ 450𝑚𝑚 (𝑂𝐾) = 360 𝑚𝑚 ≤ 450𝑚𝑚 ≤ 450𝑚𝑚 (𝑂𝐾)



Pembebanan pada Tie Beam  Beban Mati 1. Berat sendiri balok : qx = (0,7-0,125) × 0,35 × 2400 kg/m3 = 483 kg/m qy = (0,8-0,125) × 0,45 × 2400 kg/m3 = 729 kg/m 2. Berat pasangan dinding : qx = 250 kg/m2 × (3.5 - 0,7) = 700 kg/m qy = 250 kg/m2 × (3.5 - 0,8) = 675 kg/m 3. Beban pelat : a. Bagian tepi qx1 = 387 kg/m2 × 6m/2 × 1 = 1161 kg/m qx2 = 387 kg/m2 × 7m/2 × 1 = 1354,5 kg/m qy = 387 kg/m2 × 4m/2 × 1 = 774 kg/m b. Bagian tengah qx1 = 387 kg/m2 × 6m/2 × 2 = 2322 kg/m qx2 = 387 kg/m2 × 7m/2 × 2 = 2709 kg/m qy = 387 kg/m2 × 4m/2 × 2 = 1548 kg/m



4. Berat tangga : As B : Beban merata = 2530,025 kg/m Beban terpusat = 5072,5 kg/m  Beban Hidup Fungsi ruang parkiran = 200 kg/m2 (SNI 1727 : 2013 Tabel 4.1 halaman 26) 1. Beban pelat lantai : a. Bagian tepi qx1 = 200 kg/m2 × 6m/2 × 1 = 600 kg/m qx2 = 200 kg/m2 × 7m/2 × 1 = 700 kg/m qy = 200 kg/m2 × 4m/2 × 1 = 400 kg/m b. Bagian tengah qx1 = 200 kg/m2 × 6m/2 × 2 = 1200 kg/m qx2 = 200 kg/m2 × 7m/2 × 2 = 1400 kg/m qy = 200 kg/m2 × 4m/2 × 2 = 800 kg/m 2. Berat tangga : As B : Beban merata = 996,75 kg/m Beban terpusat = 1993,5 kg/m Kombinasi Beban 1. 1,4 DL 2. 1,2 DL + 1,6 LL 3. 1,3214 DL + 1 LL + 3 Eqx + 0,9 Eqy 4. 1,3214 DL + 1 LL + 3 Eqx – 0,9 Eqy 5. 1,3214 DL + 1 LL – 3 Eqx + 0,9 Eqy 6. 1,3214 DL + 1 LL – 3 Eqx – 0,9 Eqy 7. 1,3214 DL + 1 LL + 0,9 Eqx + 3 Eqy 8. 1,3214 DL + 1 LL – 0,9 Eqx + 3 Eqy 9. 1,3214 DL + 1 LL + 0,9 Eqx – 3 Eqy 10. 1,3214 DL + 1 LL – 0,9 Eqx – 3 Eqy 11. 0,7786 DL + 3 Eqx + 0,9 Eqy 12. 0,7786 DL + 3 Eqx – 0,9 Eqy 13. 0,7786 DL – 3 Eqx + 0,9 Eqy 14. 0,7786 DL – 3 Eqx – 0,9 Eqy 15. 0,7786 DL + 0,9 Eqx + 3 Eqy 16. 0,7786 DL – 0,9 Eqx + 3 Eqy 17. 0,7786 DL + 0,9 Eqx – 3 Eqy 18. 0,7786 DL – 0,9 Eqx – 3 Eqy



Pemodelan Tie Beam Akibat Beban Mati:



Member



Mz.i [KN-m]



Mz.pos [KN-m]



Mz.j [KN-m]



Fy.i [KN]



Fy.j [KN]



1 2 3 4 5 6 7 8 9 10 11



-36.7535 -72.4706 -95.8457 -81.4785 -81.1374 36.7535 -8.6668 14.3671 -14.3671 8.6668 -36.7535



50.9268 31.9524 61.7261 31.9524 50.9268 36.7535 4.3334 14.3671 7.1836 8.6668 18.3767



-81.1374 -81.4785 -95.8457 -72.4706 -36.7535 -18.3768 4.3334 -7.1836 7.1836 -4.3334 18.3768



58.3807 64.2767 80.731 67.2793 73.1753 -13.7826 3.2501 -5.3877 5.3877 -3.2501 13.7826



-73.1753 -67.2793 -80.731 -64.2767 -58.3807 -13.7826 3.2501 -5.3877 5.3877 -3.2501 13.7826



Akibat Beban Hidup:



Member



Mz.i [KN-m]



Mz.pos [KN-m]



Mz.j [KN-m]



Fy.i [KN]



Fy.j [KN]



1 2 3 4 5 6 7 8 9 10 11



-14.0392 -26.9875 -39.5905 -32.5135 -30.5674 14.0392 -3.58 7.0769 -7.0769 3.58 -14.0392



21.008 13.3595 28.8666 13.3595 21.008 14.0392 1.79 7.0769 3.5385 3.58 7.0196



-30.5674 -32.5135 -39.5905 -26.9875 -14.0392 -7.0196 1.79 -3.5385 3.5385 -1.79 7.0196



18.8003 20.634 29.3387 22.476 24.3097 -5.2647 1.3425 -2.6538 2.6538 -1.3425 5.2647



-24.3097 -22.476 -29.3387 -20.634 -18.8003 -5.2647 1.3425 -2.6538 2.6538 -1.3425 5.2647



Akibat Beban Gempa Kuat (ke kanan):



Member 1 2 3 4 5



Mz.i [KNm] 862.6438 394.011 482.7196 478.5919 586.0369



Mz.pos [KN-m] 862.6438 394.011 482.7196 478.5919 586.0369



Mz.j [KNm] -586.037 -478.592 -482.72 -394.011 -862.644



Fy.i [KN] -241.447 -145.434 -137.92 -145.434 -241.447



Fy.j [KN] -241.447 -145.434 -137.92 -145.434 -241.447



Akibat Beban Gempa Kuat (ke kiri):



Member 1 2 3 4 5



Mz.i



[KNm] -862.644 -394.011 -482.72 -478.592 -586.037



Mz.pos [KN-m]



Mz.j [KN-m]



586.0369 478.5919 482.7196 394.011 862.6439



586.0369 478.5919 482.7196 394.011 862.6438



Fy.i [KN] 241.4468 145.4338 137.9199 145.4338 241.4468



Fy.j [KN] 241.4468 145.4338 137.9199 145.4338 241.4468



Desain Tie Beam Desain Penulangan Tie Beam Semua pengikat harus memiliki kuat tarik/tekan desain sebesar 10 persen SDS kali beban mati terfaktor ditambah beban hidup terfaktor pur tiang atau kolom yang lebih besar. [SNI 1726-2012 Pasal 7.13.6.2] Nu kolom = 7030,68kN dan SDS = 0,607 10% 𝑁𝑢 𝑆𝐷𝑆 = 0,1 ∙ 7030,68 ∙ 0,607 = 426,7623 𝑘𝑁 𝐴𝑔 𝑓′𝑐 350 ∙ 700 ∙ 35 = = 857500 𝑁 = 857,5 𝑘𝑁 > 10% 𝑁𝑢 𝑆𝐷𝑆 (𝑂𝐾) 10 10 Gaya Dalam Tie Beam: Balok B36



Tumpuan Tumpuan Kiri Kiri + 655,874



B45



595,6299



184,3849



Lapangan -



Lapangan



Tumpuan Kanan



Tumpuan Kanan



473,506



244,358



Momen Lentur (kNm) 276,1252 135,7248 Gaya Lintang (kN) 45,099



103,4422



Tulangan Lentur (B36) Berdasarkan SNI 2847 : 2013 Pasal 21.5.2.1 𝐴𝑠 𝑚𝑖𝑛 =



1,4 1,4 𝑏𝑤 𝑑 = 450 ∙ 699,5 = 1101,7125 𝑚𝑚2 (𝑑𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛) 𝑓𝑦 400



𝐴𝑠 𝑚𝑖𝑛 =



√𝑓′𝑐 √30 𝑏𝑤 𝑑 = 450 ∙ 699,5 = 1077,5586 𝑚𝑚2 4𝑓𝑦 4 ∙ 400



𝐴𝑠 𝑚𝑎𝑘𝑠 = 0,025 ∙ 𝑏𝑤 𝑑 = 0,025 ∙ 450 ∙ 699,5 = 7869,375  Tumpuan Kiri (tulangan atas / momen negatif) Mu = -655,874kNm 𝑀𝑢 655,874 ∙ 106 = = 2893,9278 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 2893,9278 ∙ 400 𝑎= = = 100,8777 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 655,874 ∙ 106 𝐴𝑠 = = 2806,9347 𝑚𝑚2 𝑎 = 100,8777 0,9𝑓𝑦 (𝑑 − 2) 0,9 ∙ 400 (699.5 − ) 2 Digunakan tulangan 6D25 → As = 2945,2431 mm2 𝐴𝑠 =







Tumpuan Kiri (tulangan bawah / momen positif)



Mu = 595,6299kNm 𝑀𝑢 595,6299 ∙ 106 𝐴𝑠 = = = 2628,1113 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 2628,1113 ∙ 400 𝑎= = = 91,6117 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 595,6299 ∙ 106 𝐴𝑠 = = 2531,0423 𝑚𝑚2 𝑎 = 91,6117 0,9𝑓𝑦 (𝑑 − 2) 0,9 ∙ 400 (699.5 − ) 2 Digunakan tulangan 6D25 → As = 2945,2431 mm2 



Lapangan (tulangan atas / momen negatif)



Mu = -276,1252 kNm 𝑀𝑢 276,1252 ∙ 106 = = 1218,3535 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 1218,3535 ∙ 400 𝑎= = = 42,4698 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 276,1252 ∙ 106 𝐴𝑠 = = = 1114,4659 𝑚𝑚2 𝑎 42,4698 0,9𝑓𝑦 (𝑑 − ) 0,9 ∙ 400 (699.5 − ) 2 2 2 Digunakan tulangan 3D25 → As =1472,6216 mm 𝐴𝑠 =







Lapangan (tulangan bawah / momen positif)



Mu = 135,7248 kNm 𝑀𝑢 135,7248 ∙ 106 𝐴𝑠 = = = 598,8616 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 598,8616 ∙ 400 𝑎= = = 20,8754 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 135,7248 ∙ 106 𝐴𝑠 = = 547,1397 𝑚𝑚2 𝑎 = 20,8754 0,9𝑓𝑦 (𝑑 − 2) 0,9 ∙ 400 (699.5 − 2 ) 𝐷𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝐴𝑠 𝑚𝑖𝑛 = 1101,7125 𝑚𝑚2 Digunakan tulangan 3D25 → As =1472,6216 mm2







Tumpuan Kanan (tulangan atas / momen negatif)



Mu = -473,506 kNm 𝑀𝑢 473,506 ∙ 106 𝐴𝑠 = = = 2089,2613 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 2089,2613 ∙ 400 𝑎= = = 72,8283 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 473,506 ∙ 106 𝐴𝑠 = = 1983,596 𝑚𝑚2 𝑎 = 72,8283 0,9𝑓𝑦 (𝑑 − 2) 0,9 ∙ 400 (699.5 − 2 ) Digunakan tulangan 5D25 → As =2454,3693 mm2 



Tumpuan Kanan (tulangan bawah / momen positif)



Mu = 244,358 kNm 𝑀𝑢 244,358 ∙ 106 = = 1078,1864 𝑚𝑚2 0,9𝑓𝑦 0,9𝑑 0,9 ∙ 400 ∙ 0,9 ∙ 699.5 𝐴𝑠 𝑓𝑦 1078,1864 ∙ 400 𝑎= = = 37,5838 𝑚𝑚 0,85𝑓′𝑐 𝑏𝑤 0.85 ∙ 30 ∙ 450 𝑀𝑢 244,358 ∙ 106 𝐴𝑠 = = = 997,1561 𝑚𝑚2 𝑎 37,5838 0,9𝑓𝑦 (𝑑 − ) 0,9 ∙ 400 (699.5 − ) 2 2 𝐷𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛 𝐴𝑠 𝑚𝑖𝑛 = 1101,7125 𝑚𝑚2 Digunakan tulangan 3D25 → As =1472,6216 mm2 𝐴𝑠 =



Tulangan Geser (B45) Berdasarkan SNI 2847:2013 pasal 11.4.6.3 𝑏𝑤 𝑠 𝐴𝑣 𝑚𝑖𝑛 350 𝑚𝑚2 ′ 𝐴𝑣 𝑚𝑖𝑛 = 0,062√𝑓 𝑐 → = 0,062√30 = 0,2971 𝑓𝑦𝑡 𝑠 400 𝑚𝑚′ 𝑏𝑤 𝑠 𝐴𝑣 𝑚𝑖𝑛 350 𝑚𝑚2 𝐴𝑣 𝑚𝑖𝑛 = 0,35 → = 0,35 = 0,3063 (𝑑𝑖𝑝𝑎𝑘𝑎𝑖) 𝑓𝑦𝑡 𝑠 400 𝑚𝑚′



𝑉𝑐 = 0.17𝜆√𝑓′𝑐 𝑏𝑤 𝑑 = 0.17√30 ∙ 350 ∙ 599.5 ∙ 10−3 = 195,374 𝑘𝑁 



Tumpuan Kiri Vu = 184,3849 kN 𝑉𝑢 𝑉𝑐 < = 245,8465 𝑘𝑁(𝑑𝑖𝑏𝑢𝑡𝑢ℎ𝑘𝑎𝑛 𝑡𝑢𝑙𝑎𝑛𝑔𝑎𝑛 𝑔𝑒𝑠𝑒𝑟) 0,75 𝑉𝑢 184,3849 𝑉𝑠 ≥ − 𝑉𝑐 = − 195,374 = 50,4726 𝑘𝑁 𝜙 0,75



𝐴𝑣 𝑓𝑦𝑡 𝑑 𝐴𝑣 𝑉𝑠 50,4726 ∙ 103 𝑚𝑚2 𝑉𝑠 = → = = = 0,2105 𝑠 𝑠 𝑓𝑦𝑡 𝑑 400 ∙ 599,5 𝑚𝑚′ 𝐴𝑣 𝑚𝑚2 𝑑𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛 = 0,3063 𝑠 𝑚𝑚′ Spasi maksimum tulangan transversal 1) ¼ d = ¼ 599,5 = 149,875 mm 2) 6D = 6∙ 25 = 150 mm 3) 150mm Digunakan sengkang D13, 2 kaki (𝐴𝑣 = 265,4646 𝑚𝑚2 ) 𝐴𝑣 265,4646 = = 874,3893 𝑚𝑚 𝐴𝑣 0,3036 𝑠 Digunakan spasi tulangan transversal 125 mm Digunakan sengkang D13 – 125 mm 𝑆=







Lapangan Vu = 45,099 kN 𝑉𝑢 𝑉𝑐 > = 60,132 𝑘𝑁 (𝑡𝑖𝑑𝑎𝑘 𝑑𝑖𝑏𝑢𝑡𝑢ℎ𝑘𝑎𝑛 𝑡𝑢𝑙𝑎𝑛𝑔𝑎𝑛 𝑔𝑒𝑠𝑒𝑟) 0,75 𝑉𝑠 = 0 𝐴𝑣 𝑚𝑚2 𝑑𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛 = 0,3063 𝑠 𝑚𝑚′ Spasi maksimum tulangan transversal 1) ¼ d = ¼ 599,5 = 149,875 mm 2) 6D = 6∙ 25 = 150 mm 3) 150mm Digunakan sengkang D13, 2 kaki (𝐴𝑣 = 265,4646 𝑚𝑚2 ) 𝐴𝑣 265,4646 = = 874,3893 𝑚𝑚 𝐴𝑣 0,3036 𝑠 Digunakan spasi tulangan transversal 125 mm Digunakan sengkang D13 – 125 mm 𝑆=







Tumpuan Kanan Vu = 103,4422kN 𝑉𝑢 𝑉𝑐 > = 137,9229 𝑘𝑁 (𝑡𝑖𝑑𝑎𝑘 𝑑𝑖𝑏𝑢𝑡𝑢ℎ𝑘𝑎𝑛 𝑡𝑢𝑙𝑎𝑛𝑔𝑎𝑛 𝑔𝑒𝑠𝑒𝑟) 0,75 𝑉𝑠 = 0



𝐴𝑣 𝑚𝑚2 𝑑𝑖𝑔𝑢𝑛𝑎𝑘𝑎𝑛 = 0,3063 𝑠 𝑚𝑚′ Spasi maksimum tulangan transversal 4) ¼ d = ¼ 599,5 = 149,875 mm 5) 6D = 6∙ 25 = 150 mm 6) 150mm Digunakan sengkang D13, 2 kaki (𝐴𝑣 = 265,4646 𝑚𝑚2 ) 𝐴𝑣 265,4646 = = 874,3893 𝑚𝑚 𝐴𝑣 0,3036 𝑠 Digunakan spasi tulangan transversal 125 mm Digunakan sengkang D13 – 125 mm 𝑆=